
\ /',',’/'” 

%/X{\Q\'O ‘ . 

STANDARD LEV 

Mathematics 
Analysis and Approaches 

for the IB Diploma 

0 Pearson 

 



VTGO EEaT 

Mathematics 
Analysis and Approaches 

for the IB Diploma 

IBRAHIM WAZIR 
TIM GARRY 

 



Published by Pearson Education Limited, 80 Strand, London, WC2R ORL 

wwwpearsonglobalschools.com 
Text © Pearson Education Limited 2019 
Theory of Knowledge chapter authored by Ri 
Edited by Jim Newall and Sam Hartburn 
Proofread by Penny Nicholson and Martin Payne 
Indexed by Georgie Bowden 
Designed by © Pearson Education Limited 2019 
Typeset by © Tech-Set Ltd, Gateshead, UK 
Original llustrations © Pearson Education 
llustrated by © Tech-Set Ltd, Gateshead, UK 
Cover design by © Pearson Education Limited 2019 
Coverimages: Front: © Getty Images: Busi Photography 
Inside front cover: Shutterstock.com: Dmitry Lobanov 

  

Sims 

d 2019    

  

“The rights of Ibrahim Wazir and Tim Garry to be identified as the authors of this 
work have been asscrtcd by them in accordance with the Copyright, Designs and 
Patents Act 1988. 

First published 2019 
242322212019 
IMP10987654321 
British Library Cataloguing in Publication Data 
A catalogue record for this book is available from the British Library 
ISBN 978129226741 8 

Copyright notice 
Al rights reserved. No part o this publication may be reproduced in any form or 
by any means (including photocopying or storing it in any medium by clectronic 
means and whether or not transiently or incidentally to some other use of this 
publication) without the written permission of the copyright owner, exceptin 
accordance with the provisions of the Copyright, Designs and Patents Act 1988 or 
under the terms of a licence issued by the Copyright Licensing Agency, Barnard's 
Inn, 86 Fetter Lane, London, EC4A 1EN (www.cla.co.uk). Applications for the 

copyright owner’ written permission should be addresse to the publisher. 

  

Printed in Slovakia by Neografia 
Acknowledgements 
‘The authors and publisher would like to thank the following individuals and 
organisations for their kind permission to reproduce copyright material. 

  

Photographs 
< b-bottom; -centre;     left;r-right; -top) 

Getty Images: JPL[Moment/Getty Images 1, baxsylMoment/Getty Images 45, 
d3sign/Moment/Getty Images 71, Alberto Manuel Urosa Toledano/Moment/ 

Getty Images 115, Franco Tollardo|EyeEm|Getty Images 149, Alberto Manuel 
Urosa Toledano/Moment/Getty Images 191, Domenico De Santo|Gety Images 
235, Sebastian-Alexander Stamatis/Getty Images 307, Brasil2| E+|Getty Images 
349, Roc Canals Photography Moment/Getty Images 399, Johner Images/Getty 
Images 431, Gabriel Perez|Moment/Getty Images 475. 
Al other images © Pearson Education 

‘We are grateful to the following for permission to reproduce copyright material: 
Text 
pages 536-537, Edge Foundation Inc.: What Kind of Thing Is a Number? 
ATalk with Reuben Hersh, Wed, Oct 24, 2018, Used with permission of Edge 
Foundation Inc. 
Text extracts relating to the 1B syllabus and assessment have been reproduced 
from IBO documents. Our thanks go to the International Baccalaureate for 
permission to reproduce its copyright. 
“This work has been developed independently from and is not endorsed by the 
International Baccalaurcate (IB). International Baccalaurcate® is a registered 
trademark of the International Baccalaureate Organization. 

  

“This work is produced by Pearson Education and s not endorsed by any 
trademark owner referenced in this publication. 
Dedications 
First and foremost, I want o thank my i, iiend and devote, Lody, foral the support she 
Hhas give through all of theseyears of my work and career. Most ofthat work occurred on 
weekends, nights whileon vacation, and other times inconveient 10 my famil.  could not 
Hhave complted this effort without her asistance, olerance and enthusias. 
Most importantly, I dedicat this book to my four grandehildren, Marco, Roberto, Luas and 
Sophia, who lived throtgh my fiequen absence from theirevens. 
Iyvould also like o extend my thaniks to Catherine Barber, our Commissoning Editor at 
Pearson, forall her support, flexibiliy and help. 

Ibrahim Wazir 

Inloving memory of my parents. 
Iyvish to express my decpest thanks and ove to my wif, Val, for her unflappable good nature 
and support  and for siling and laughing with me each day. I an infniely thankfulfor 
ourwonderfuland kind-hearted children ~ Bethany, Neil and Rhona. My lov foryou ll s 
immeasurable 

Tim Garry



Contents 
Introduction 

Algebra and function basics 

Functions, equations, and inequalities 

Sequences and series 

Exponential and logarithmic functions 

Trigonometric functions and equations 

Geometry and trigonometry 

Statistics 

Probability 

Differential calculus 1 

Differential calculus 2 

Integral calculus 

E
E
E
O
o
o
E
o
o
O
o
o
E
n
e
 

Probability distributions 

Internal assessment 

Theory of knowledge 

Answers 

Index 

45 

71 

113 

149 

191 

235 

307 

349 

399 

431 

475 

519 

526 

550 

594



1B Mathematics: 

Analysis and 
Approaches Standard 

Level syllabus topics 
1. Number and Algebra 

2. Functions 

3. Geometry and 
‘Trigonometry 

4. Statistics and 
Probability 

5. Calculus 

Introduction 
This textbook comprehensively covers all of the material in the syllabus for the 

two-year Mathematics: Analysis and Approaches Standard Level course of the 

International Baccalaureate (IB) Diploma Programme (DP). First teaching of this course 

starts in the autumn of 2019 with first exams occurring in May 2021. We, the authors, 
have strived to thoroughly explain and demonstrate the mathematical concepts and 

methods listed in the course syllabus. 

As you will see when you look at the table of contents, the five syllabus topics (see 

margin note) are fully covered, though some are split over different chapters in order 
to group the information as logically as possible. This textbook has been designed so 
that the chapters proceed in a manner that supports effective learning of the course 

content. Thus — although not essential — it is recommended that you read and study 
the chapters in numerical order. It is particularly important that you thoroughly 

review and understand all of the content in the first chapter, Algebra and function 

basics, before studying any of the other chapters. 

Other than the final two chapters (Theory of knowledge and Internal assessment), 
each chapter has a set of exercises at the end of every section. Also, at the end of each 

chapter there is a set of practice questions, which are designed to expose you to 

questions that are more ‘exam-like’. Many of the end-of-chapter practice questions are 

taken from past IB exam papers. Near the end of the book, you will find answers to all 

of the exercises and practice questions. There are also numerous worked examples 

throughout the book, showing you how to apply the concepts and skills you are 

studying. 

The Internal assessment chapter provides thorough information and advice on the 

required mathematical exploration component. Your teacher will advise you on 

the timeline for completing your exploration and will provide critical support during 

the process of choosing your topic and writing the draft and final versions of your 

exploration. 

The final chapter in the book will support your involvement in the Theory of 

knowledge course. It is a thought-provoking chapter that will stimulate you to think 

more deeply and critically about the nature of knowledge in mathematics and the 
relationship between mathematics and other areas of knowledge. 

eBook 
Included with this textbook is an eBook that contains a digital copy of the textbook and 

additional high-quality enrichment materials to promote your understanding of a wide 

range of concepts and skills encountered throughout the course. These materials include: 

* Interactive GeoGebra applets demonstrating key concepts 

*  Worked solutions for all exercises and practice questions 

*  Graphical display calculator (GDC) support 

To access the eBook, please follow the instructions located on the inside cover.



Information boxes 

As you read this textbook, you will encounter numerous boxes of different colours 

containing a wide range of helpful information. 

Learning objectives 

You will find learning objectives at the start of each chapter. They set out the content 

and aspects of learning covered in the chapter. 

Learning objectives 

By the end of this chapter, you should be familiar with... 

« different forms of equations of lines and their gradients and intercepts 

« parallel and perpendicular lines 

« different methods to solve a system of linear equations (maximum of 

three equations in three unknowns) 

Key facts A function is one-to-one 

Key facts are drawn from the main text and if each element y in the 
highlighted for quick reference to help you range s the image of 
identify clear learning points. St 

= the domain. 

Hints Ifyou use a graph to 
Specific hints can be found alongside answer a question on an 

1B mathematics exam, explanations, questions, exercises, and worked 
you must include a clear examples, providing insight into how to 
and well-labelled sketch 

analyse[answer a question. They also identify in your working. 

common errors and pitfalls. 

Notes Quadratic equations will 
Notes include general information or advice. be covered in detail in 

Chapter 2. 

Examples 

‘Worked examples show you how to tackle questions and apply the concepts and skills 

you are studying. 

Find x such that the distance between points (1, 2) and (x, —10) is 13 units. 

  

Solution 

d=13=\x— D2+ (10— 22 = 13> = (x — 12 + (—12) 

=169=x—2x+1+144=>x>—2x—24 =0 

Sx—6)(xt4)=0=>x—6=0o0rx+4=0 

=x=6o0rx=—4



Vi 

How to use this book 
This book is designed to be read by you — the student. It is very important that you 
read this book carefully. We have strived to write a readable book — and we hope that 
your teacher will routinely give you reading assignments from this textbook, thus 
giving you valuable time for productive explanations and discussions in the classroom. 
Developing your ability to read and understand mathematical explanations will prove 
to be valuable to your long-term intellectual development, while also helping you to 
comprehend mathematical ideas and acquire vital skills to be successful in the Analysis 
and Approaches SL course. Your goal should be understanding, not just remembering. 
You should always read a chapter section thoroughly before attempting any of the 
exercises at the end of the section. 

Our aim is to support genuine inquiry into mathematical concepts while maintaining 
a coherent and engaging approach. We have included material to help you gain insight 
into appropriate and wise use of your GDC and an appreciation of the importance 
of proof as an essential skill in mathematics. We endeavoured to write clear and 
thorough explanations supported by suitable worked examples, with the overall goal 
of presenting sound mathematics with sufficient rigour and detail at a level appropriate 
for a student of SL mathematics. 

For over 10 years, we have been writing successful textbooks for IB mathematics 
courses. During that time, we have received many useful comments from both 
teachers and students. If you have suggestions for improving this textbook, please feel 
free to write to us at globalschools@pearson.com. We wish you all the best in your 
mathematical endeavours. 

Ibrahim Wazir and Tim Garry
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Algebra and function basics 

Learning objectives 

By the end of this chapter, you should be familiar with... 

o different forms of equations of lines and their gradients and intercepts 

» parallel and perpendicular lines 

« the concept of a function and its domain, range and graph 

+ mathematical notation for functions 

« composite functions 

» characteristics of an inverse function and finding the inverse function f~(x) 

« transformations of graphs and composite transformations of graphs. 

Equations and formulae 

Equations, identities and formulae 

You will encounter a wide variety of equations in this course. Essentially, an 

equation is a statement equating two algebraic expressions that may be true or 

false depending upon the value(s) substituted for the variable(s). Values of the 

variables that make the equation true are called solutions or roots of the equation. 

All of the solutions to an equation comprise the solution set of the equation. 

An equation that is true for all possible values of the variable is called an identity. 

Many equations are often referred to as a formula (plural: formulae) and 

typically contain more than one variable and, often, other symbols that 

represent specific constants or parameters (constants that may change in value 

but do not alter the properties of the expression). Formulae with which you are 

familiar include: A = 7%, d = rt,d = |/(x, — x> + (7, — yp) and V = %m’}. 

‘Whereas most equations that we encounter will have numerical solutions, we 

can solve a formula for one variable in terms of other variables - often referred 

to as changing the subject of a formula. 

(a) Solve for b in the formula a*> + b = ¢ 

(b) Solve for I in the formula T = 217\/% 

nR 
(c) Solve for R in the formula M = 

IRETET: 
  

  

Solution 

@ a2+ b =2 b =c?—a’=b=x/2—a? 

If b is alength then b = V¢? — a2



1 or 1T g T=2mfs > ft=L T - ) "‘/; NET2m E am am 

  (' I= LRSS RIS = iR = IR I = nR 
IR 

=IR—nR=—-Ir=RI—n)=—1Ir 

Ir R 
= el 

Note that factorisation was required in solving for R in part (c). 

Equations and grapt 

Two important characteristics of any equation are the number of variables 

(unknowns) and the type of algebraic expressions it contains (e.g. polynomials, 

rational expressions, trigonometric, exponential). Nearly all of the equations 

in this course will have either one or two variables. In this chapter we will only 

discuss equations with algebraic expressions that are polynomials. Solutions 

for equations with a single variable consist of individual numbers that can 

be graphed as points on a number line. The graph of an equation is a visual 

representation of the equation’s solution set. For example, the solution set of 

the one-variable equation containing quadratic and linear polynomials 

x2=2x + 8is x € {—2, 4}. The graph of this one-variable equation (Figure 1.1) 

is depicted on a one-dimensional coordinate system, i.e. the real number line. 

  

Figure 1.1 Graph of the solution set for the equation x* = 2x + 8 

The solution set of a two-variable equation will be an ordered pair of 

numbers. An ordered pair corresponds to a location indicated by a point 

on a two-dimensional coordinate system, i.e. a coordinate plane. For 

example, the solution set of the two-variable quadratic equation y = x> 

will be an infinite set of ordered pairs (x, y) that satisfy the equation. Four 

ordered pairs in the solution set are shown in red in Figure 1.2. The graph 

of all the ordered pairs in the solution set forms a curve as shown in blue. 

quations of lines 

A one-variable linear equation in x can always be written in the form ax + b = 

  

with a # 0, and it will have exactly one solution, namely x = *%. An example 

of a two-variable linear equation in x and y is x — 2y = 2. The graph of this 

equation’s solution set (an infinite set of ordered pairs) is a line (Figure 1.3). 

The slope or gradient, 1, of a non-vertical line is defined by the formula: 

_)Th vertical change 
m   

X =% horizontal change 

  

Figure 1.2 Graph of the 
solution set of the equation 

y=% 

Quadratic equations will 
be covered in detail in 
Chapter 2. 

  

Figure 1.3 The graph of 
x—2y=2



Because division by zero is undefined, the slope of a vertical line is undefined. 

Using the two points (1, *%) and (4, 1) we compute the slope of the line with 

(- 2 
: ( 2) _2_1 

If we solve for y we can rewrite the equation in the form y = %x -1 

Note that the coefficient of x is the slope of the line and the constant term is 

the y-coordinate of the point at which the line intersects the y-axis, that is, 

the y-intercept. There are several forms for writing linear equations. 

      

   

  

ax+by+c=0 every line has an equation in this form 
ifbothaand b # 0 
  

y=mxtc m is the slope; (0, c) is the y-intercept 
  

Y= =mE=x) | mis the slope; (x,, ;) is a known point 
  

  

on the line 

c slope is zero; (0, ) is the y-intercept 

x=c slope is undefined; unless the line is 
the y-axis, no y-intercept       

Table 1.1 Forms for equations of lines 

Most problems involving linear equations and their graphs fall into two 

categories: (1) given an equation, determine its graph; and (2) given a graph, 

or some information about it, find its equation. 

For lines, the first type of problem is often best solved by using the slope- 

intercept form. For the second type of problem, the point-slope form is usually 

most useful. 

‘Without using a GDC, sketch the line that is the graph of each linear 

equation written in general form. 

(a) 5 +3y—6=0 (b)y y—4=0 () x+3=0 

| 

Solution 

(a) Solve for y to write the equation in slope-intercept form. 

Sx+3y=6=0=3y=—5i+ 6y = —2x+2 

The line has a y-intercept of (0, 2) and a slope of 7% 

(b) The equation y — 4 = 0 is equivalent to y = 4, the graph of which is a 

horizontal line with a y-intercept of (0,4)



(c) The equation x + 3 = 0 is equivalent to x = —3, the graph of which is a 

vertical line with no y-intercept; but, it has an x-intercept of (—3,0) 

‘\y & 
y=4 

  

  

—5-4-3-2-10 

    

  

(a) Find the equation of the line that passes through the point (3,31) 

and has a slope of 12. Write the equation in slope-intercept form. 

(b) Find the linear equation in C and F knowing that C = 10 when 

F =50, and C = 100 when F = 212. Solve for F in terms of C. 

1 

Solution 

(a) Substitute x, = 3, y, = 31 and m = 12 into the point-slope form: 

y—yn=mx—x)=y—31=12(x—3)=y=12x— 36 + 31 
=y=12x—-5 

(b) The two points, ordered pairs (C, F), that are known to be on the line are 

(10,50) and (100, 212). The variable C corresponds to the x variable and 

F corresponds to y in the definitions and forms stated above. 

o BTH _212-50_162_9 The slope of the line is 1 —j RO 

GG 
Choose one of the points on the line, say (10, 50), and substitute it and 

the slope into the point-slope form: 

F—F,:m(c—c,)zF—sozg(c—10)$F:§c—1s+50 

) >F=2c+3 

The slope of a line is a convenient tool for determining whether two lines are 

parallel or perpendicular. The two lines shown in Figure 1.4 suggest that two 

distinct non-vertical lines are parallel if and only if their slopes are equal, m, = m,.



  

    
    
   

yy (x,7) 
> ! T 

b~ 
il o Gy n 

() 

x> 

Figure 1.7 Distance between 
two points on a coordinate plane 

‘The distance d 

between the two points 
() and (15,5 in the 

coordinate plane is 

% =5 =) 

  

Algebra and function basics 

The two lines shown in Figure 1.5 suggest that two non-vertical lines are 

perpendicular if and only if their slopes are negative reciprocals - that is, 

m = *L, which is equivalent to m, - m, = —1. 
m; 

  

  

Figure 1.4 Parallel lines Figure 1.5 Perpendicular lines 

  
Distances and midpoints 

Recall that absolute value is used to define the distance (always non-negative) 

between two points on the real number line. The distance between the points A 

and B on the real number line is |B — Al, which is equivalent to |A — Bl. 

The points A and B are the endpoints of a line segment that is denoted with the 

notation [AB] and the length of the line segment is denoted AB. In Figure 1.6, 

the distance between A and Bis AB = [4 — (=2)| = -2 — 4| = 6. 

A B 
- T—&———> 
—4 =) =3 1 4 1 2 3 4 2 6 

Figure 1.6 The length of the line segment [AB] is denoted by AB 

We can find the distance between two general points (x,, ) and (x,, ,) on 

a coordinate plane using the definition for distance on a number line and 

Pythagoras’ theorem. For the points (x,, y,) and (x,, y,), the horizontal 

distance between them is |x; — x,| and the vertical distance is |y, — y,|. 

As illustrated in Figure 1.7, these distances are the lengths of two legs of 

a right-angled triangle whose hypotenuse is the distance between the points. 

If d represents the distance between (x,, y) and (x,, y,), then by Pythagoras’ 

theorem d? = |x; — x,|* + |y, — y,|* Because the square of any number is 

positive, the absolute value is not necessary to give us the distance formula 

for two-dimensional coordinates. 

The coordinates of the midpoint of a line segment are the average values of the 

corresponding coordinates of the two endpoints.



‘The midpoint of the line segment joining the points (x,, ) and (x,, ,) in the coordinate plane is 
("1 tonty 
2 
    

Example 1.4 

(a) Show that the points P(1, 2), Q(3, 1) and R(4, 8) are the vertices of a 

right-angled triangle. 

(b) Find the midpoint of the hypotenuse of the triangle PQR. 

  

Solution 

(a) The three points are plotted and the line segments joining them are 

drawn in Figure 1.8. We can find the exact lengths of the three sides of 
the triangle by applying the distance formula. 

2O (a5} 

QR=(3 =47 + (1 8F =T+ 4 =50 

PR=[/1—4F+(2—87 =9 +36=1V45 

(PQ)* + (PR)* = (QR)* because (\/5)* + (V45)* = 5 + 45 = 50 = (/50) 

The lengths of the three sides of the triangle satisfy Pythagoras theorem, 
confirming that the triangle is a right-angled triangle. 

(b) QR is the hypotenuse. Let the midpoint of QR be point M. Using the 

SIS 156 S (7850 A T’T) S (2 5 2). This point is plotted 

in Figure 1.8 Figure 1.8 Diagram for 
Example 1.4 

  

midpoint formula, M = ( 

Find x such that the distance between points (1, 2) and (x, —10) is 13 units. 

  

Solution 

d=13=c— 1>+ (=10 -2 =13 = (x — D* + (~12)* 

=169=x’—2x+1+144=x>—2x—24=0 d=1g \ 
(~4,~10) (6,-10) 

G-+ =0=>x-6=0o0rx+4=0 
. Figure 1.9 Graph for Example 

= x =6 or x = —4 (see Figure 1.9) 1.5 showing the two points that 
are 13 units from (1,2)



Algebra and function basics 

1. Solve for the indicated variable in each formula. 

(a) m(h — x) = n, solve for x (b) v =ab — t, solve for a 

(c) A= g(b‘ + b,), solve for b, d A= %rZB, solve for r 

(e) é = %, solve for k (f) at = x — bt, solve for t 

(g V= %#rsh, solve for r (h) F= T f = , solve for k 

2. Find the equation of the line that passes through the two given points. 

Write the line in slope-intercept form (y = mx + c), if possible. 

(@) (=9,1) and (3, —7) (b) (3, —4) and (10, —4) 

(¢) (~12, —9) and (4, 11) @ (% —%) and (g%) 

(e) Find the equation of the line that passes through the point (7, —17) 

and is parallel to the line with equation 4x + y — 3 = 0. Write the 

line in slope-intercept form (y = mx + c). 

(f) Find the equation of the line that passes through the point (*5, %) 

and is perpendicular to the line with equation 2x — 5y — 35 = 0. 

Write the line in slope-intercept form (y = mx + c). 

3. Find the exact distance between each pair of points and then find the 

midpoint of the line segment joining the two points. 

(a) (—4,10) and (4, —5) (b) (—1,2) and (5, 4) 

© (5.1)and(-2.3) (@) (12,2) and (~10,9) 

4. Find the value(s) of k so that the distance between the points is 5 units. 

(@) (5 —1)and (k,2) (b) (=2, —7)and (L, k) 

5. Show that the given points form the vertices of the indicated polygon. 

(a) Right-angled triangle: (4, 0), (2, 1) and (—1, —5) 

(b) Isosceles triangle: (1, —3), (3, 2) and (-2, 4) 

(c) Parallelogram: (0, 1), (3, 7), (4,4) and (1, —2) 

Definition of a function 

Many mathematical relationships concern how the value of one variable 

determines the value of a second variable. In general, suppose that the values 

of a particular independent variable, for example x, determine the values of a 

dependent variable y in such a way that for a specific value of x, a single value 

of y is determined. Then we say that y is a function of x and we write y = f(x)



(read y equals f of x) or y = g(x), and so on, where the letter f or g represents A mapping illustrates 

the name of the function. For example: how some values in the 
T domain of a function are 

« Period T'is a function of length L: T = 271‘(;‘— paired with values in the 
g range of the function. 

« Area A is a function of radius r: A = 7r? Here is a mapping for 
the function y = |x| 

+ °F (degrees Fahrenheit) is a function of °C:  F = %c +32 

Other useful ways of representing a function include a graph of the equation on 

a Cartesian coordinate system (also called a rectangular coordinate system), 

a table, a set of ordered pairs, or a mapping. 

Domain  Range 
(input)  (output) 

  

« Distance d from the origin is a function of x: d = 

The largest possible set of values for the independent variable (the input set) 

is called the domain, and the set of resulting values for the dependent variable 

(the output set) is called the range. In the context of a mapping, each value 

  

in the domain is mapped to its image in the range. All of the various ways of ‘The coordinate system 

representing a mathematical function illustrate that its defining characteristic for the graph of an 
is that it is a rule by which each number in the domain determines a unique cquation hasthe : independent variable on 
number in the range. the horizontal axis and 

the dependent variable 
PR B AN on the vertical axis. 

A function is a correspondence (mapping) between two sets X and ¥ in which each element of 
set X corresponds to (maps to) exactly one element of set Y. The domain is set X (independent 

variable) and the range is set Y (dependent variable). 

Not all equations represent a function. The solution set for the equation 

x2 4 y? = 1 is the set of ordered pairs (x, y) on the circle of radius equal to 1 

and centre at the origin (see Figure 1.10). If we solve the equation for y, we get 

y = *V1 — x2 Itis clear that any value of x between —1 and 1 will produce 

two different values of y (opposites). Since at least one value in the domain 

(x) determines more than one value in the range (y), the equation does not 

represent a function. A correspondence between two sets that does not satisfy 

the definition of a function is called a relation. 

  

Figure 1.10 Graph of x2 + y2 =1 

Alternative definition of a function 

A function is a relation in which no two different ordered pairs have the same first coordinate. 

A vertical line intersects the graph of a function at no more than one point (vertical line test). 

For many physical phenomena, we observe that one quantity depends on 

another. The word function is used to describe this dependence of one quantity 

on another - that is, how the value of an independent variable determines the 

value of a dependent variable. A common mathematical task is to find how to 

express one variable as a function of another variable.



  
Figure 1.11 Cube for 
Example 1.6 

  

Figure 1.12 Diagram for 
Example 1.7 

10   

Example 1.6 

(a) Express the volume V of a cube as a function of the length e of each edge. 

(b) Express the volume V of a cube as a function of its surface area S. 

  

Solution 

(a) Vasafunctionofeis V= e3 

(b) The surface area of the cube consists of six squares each with an area 

of e2. Hence, the surface area is 6¢2; that is, S = 6e2. We need to write 

Vin terms of S. We can do this by first expressing e in terms of S, and 

then substituting this expression for e in the equation V = e3. 

. Substituting, V = ( 

  

- 2 2 = S=6e’=e s 

  

Vas a function of Sis V = 

  

Example 1.7 

An offshore wind turbine is located at point W, 4 km offshore from the 
nearest point P on a straight coastline. A maintenance station is at point 

M, 3km along the coast from P. An engineer is returning by a small boat 
from the wind turbine. He sails to point D that is located between P and 
M at an unknown distance x km from point P. From there, he walks to the 
maintenance station. The boat sails at 3 km hr~'and the engineer can walk at 
6kmhr'. Express the total time T (hours) for the trip from the wind turbine 

to the maintenance station as a function of x (km). 

e ———— ] 

Solution 

To get an equation for T in terms of x, use the fact that time = _d‘s:t‘gce 

‘We then have 

T= distance WD e distance DM 
3 6 

The distance WD can be expressed in terms of x using Pythagoras’ theorem. 

WD? = x2 + 42 = WD = Jx? + 16 

To express T in terms of only the single variable x, note that DM = 3 — x 

Then the total time T can be written in terms of x by the equation 

: - 

T:%+¥orT:%¢xz+1s+%—%



omain and range of a function 

The domain of a function may be stated explicitly, or it may be implied by the 

expression that defines the function. For most of this course, we can assume that 

functions are real-valued functions of a real variable. The domain and range will 

contain only real numbers or some subset of the real numbers. The domain of 

a function is the set of all real numbers for which the expression is defined as a 

real number, if not explicitly stated otherwise. For example, if a certain value of 

x is substituted into the algebraic expression defining a function and it causes 

division by zero or the square root of a negative number (both undefined in the 

real numbers) to occur, that value of x cannot be in the domain. 

The domain of a function may also be implied by the physical context or 

limitations that exist in a problem. For example, in both functions derived in 

Example 1.6 the domain is the set of positive real numbers (denoted by R*) 

because neither a length (edge of a cube) nor a surface area (face of a cube) can 

have a value that is negative or zero. In Example 1.7 the domain for the function 

is 0 < x < 3 because of the constraints given in the problem. Usually the range 

of a function is not given explicitly and is determined by analysing the output of 

the function for all values of the input (domain). The range of a function is often 

more difficult to find than the domain, and analysing the graph of a function is 

very helpful in determining it. A combination of algebraic and graphical analysis 

is very useful in determining the domain and range of a function. 

Example 1.8 

Find the domain of each function. 

(@) {(=6,-3),(=1,0),(2,3),(3,0), (5 4} 

(b) Volume of a sphere: V = %fl'fi 

  ©r=52< @ y=13=% 
S —— 

Solution 

(a) The function consists of a set of ordered pairs. The domain of the 

function consists of all first coordinates of the ordered pairs. Therefore, 

the domain is the setx € {—6, — 1,2, 3, 5}. 

(b) The physical context tells us that a sphere cannot have a radius that is 

negative or zero. Therefore, the domain is the set of all real numbers r 

such that r > 0. 

(c) Since division by zero is not defined for real numbers then 2x — 6 # 0. 

Therefore, the domain is the set of all real numbers x such that x € R, 

x#3. 

(d) Since the square root of a negative number is not real, then 3 — x > 0. 

Therefore, the domain is all real numbers x such that x < 3. 

"



  

<«—domain—> 

Figure 113 Graphical 
solution to Example 1.9 

‘The inequality 2 < x < 5 
can also be written 

as[2,5[ . The number 
2is included, but 5 is 

not. When determining 
the domain and range 
of a function, use both 

algebraic and graphical 
analysis. Do not rely too 
much on using just one 
approach. For graphical 

analysis of a function, 
producing a graph on 

your GDC that shows all 
the important features is 

essential. 
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Algebra and function basics 

Find the domain and range for the function y 

OO 

Solution 

Using algebraic analysis: Squaring any real number produces another real 
number. Therefore, the domain of y = x? is the set of all real numbers (R). 

Since the square of any positive or negative number will be positive and the 

  

square of zero is zero, then the range is the set of all real numbers greater 
than or equal to zero. 

Using graphical analysis: For the domain, focus on the x-axis and scan the 

graph from —o0 to +o00. There are no gaps or blank regions in the graph 

and the parabola will continue to get wider as x goes to either — oo or +c0. 

Therefore, the domain is all real numbers. For the range, focus on the y-axis 

and scan from —o0 to +00. The parabola will continue to increase as y goes to 

+00, but the graph does not go below the x-axis. The parabola has no points 

with negative y coordinates. Therefore, the range is the set of real numbers 

greater than or equal to zero. 

  

Description in words Interval notation 
  

Domain is any real number Domain is {x:x € R}, or Domain is x € ] 00, o[ 
  

Range is any number greater than or | Range is {y:y = 0}, or Range is y € ]0, oo[ 
equal to zero       
  

Table 1.2 Different ways of expressing the domain and range of y = x> 

Function notation 

It is common practice to name a function using a single letter, with f;, gand h 

commonly used. Given that the domain variable is x and the range variable is y, 

the symbol f(x) denotes the unique value of y that is generated by the value of x. 

Another notation - sometimes referred to as mapping notation - is based on 

the idea that the function fis the rule that maps x to f(x) and is written 

f:x+— f(x). For each value of x in the domain, the corresponding unique value 

of y in the range is called the function value at x, or the image of x under f. 

The image of x may be written as f(x) or as y. For example, for the function 

fx) =x%f(3) = 9 or ‘ifx =3, theny =9 

  

  

  

  

  

Notation Description in words 

foo =x The function f, in terms of x, is % or, simply f of x equals x> 

fix— x2 The function f maps x to x2 

f3) =9 The value of the function fwhen x = 3 is 9; or, simply fof 3 equals 9 

f39 The image of 3 under the function fis 9       
  

Table 1.3 Function notation



Example 1.10 

Find the domain and range of the function h:x — 

  

| 

Solution 

Using algebraic analysis: The function produces a real number for all x, except 

for x = 2 when division by zero occurs. Hence, x = 2 is the only real number 
1 
= 

of y cannot be zero. Hence, y = 0 is the only real number not in the range. 

  

  not in the domain. Since the numerator of- 5 can never be zero, the value 
Figure 1.14 Diagram for 
Example 110 

Using graphical analysis: A horizontal scan shows a gap at x = 2 dividing 

the graph of the equation into two branches that both continue indefinitely 

with no other gaps as x — = o00. Both branches are asymptotic (approach 
but do not intersect) to the vertical line x = 2. This line is a vertical 

asymptote and is drawn as a dashed line (it is not part of the graph of 
the equation). A vertical scan reveals a gap at y = 0 (x-axis) with both 

branches of the graph continuing indefinitely with no other gaps as 
y — = 00. Both branches are also asymptotic to the x-axis. The x-axis is 

a horizontal asymptote. 

  Both approaches confirm that the domain and range for h:x — . > are: = 

domain: {x:x € R,x#2} orx€]—o00,2[U]2,00[ 

range: {y:;y€R,y#0}  orye]—o0,0[U]0, c0[ 

Consider the function f(x) = vx + 4 

(a) Find: 

@ f7) (i) f32) (iii) fi—4) 
(b) Find the values of x for which fis undefined. 

(c) State the domain and range of f. 

Solution 

(@) (i) AP =V7+4=VI1=~332(3sf) 

(i) f32)=V32+4=/36=6 

(iii) A-=V—4+4=V0=0 

(b) f(x) will be undefined (square root of a negative) when x + 4 < 0. 

Therefore, f(x) is undefined when x < —4. 

(c) It follows from the result in (b) that the domain of fis {x:x = —4}. 

The symbol /" stands for the principal square root that, by definition, 

can only give a result that is positive or zero. Therefore, the range of fis 

{7:y = 0}. The domain and range are confirmed by analysing the graph 
lof the fanction, Figure 1.15 Graph for the 

solution to Example 111 (c) 
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v
    

  

f) = vxFd



illustrates, it is dangerous 

  

    
   

to completely trust 5 o 3 1 
graphs produt;d 5 Find the domain and range of the function f(x) = — 

GDC without also doing Lo 
some algebraic thinking. e | 

Itis important to check ; 
that the graph shown is Solution 
comprehensive (shows _ il 
T The graph of y = — shown here, 

and that the graph agrees . s 2ol 
e agrees with algebraic analysis 

thefunctionorexamples indicating that the expression L 
where the function Mo 

s}m“ld. be 2¢ro, positive, will be positive for all x, and is defined negative, undefined, or 
increasing/decreasing only for —3 < x < 3. Further analysis and 

without bound. tracing the graph reveals that f(x) has 

  

  
aminimum at (0, %) The graph on the GDC is misleading in that it 

YI-1/(9-%2) appears to show that the function has a maximum value of approximately 

y 2 2.8037849. Can this be correct? A lack of algebraic thinking and over- 

reliance on a GDC could easily lead to a mistake. The graph abruptly stops 

its curve upwards because of low screen resolution. Function values should 
X=2.9787234 | Y=2.8037849 get quite large for values of x a little less than 3, because the value of V9 — x? 

1 

  

  
  

  

will be small, making the fraction large.   

   

Using a GDC to make a table for fix) or evaluating the function for values of 

x very close to —3 or 3 confirms that as x approaches —3 or 3, y increases 

without bound - i.e. y goes to +o0c. Hence, f(x) has vertical asymptotes of 
      

  

  

  

zi: : o §§§§§é95525 x=—3andx=3. '}'his combination ,Of graphivcal and algebraic analysis 
: 5 388§§3é3245 leads to the concluslonlthat the domain of fix) is {x: =3 < x < 3}, and the 

:1( *12307504aa9 range of fx) is {yfyzg}       
Figure 1.16 GDC screens for 

1. (i) Match each equation to one of the graphs. 

(ii) State whether or not the equation represents any of the functions 

shown. Justify your answer. Assume that x is the independent 

variable and y is the dependent variable. 

(@) y=2x ) y=-3 (@ x-y=2 

dx2+y2=4 () y=2—x f) y=x2+2 

@y =x ® y=2 @ x+y=2 
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Express the area, A, of a circle as a function of its circumference, C. 

Express the area, A, of an equilateral triangle as a function of the length, 
£, of each of its sides. 

A rectangular swimming pool with dimensions 12 metres by 18 metres 

is surrounded by a pavement of uniform width x metres. Find the area 
of the pavement, A, as a function of x. 

In a right-angled isosceles triangle, the two equal sides have length x 

units and the hypotenuse has length / units. Write / as a function of x. 

The pressure P (measured in kilopascals, kPa) for a particular sample of 

gas is directly proportional to the temperature T (measured in degrees 
kelvin, K) and inversely proportional to the volume V (measured in 

litres, L). With k representing the constant of proportionality, this 

relationship can be written in the form of the equation P = k% 

  

    
  

      
e—————— 

7 e\ |       

Figure 1.17 Diagram for 
question 4 
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Algebra and function basics 

10. 

il 

(a) Find the constant of proportionality, k, if 150 L of gas exerts a 
pressure of 23.5 kPa at a temperature of 375K. 

(b) Using the value of k from part (a) and assuming that the 

temperature is held constant at 375K, write the volume V as a 

function of pressure P for this sample of gas. 

. In physics, Hooke'’s law states that the force F (measured in newtons, N) 

needed to extend a spring by x units beyond its natural length is 

directly proportional to the extension x. Assume that the constant of 
proportionality is k (known as the spring constant for a particular spring). 

(a) Write F as a function of x. 

(b) A spring has a natural length of 12 cm and a force of 25 N stretches 

the spring to a length of 16 cm. Work out the spring constant k. 

(c) What force is needed to stretch the spring to a length of 18 cm? 

. Find the domain of each of the following functions. 

(@) {(—6.2, —7), (=15, —2), (0.7, 0), (3.2, 3), (3.8, 3)} 
(b) Surface area of a sphere: § = 4772 

  
  

© foy = %x S @) hir (e) g =v3—1 

. T, 
) hay) = Vi (g) fix— e (h) fix) = (== 1 

. Do all linear equations represent a function? Explain. 

Consider the function h(x) = Vx — 4 

(a) Find: (i) h2D (ii) h(53) (iii) h(4) 

(b) Find the values of x for which h is undefined. 

(c) State the domain and range of h. 

For each function below: 

(i) find the domain and range of the function 

(ii) sketch a comprehensive graph of the function, clearly indicating any 

intercepts or asymptotes. 

     

D 
Vs (9 he) ="   @ fro Lz () gw = 

@ prx>5-222 (o) for=2—4



Composite functions 

Composition of functions 

Consider the function in Example 111, f(x) = /x + 4. When we evaluate 
flx) for a certain value of x in the domain, for example, x = 5, it is necessary 

to perform computations in two separate steps in a certain order. 

f(5)=V5+4=f(5)=19 Step 1: compute the sum of 5 + 4 

=f(5)=3  Step 2: compute the square root of 9 

Given that the function has two separate evaluation steps, f(x) can be seen as a 

combination of two simpler functions that are performed in a specified order. 

According to how f{(x) is evaluated, the simpler function to be performed first is 

the rule of adding 4 and the second is the rule of taking the square root. 

If h(x) = x + 4 and g(x) = V'x, then we can create (compose) the function f(x) 

from a combination of h(x) and g(x) as follows: 

fix) = glh(x)) 

=glx +4) Step L: substitute x + 4 for h(x) making x + 4 the argument of g(x) 

=Vx+4 Step2:apply the function g(x) on the argument x + 4 

We obtain the rule /x + 4 by first applying the rule x + 4 and then applying 
the rule Vx. A function that is obtained from simpler functions by applying 

one after another in this way is called a composite function. flx) = Vx + 4 is 
the composition of h(x) = x + 4 followed by g(x) = Vx. In other words, fis 

obtained by substituting h into g, and can be denoted in function notation by 

g(h(x)) - read ‘g of h of x” 

Start with a number x in the domain of h and find its image h(x). If this number 

h(x) is in the domain of g, we then compute the value of g(h(x)). The resulting 

composite function is denoted as (g o h(x)). See Figure 1.18. 

If fix) = 3xand g(x) = 2x — 6, find: 

@) () (fe9(5) (i) Express (fe g)(x) as a single function 
rule (expression). 

(b) (1) (goN)(5) (i) Express (g f)(x) as a single function 

rule (expression). 

(c) (1) (gog)(5) (ii) Express (g g)(x) as a single function 

rule (expression). 

‘The argument of a 
function is the variable 

or expression on which a 
function operates. 

For example, the 

argument of flx) = x* 
is x, the argument of 

) =Vx—3isx—3, 
and the argument of 
y=10"is2x. 

domain rangeofh  range 
ofh  domainofg ofg 

Figure 1.18 Mapping for 
composite function g(h(x)) 

‘The composition of two 

functions, gand h, such 
that h is applied first and 
gsecond is given by 
(@ h)(x) = g(h(x)). 
‘The domain of the 

composite function go h 
is the set of all x in the 
domain of h such that 

h(x) is in the domain of g. 

17



‘The notations (g h)(x) 
and g(h(x)) are both 
commonly used to 
denote a composite 

function where h 

is applied first then 
followed by applying g- 
Since you are reading 
this from left to right, 

it is easy to apply the 
functions in the incorrect 
order. It may be helpful to 
read go has ‘g following i’ 

to highlight the order in 
which the functions are 

applied. Also, in either 
notation, (g )(x) or 
g(h(x), the function 

applied first is closest to 
the variable x. 

18 

Solution 

@ () (fe9)5) =fgl5) =f2-5—6) =fid) =3-4=12 
(i) (f> 9 = flg)) = f2x = 6) = 3(2x — 6) = 6x — 18 

Therefore, (fo g)(x) = 6x — 18 

Check with result from (i): (fe g)(5) =6-5 — 18 =30 — 18 = 12 

b) () (g=NG) = g(fi5)) =g(3-5) =g(15) =215~ 6 =24 

(ii) (g°Nx) = g(flx)) = g(3x) = 2(3x) —6=6x—6 
Therefore, (g f)(x) = 6x — 6 

Check with result from (i):(g = /)(5) = 6 - 5 — 6 = 30 — 6 = 24 

(CRGIN(Gr) G)Esiela(S)IE PR EE 6 S (R S 6ED 

(ii) (gog)(x) =g(g(x)) = g2x — 6) =2(2x — 6) — 6 = 4x — 18 

Therefore, (g g)(x) = 4x — 18 

Check with result from (i): (g g)(5) =4 -5 - 18 =20 — 18 =2 

It is important to notice that in parts (a)(ii) and (b)(ii) in Example 1.13, fo g is 

not equal to g o f. At the start of this section, it was shown how the two functions 

h(x) = x + 4 and g(x) = Vx could be combined into the composite function 

(g h)(x) to create the single function f{x) = vx + 4. However, the composite 

function (h o g)(x) (the functions applied in reverse order) creates a different 

function: (h o g)(x) = h(g(x)) = h(Vx) = Vx + 4. Since, Vx + 4 # Vx + 4 then 

fegisnotequal to gef. Is it always true that fo g # g o f? The next example will 

answer that question. 

Example 1.14 

Given fix — 3x — 6 and gix — %x + 2, find: 

@ (fe9)x) b) €N 

—— ] 

Solution 

@) (fog)(x):flg(x)):/(%xn):3(%x+z)—6:x+e—s:x 

() (go/)(x):g(fix)):gtsx—s):%(ax—e)+z:x—2+z:x 

Example 1.14 shows that it is possible for fo g to be equal to g o f. You will 

learn in the next section that this occurs in some cases where there is a special 

relationship between the pair of functions. However, in general fo g # go f.



Decomposing a composite function 

In Examples 1.13 and 1.14, we created a single function by forming the 

composite of two functions. As with the function fix) = Vx + 4, itis also 

important for us to be able to identify two functions that make up a composite 

function, in other words, to decompose a function into two simpler functions. 

When we are doing this it is very useful to think of the function that is applied 

first as the inside function, and the function that is applied second as the 

outside function. In the function flx) = Vx + 4, the inside function is 

h(x) = x + 4 and the outside function is g(x) = Vx. 

Each of these functions is a composite function of the form (fo g)(x). 

For each, find the two component functions fand g. 

(a) hix— fi (b) kix s 2841 (o) px) =Vx? — 4 

e 

Solution 

(a) When we evaluate the function h(x) for a certain x in the domain, we 

first evaluate the expression x + 3, and then evaluate the expression % 

Hence, the inside function (applied first) is y = x + 3, and the outside 

function (applied second) is y = . So the two component functions are 

g =x+3and ) = 1 

® Evaluating k(x) requires us to first evaluate the expression 4x + 1, 

and then evaluate the expression 2*. Hence, the inside function is 

y = 4x + 1, and the outside function is y = 2*. The two composite 

functions are g(x) = 4x + 1 and flx) = 2~ 

< Evaluating p(x) requires us to perform three separate evaluation steps: 

squaring a number, subtracting four, and then taking the cube root. 

Hence, it is possible to decompose p(x) into three component functions: 

h(x) = x* g(x) = x — 4and f(x) = Vx. However, for our purposes it is 

best to decompose the composite function into only two component 

functions: g(x) = x? — 4, and flx) = Vx. 

Finding the domain of a composite function 

It is important to note that in order for a value of x to be in the domain of 

the composite function g  h, two conditions must be met: (1) x must be in 

the domain of h, and (2) h(x) must be in the domain of g. Likewise, it is also 

worth noting that g(h(x)) is in the range of g  h only if x is in the domain of 

g e h. The next example illustrates these points - and also that, in general, the 

domains of go h and h o g are not the same. 
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Example 1.16 

Let g(x) = x> — 4 and h(x) = Vx. Find: 

(a) (ge h)(x) and its domain and range 

(b) (heg)(x) and its domain and range. 

Solution 

First, establish the domain and range for both g and h. For g(x) = x? — 4, the 

domain is x € R and the range is y = —4. For h(x) = Vx, the domain is 

x = 0 and the range is y = 0. 

(a) (gohm)(x) = g(h(x)) 

=gl/x) 

=(x?) -4 
= 

(b) (hog)(x) = h(g(x)) 

= h(x2—4) 

=Jx2—4 

To be in the domain of g = h, Vx must be 
defined for x = x = 0 
Therefore, the domain of go his x = 0 

Since x = 0, then the range for 

y=x—4isy=—4. 

Therefore, (g h)(x) = x — 4, and its domain is 

x=0,and its range is y = —4 

g(x) = x* — 4 must be in the domain of 

h=x2—4=0=>x2=4 

Therefore, the domain of 1o g is 

x<—2orx>2and 

with x < —2 or x = 2, the range for 

y=Vx’—4isy=0 

Therefore, (h = g)(x) = Vx> — 4, and its domain 

isx< —2orx=2,anditsrangeis y =0 

1. Letflx) = 2xand g(x) = 

Find the value of: 

@) (f2)) 

1 L e x73x 0 

(®) €N 

Find the function rule (expression) for: 

©) (fo@)x) @) @-NH) 

2. Letfix—2x—3andgix—2 —x* 

Evaluate: 

(@) (fo£)0) 

@ g-9(=3) 

Find the expression for: 

(®) €=/)(0) (©) (foN@) 

(@ (foe)(=1) ) €°N(=3) 

®) (fo0)x) ) goNE) (@) (foNH) () €0



3. For each pair of functions, find (fe g)(x) and (g » f)(x) and state the 

domain for each. 

(@) fl) = 4x — Lgx) =2+ 3x  (b) flx) = x>+ 1,g(x) = —2x 

© M@0 =FTLgw =1+ @ f9)=—2 g0 =x—1 
© f) =3 +5g60 =222 (O fw =2 g0 =T+ 

® f9 = ;20 =3 
B =g 
D) RI= =)= 

  

  

4. Letg(x) = Vx — I and h(x) = 10 — x2 Find: 

(a) (ge h)(x) and its domain and range 

(b) (heg)(x) and its domain and range. 

5. Letf{x) = - and gx) = 10 — x2 Find: 

(a) (feg)(x) and its domain and range 

(b) (g f)(x) and its domain and range. 

6. Determine functions g and h so that f(x) = g(h(x)) 

@ flo=@&x+32  ®) fly=Vx—5 © fl)y=7-Vx 

@WW=—ts @ f=10" ® f=1%=3 
(8 flx) = x> 9| (h) flx) =   = 

7. Find the domain for: 

(i) the functionf (ii) the functiong (iii) the composite function fo g 

@) fix) = VX, g(x) = 2 + 1 () fix) = £, () =x+3 
@ f=—2g@=x+1 @A =2x+3g0 =3 

Inverse functions 

Pairs of inverse functions 

If we choose a number and cube it (raise it to the power of 3), and then take 

the cube root of the result, the answer is the original number. The same result 

would occur if we applied the two rules in the reverse order. That is, first take 

the cube root of a number and then cube the result; again, the answer is the 

original number. 

21



f)=x 

domainoff  range of f 

  

  
    

rangeofg  domain of g 

\g(x) =iz’ 

Figure 1.19 A mapping 
diagram for the cubing and 
cube root functions 

‘The composite of two 

inverse functions is the 

function that always 
produces the same 

number that was first 

substituted into the 
function. This function 

is called the identity 
function because it 

assigns each number in 
its domain to itself and is 

denoted by I(¥) = x. 

Do not mistake the —1 
in the notation f~! fora 
power. Itis nota power. 
Ifa superscript of —1is 
applied to the name of 
afunction, asinf~ ! or 

sin 1, then it denotes 
the function that is the 

inverse of the named 

function (e.g. for sin). 
Ifa superscript of —1is 

applied to an expression, 
asin7lor (2x+571, 

then it is a power and 
denotes the reciprocal of 

the expression. 

For a pair of inverse 
functions, fand g, the 
composite functions 

fig) and g(fx) are 
equal. Remember that 

this is not generally true 
for an arbitrary pair of 

functions. 

22 

    
‘Write each of these rules as a function with function notation. Write the cubing 

function as f(x) = x?, and the cube root function as g(x) = VX. Now, using what 

we know about composite functions and operations with radicals and powers, 

we can write what was described above in symbolic form. 

Cube a number and then take the cube root of the result: 

o(fw) = Vx = ()i = 

For example, g(f(—2)) = (= 2)° = /=8 = —2 

  

x 

Take the cube root of a number and then cube the result: 
a3 

flgw) = 6@ = (x) =x1=x 

For example, f(g(27)) = (xx/f)l =(3)2=27 

Because function g has this reverse (inverse) effect on function f, we call 

function g the inverse of function f. Function f has the same inverse effect on 

function g [¢(27) = 3 and then f(3) = 27|, making f the inverse function of g. 

The functions fand g are inverses of each other. The cubing and cube root 

functions are an example of a pair of inverse functions. The mapping diagram 

for functions fand g (Figure 1.19) illustrates the relationship for a pair of 

inverse functions where the domain of one is the range for the other. 

You should already be familiar with pairs of inverse operations. Addition 

and subtraction are inverse operations. For example, the rule of adding six 

(x + 6), and the rule of subtracting six (x — 6), undo each other. Accordingly, 

the functions f(x) = x + 6 and g(x) = x — 6 are a pair of inverse functions. 

Multiplication and division are also inverse operations. 

Iffand gare two functions such that (fog)) =xfor  domainoff f  rangeoff 
every x in the domain of gand (g o f)(x) = x for every x 
in the domain of f, then the function g is the inverse of 
the function f. The notation to indicate the function that 
is the inverse of function fis f~ L. Therefore, (fo f~1)(x) = x 
and (fof)x) =x 

‘The domain of fmust be equal to the range of f 1, 
and the range of fmust be equal to the domain of /1. Tangeoff™  f*' domain of f! 

Remember that the notation (o g)(x) is equivalent to f{g(x)). It follows from the definition 
thatif gis the inverse of £, the it must also be true that fis the inverse of g. 

In general, the functions f(x) and g(x) are a pair of inverse functions if the 

following two statements are true: 

1 g(fixo)) = x for all x in the domain of f 

2 f(g(x)) = x for all x in the domain of g 

Example 1.17 

=5 
Given h(x) = and p(x) = 2x + 3, show that /1 and p are inverse functions. 

 



Solution 

Since the domain and range of both h(x) and p(x) is the set of all real numbers, then: 

    For any real number x, p(h(x)) :p(x - 3) = Z(X - 3) LS 
2 2 

= ok 

For any real number x, h(p(x)) = h(2x + 3) = % S ZTX S5 

Since p(h(x)) = h(p(x)) = x then h and p are a pair of inverse functions. 

It is clear that both f(x) = x* and g(x) = Vx satisfy the definition of a function 

because for both fand g every number in its domain determines exactly one 

number in its range. Since they are a pair of inverse functions then the reverse 
L . . A function is one-to-one 

is also true for both; that is, every number in its range is determined by exactly if each element y in the 
one number in its domain. Such a function is called a one-to-one function. range is the image of 

exactly one element x in 
the domain. 

The phrase one-to-one is appropriate because each value in the domain 

corresponds to exactly one value in the range, and each value in the range 

corresponds to exactly one value in the domain. 

The existence of an inverse functiol 

Determining whether a function is one-to-one is very useful because the inverse 

of a one-to-one function will also be a function. Analysing the graph of a function 

is the most effective way to determine if a function is one-to-one. Let’s look at the 

graph of the one-to-one function f(x) = x* shown in Figure 1.20. It is clear that 

as the values of x increase over the domain (from —oc to 0o), the function values 

are always increasing. A function that is always increasing, or always decreasing, 

throughout its domain is one-to-one and has an inverse function. 

A function that is not one-to-one (always increasing or always decreasing) can 

be made so by restricting its domain. 

The function f(x) = x? (Figure 1.21) is not one-to-one for all real numbers. 

However, the function g(x) = x? with domain x = 0 (Figure 1.22) is always 

increasing (one-to-one), and the function h(x) = x2 with domain x < 0 Figure 1.20 Graph of fix) = x*, 
(Figure 1.23) is always decreasing (one-to-one). which is increasing as x goes 

from — oo to oo 

  

be 

25 

20 

15 

           
Figure 1.21 flv) = Figure1.22 gv) =, x=0  Figure1.23 h(v) =2, x=0 
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Ifa function fis always 
increasing or always 

decreasing in its domain 
(ie. it is monotonic), 

then fhas an inverse f~1. 
No horizontal line can 

pass through the graph of 
a one-to-one function at 

more than one point. 

24 
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A function for which at least one element y in the range is the image of more 

than one element x in the domain is called a many-to-one function. Examples 

of many-to-one functions that we have already encountered are y = x?, x € R 

and y = |x], x € R. As Figure 1.24 illustrates for y = |x|, a horizontal line exists 

that intersects a many-to-one function at more than one point. Thus, the 

inverse of a many-to-one function will not be a function. 

¥ 

  
Figure 1.24 Graph of y = 

  

an example of a many-to-one function 

Finding the inverse of a function 

The function fis defined for x € R by ftx) = 4x — 8 

(a) Determine if fhas an inverse f~!. If not, restrict the domain of fin order 

to find an inverse function f~! 

(b) Verify the result by showing that (fe f~!)(x) = xand (f~1e f)(x) = x 

(c) Graph fand its inverse function f~! on the same set of axes. 

O 

Solution 

(a) Recognise that fis an increasing function for (—oo, 00) because the 

graph of f(x) = 4x — 8 is a straight line with a constant slope of 4. 

Therefore, fis a one-to-one function and it has an inverse f~! 

(b) To find the equation for {1, start by switching the domain (x) and 

range (y) since the domain of f becomes the range of f ! and the 

range of f becomes the domain of f~1, as stated in the definition. 

Also, recall that y = f(x). 

fy=4x-8 

y=4x—8 write y = f(x) 

YA S interchange x and y (switch the domain and range) 

Ay s solve for y (dependent variable) in terms of x 

(independent variable)



= ix 2 

e = %x +2 resulting equation is y = f~1(x) 

Verify that fand f~! are inverses by showing that f{ f~!(x)) = x and 

fH(f) =x 
1 _ Al S f(zx+2)—4(4x+2) 8=x+8—-8=x 

f"(4x*8):i(4x*8)+2:x*2+2:x    
This confirms that y = 4x — 8 and 

= ix + 2 are inverses of each other. 

Here is a graph of this pair of inverse 

functions. 

The method of interchanging domain (x) and range (y) to find the inverse 

function used in Example 1.18 also gives us a way for obtaining the graph of f~! 

from the graph of f. Given the reversing effect that a pair of inverse functions 

have on each other, if f(a) = b then f~'(b) = a. Hence, if the ordered pair (a, b) 

is a point on the graph of y = f(x), then the reversed ordered pair (b, a) must be 

on the graph of y = f~!(x). Figure 1.25 shows that the point (b, a) can be found 

by reflecting the point (a, b) about the line y = x. Therefore, the following 

statement can be made about the graphs of a pair of inverse functions. 

d ‘The graph of f~! is a reflection of the graph of fabout the line y = x. 

Consider the function fix — Vx +3,x= =3 

(a) Determine the inverse function f~! 

(b) Find the domain of f~! 

  

Solution 

(a) Following the steps for finding the inverse of a function gives: 

y=Vx+3 replace fix) with y 

yi=x+3 solve for x in terms of y; squaring both sides 

x=y*-3 solve for x 

y=x2—3 interchange x and y 

Therefore, f': x+— x2 — 3 replace y with f~1(x)   

Figure 1.25 The point (b, a) is 
areflection about the line y = x 
of the point (a, b) 

  

Figure 1.26 Graphs of fand 
f " are symmetric about the 
liney = x 

To find the inverse of a 
function f; 

Determine if the 
function is one-to-one. 
Replace fix) with y. 
Solve for x in terms 

ofy. 
Interchange x and y. 
Replace y with f~1(x). 
‘The domain of f ! is 
equal to the range of f 
and the range of f ! 
is equal to the domain 
off. 

W
 

o 
v 

25



(b) The domain explicitly defined for fis x = —3 and since the /" symbol 

stands for the principal square root (positive), then the range of fis all 

positive real numbers, i.e. y = 0. The domain of f~! is equal to the range 

of f, therefore the domain of f ! is x = 0. 

Example 1.20 

i   Consider the functions f(x) = 2(x + 4) and g(x) = 

(a) Find ¢! and state its domain and range. 

(b) Solve the equation (fo g=!)(x) = 2 

| 

    

Solution 

(B L=z replace f(x) with y 

X= % interchange x and y 

3o Iy, solve for y 

y=-3x+1 solved for y 

Therefore, g~'(x) = —3x + 1 replace y with g~'(x) 

gisalinear function and its domain is x € R and its range is y € R; 

therefore, for g~! the domain is x € R and the range is y € R. 

®) (feg )@ =f(g ') =f(=3x+ 1 =2 
2[(—3x+1)+4] =2 

S OXEERE RIS 

===t 

m=2 
3 

In questions 1-4, assume that fis a one-to-one function. 

1. (a) If2) = —5, then what is f~'(=5)? 

(b) Iff~1(6) = 10, then what is f(10)? 

2. (a) Iff(—1) = 13, then what is f~'(13)? 

(b) If f~'(b) = a, then what is f(a)? 

3. If g(x) = 3x — 7, then what is g~1(5)? 

4. If h(x) = x? — 8x, with x = 4, then what is h~(—12)? 
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5. For each pair of functions, show algebraically and graphically that 

fand g are inverse functions by: 

(i) verifying that (fo g)(x) = xand (g f)(x) = x 

(ii) sketching the graphs of fand g on the same set of axes with equal 

scales on the x-axis and y-axis. 

Use your GDC to assist in making your sketches on paper. 

(a)f e SRR 6 oee 6] 

(b) fix s 4x; gix— f 

(© f:x>—'3x+ 9% g:x»—'%x* 3 

@ fixr ks gl 

()R fd S Ol ooy TR = D) 

b=     (®) f;st—m gxe 

1—x 
(8 fixim 0 g —5   

(h)f:x>—>(6fx)l; gx—6—x2,x=0 

@) fixmx2—2x+3,x=>1 gxo 1 +Vx—2,x=2 

G) f:xH”‘TS; gx—2x1— 6 

6. Find the inverse function f~! and state its domain. 

  

  

@) foo=2x—3 (h)f()—x+7 

© foor = /% @ foo =L 
(e) fry=4—x%x=0 (f) fx)y=vx—=5 

(®) fx) = ax+ b,a=0 (b)) fo) = 22 + 2= —1 

(i) foo = Z+ix£0 G) foo= 2> +1 

7. Use your GDC to graph the function f(x) = x € R. Find three   > 
5 

intervals for which fis a one-to-one function (monotonic) and hence, 

will have an inverse f! on the interval. The union of all three intervals is 

all real numbers. 

8. Use the functions g(x) = x + 3 and h(x) = 2x — 4 to find the indicated 

value or the indicated function. 

(a) (g1 oh 1)(5) () (h'og 1)©) 

© (g7'og @ (d) (1o h @) 

(& g o @) letog™ 
(8 (goh)! (b) (hog)! 
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Algebra and function basics 

Transformations of functions 

Even when you use your GDC to sketch the graph of a function, it is helpful to ‘When analysing the | - 
graph of a function, it know what to expect in terms of the location and shape of the graph - and even 
is often convenient to more so, if you're not allowed to use your GDC for a particular question. In this 

"‘P‘fiijn“;“j}?:;‘ 2?: section, you will look at how certain changes to the equation of a function can 

have done throughout affect, or transform, the location and shape of its graph. You will investigate 

this chapter, we can refer three different types of transformations of functions: how the graph of a 
to a function such as 

fx) = x by the equation 
=it 

function can be translated, reflected and stretched (or shrunk). Studying 

graphical transformations will help you to sketch and visualise many different 

functions efficiently. You will also take a closer look at two specific functions: 

the absolute value function, y = || 

  

, and the reciprocal function, y = % 

Graphs of common functions 

It is important to be familiar with the location and shape of a certain set of 

common functions. For example, from our previous knowledge about linear 

equations, we can determine the location of the linear function f(x) = ax + b. 

‘We know that the graph of this function is a line whose slope is a and whose 

y-intercept is (0, b). 

There are other The eight graphs in Figure 1.27 represent some of the most commonly used ere ar 
important basic functions in algebra. You should be familiar with the characteristics of the 

functions with which you graphs of these common functions. This will help you predict and analyse the 

ghpuidberamilgiion graphs of more complicated functions that are derived from applying one or 
example, logarithmic and . . ; 

exponential functions, more transformations to these simple functions. 

  

  

     

but you will learn about 
these in later chapters. 

fo=1x| 

s % 

(a) Constant function (b) Identity function (c) Absolute value function 

¥ y 

J) = fw=» 

; x 

0 x 

(d) Squaring function (¢) Square root function (f) Cubing function 
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‘The word inverse can 

have different meanings 
in mathematics 
depending on the 
context. In section 1.4, 

‘inverse’ is used to 

describe operations or 
functions that undo 

each other. However, 
‘inverse’ is sometimes 

used to denote the 

  

(g) Reciprocal function (h) Inverse square function multiplicative inverse 
(or reciprocal) of 

Figure 1.27 Graphs of common functions i s il 
‘This is how it is 

We will see that many functions have graphs that are a transformation e e hamen 

  

   

(translation, reflection or stretch), or a combination of transformations, for the functions g 

of one of these common functions. and Jishown above. 
‘The function in gis 
sometimes called the 

reciprocal function. 
Vertical and horizontal translations 

Use your GDC to graph each of these functions: f(x) = x% g(x) = x* + 3 and 

h(x) = x* — 2. How do the graphs of g and h compare with the graph of f? 

The graphs of g and h appear to have the same shape - it’s only the location, 

or position, that has changed compared to f. Although the curves (parabolas) 

appear to be getting closer together, their vertical separation at every value of 

X is constant. 

Given k > 0: 

- The graph of 
y=fx) +kis 
obtained by translating 
the graph of y = {x) up 
by k units. 

- The graph of 
0 -1) y=f) — kis 

obtained by translating 
the graph of y = flx) 
down by k units. 

Figure 1.28 Translating f(x) = x* up 3 units. Figure 1.29 Translating f(x) = x* down 2 units. 

As Figures 1.28 and 1.29 show, we can obtain the graph of g(x) = x> + 3 by 

translating (shifting) the graph of f(x) = x* up three units, and we can obtain 

the graph of h(x) = x* — 2 by translating the graph of f(x) = x* down two units. 

Change function g to g(x) = (x + 3)* and change function h to h(x) = (x — 2)% 

Graph these two functions along with the original function f(x) = x* on your 

GDC. This time you can observe that the functions g and & can be obtained by 

a horizontal translation of f. 
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Given k > 0: 

- The graph of 
y=fix— h) is obtained 
by translating the graph 
of y = fix) hunits to 
the right. 

+ "The graph of 
y=flx+ h) s obtained 
by translating the graph 
of y = fix) hunits to 
thelefi. 

In Example 1.21, if the 
transformations were 
performed in reverse 

order, that is, the vertical 

translation followed by 
the horizontal translation, 

we would get the same 
final graph (in part (b)) 
with the same equation. 

‘The order in which we 

apply both a vertical and 
horizontal translation 
on a function does not 

make any difference. 
‘The translations are 

commutative. However, 

as we will see further 

in the chapter, it can 
‘make a difference how 

other sequences of 
transformations are 
applied. In general, 

transformations are not 
commutative. 

  

Figure 1.32 Diagram for 
Example 1.22 
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y=(c+3)    
  

Figure 1.30 Translating y = x*left 3 units to Figure 1.31 Translating y = x° right 3 units the 
produce y = (x + 3)* graph of to produce the graph of y = (x — 2 

As Figures 1.30 and 1.31 show, we can obtain the graph of g(x) = (x + 3)* by 

translating the graph of f(x) = x* three units to the left, and we can obtain the 

graph of h(x) = (x — 2)* by translating the graph of f{x) = x* two units to the right. 

Example 1 

The diagrams show how the graph of y = Vx is transformed to the graph of 

y = flx) in three steps. For each diagram, (a) and (b), give the equation of 

the curve. 

  

  

fG) =Vx (a) (b) 
y 5 

/ 
i 
/ 

0 A ] T ! % 

Solution 

To obtain the graph in (a), the graph of y = Vx is translated three units to the 

right. To produce the equation of the translated graph, —3 is added inside 

the argument of the function y = Vx. 

Therefore, the equation of the curve graphed in (a) isy = Vx — 3 

To obtain the graph in (b), the graph of y = vx — 3 is translated up one unit. 

To produce the equation of the translated graph, +1 is added outside the 

function. Therefore, the equation of the curve graphed in (b) is 

=S RIROL =N S 

‘Write the equation of the absolute value function shown by Figure 1.32.



Solution 

The graph shown is exactly the same shape as the graph of the equation 

y = |x| but in a different position. Given that the vertex is (—2, —3), it is 

clear that this graph can be obtained by translating y = |x| two units left 

and then three units down. When we move y = x| two units left we get the 

graph of y = |x + 2|. Moving the graph of y = |x + 2| down three units 

down gives us the graph of y = |x + 2| — 3. Therefore, the equation of the 

graph shownisy = |x +2| — 3 

‘We would get the same result if we applied the translations in the reverse order. 

  

ections 
  

Use your GDC to graph the two functions f(x) = x* and g(x) = —x. The graph 
‘The expression —x*is 

of g(x) = —x*is a reflection in the x-axis of f{x) = x°. This certainly makes potentially ambiguous. 

sense because g is formed by multiplying fby —1, causing the y-coordinate of Itis accepted mbez 

each point on the graph of y = —x to be the negative of the y-coordinate of the b 
i X not equivalent to (—x)*. 

point on the graph of y = x* that has the same x-coordinate. For example, if you enter 
i < i h ion —3* 

Figures 1.33 and 1.34 show that the graph of y = —f(x) is obtained by reflecting ;n:;;s:séfiré it gives 

the graph of y = f(x) in the x-axis. aresult of —9, not +9. 
‘The expression —3%is 
consistently interpreted 
as 3% being multiplied by 
—1.The same as —x"is 
interpreted as * being 
multiplied by —1. 

  

  

Figure 1.3 Reflecting y =« in the x-axis Figure 1.34 Reflecting y = f{x) in the x-axis 

Graph flx) = Vx — 2 and g(x) = V—x — 2. With flx) = ¥’ and g(x) = —x%, 

g was formed by multiplying the entire function f by —1. However, for 

flx) =Vx =2 and g(x) = V=x — 2, g is formed by multiplying the variable x 
by — 1. In this case, the graph of g(x) = V=x — 2 is a reflection in the y-axis of 

flx) = Vx — 2. This makes sense if you recognise that the y-coordinate on the 

graph of y = /=x will be the same as the y-coordinate on the graph of y = Vx 

if the value substituted for x in y = /=x is the opposite of the x value in 

    

y = Vx. For example, if x = 9 then y = /9 = 3;and, if x = —9 then 

y —9) =9 = 3. Opposite values of x in the two functions produce 

the same y-coordinate for each. 
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‘The graph of y = —flx) 
s obtained by reflecting 
the graph of y = flx) in 

the x-axis. 
‘The graph of y = fi—x) 
s obtained by reflecting 
the graph of y = fix) in 

the y-axis. 

32   

(—a, f(a) p<|- 4 (a, f(a) 

  

y=f=x y=f& 

b)) e sisalonnnay (b, f(b)) 

Figure 1.35 Reflectingy = /x — 2 in the y-axis Figure 1.36 Reflecting y = fx) in the y-axis 

Figures 1.35 and 1.36 illustrate how the graph of y = f{—x) is obtained by 

reflecting the graph of y = f(x) in the y-axis. 

  

For g(x) = 2x* — 6x* + 3, find: 

(a) the function h(x) that is the reflection of g(x) in the x-axis 

(b) the function p(x) that is the reflection of g(x) in the y-axis. 

  

Solution 

(a) Knowing that y = —f(x) is the reflection of y = f(x) in the x-axis, then 

h(x) = —g(x) = —(2¢° — 6x* + 3) = h(x) = —2x* + 62> — 3will be the 

reflection of g(x) in the x-axis. We can verify the result on the GDC - 

graphing the original equation y = 2x* — 6x* + 3 in bold style. 
  TIotl Plow Flots Tiot o ot 

"3-6X2+3 YIS 2X°3-6X2+3 
~Yom -2% 7 3+6%X2-3 
Y= 
YYo= 
Y= 
Y= 
Y= 

(b) Knowing that y = f(—x) is the reflection of y = f(x) in the y-axis, 

we need to substitute —x in for x in y = g(x). 

Thus, p(x) = g(—x) = 2(=x)* — 6(—x)* + 3= p(x) = —2x* —6x + 3 

will be the reflection of g(x) in the y-axis. Again, we can verify the 

result on the GDC - graphing the original equation y = 2x* — 6x* + 3 

in bold style. 

                    

  

  

  Dloti_Plotz Plots Fotl Plotz Plots 
Y ~3-6X2+3 \Y1g 2X " 3-6X2+3 

~Y2= _2x73+6%2-3 
   

                    

  

 



-rigid transformations: stretching and shrinking 

Horizontal and vertical translations, and reflections in the x- and y-axes are 

called rigid transformations because the shape of the graph does not change - 

only its position is changed. Non-rigid transformations cause the shape 

of the original graph to change. The non-rigid transformations that you will 

study cause the shape of a graph to stretch or shrink in either the vertical or 

horizontal direction. 

Vertical stretch or shrink 

Graph the functions: f{x) = x2 g(x) = 3x* and h(x) = %xl How do the 

graphs of gand h compare to the graph of f? Refer to figures 1.38 and 1.40. 

Clearly, the shape of the graphs of g and h is not the same as the graph of f. 

Multiplying the function fby a positive number greater than one, or less 

than one, has distorted the shape of the graph. For a certain value of x, the 

y-coordinate of y = 3x? is three times the y-coordinate of y = x*. Therefore, the 

graph of y = 3x? can be obtained by vertically stretching the graph of y = x* by 

a factor of 3 (scale factor 3). 

Likewise, the graph of y = %xl can be obtained by vertically shrinking the 

graph of y = x* by scale factor% 

Figures 1.37 and 1.38 below show how multiplying a function by a positive 

number, a, greater than 1 causes a transformation in which the function 

stretches vertically by scale factor a. A point (x, y) on the graph of y = f(x) 

is transformed to the point (x, ay) on the graph of y = af(x). 

(% af(x)) 

  

Figure 1.37 Vertical stretch of y = x’ by scale ~ Figure 1.38 Vertical stretch of y = f{x) by scale factor a 
factor 3 whena>1 
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Ifa > 1, then the graph 
ofy = aflx) is obtained 
by vertically stretching 
the graph of y = flx). 
1f0 < a < 1, then the 

graph of y = aflx) is 
obtained by vertically 
shrinking the graph of 

y=f). 

  

  
Plotl Plot2 Plot3 

“Y1E X2-4X 
\Y2E(X/2)2-4 (X/2) 
\Y3= 
\Y 
~\Ys= 
\Ye= 

  

  
  
Y1=x2-4X 

  

  
  
Y2=(X/2)2-4(¥/2) 

    
  

  

Figure 1.41 Graphs of 
y =2 - 4x(inbold) and 

- 
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Figures 1.39 and 1.40 below show how multiplying a function by a positive 

number, a, greater than 0 and less than 1 causes the function to shrink vertically 

by scale factor a. A point (x,y) on the graph of y = f(x) is transformed to the 

point (x, ay) on the graph of y = af(x). 

(. fx) 

0<a<1 

Figure 1.39 Vertical shrink of y = #* by scale Figure 1.40 Vertical shrink of y = flx) by scale 
factor % factor a, when 0 < a < 1 

Horizontal stretch or shrink 

‘We will now investigate how the graph of y = flax) is obtained from the 

graph of y = f(x). Given f(x) = x* — 4x, find another function, g(x), such that 

g(x) = fl2x). We substitute 2x for x in the function f, giving g(x) = (2x)* — 4(2x). 

For the purposes of our investigation, leave g(x) in this form. On your GDC, 

graph these two functions, f(x) = x* — 4x and g(x) = (2x)* — 4(2x), using the 

indicated viewing window and graphing fin bold style (Figure 1.41). 

Comparing the graphs of the two equations, we can see that y = g(x) is not a 

translation or a reflection of y = f(x). It is similar to the shrinking effect that 

occurs for y = af(x) when 0 < a < 1, except, instead of a vertical shrinking, 

the graph of y = g(x) = f(2x) is obtained by horizontally shrinking the graph 

of y = f(x). Given that it is a shrinking, the scale factor must be less than 1. 

Consider the point (4,0) on the graph of y = f(x). The point on the graph of 

y = g(x) = f(2x) with the same y-coordinate and on the same side of the 

parabola is (2, 0). The x-coordinate of the point on y = f(2x) is the x-coordinate 

of the point on y = f{x) multiplied by % Use your GDC to confirm this for other 

pairs of corresponding points on y = x* — 4x and y = (2x)* — 4(2x) that have 

the same y-coordinate. The graph of y = fi2x) can be obtained by horizontally 

shrinking the graph of y = f(x) with scale factor % This makes sense because if 

f2x)) = (2x,* — 4(2x,) and fix,) = x,* — 4x, are to produce the same y-value, 

then 2x, = x, and thus x, = %x‘. Figures 1.42 and 1.43 show how multiplying 

the x variable of a function by a positive number, a, greater than 1, causes the 

function to shrink horizontally by scale factor %. A point (x, y) on the graph of 

y = flx) is transformed to the point (%x, y) on the graph of y = flax).



(=1,5) SolfersaEEs 

    
(1,-4) 2, -4 

  

Figure 1.42 Horizontal shrink of y = x* — 4xby ~ Figure 1.43 Horizontal shrink of y = f(x) by scale 
1 1 scale factor factor 1,4 > 1 

If 0 < a < 1, then the graph of the function y = f(ax) is obtained by a horizontal 

stretching - rather than a shrinking - of the graph of y = f(x) because the scale 

factor % will be a value between 0 and 1 if 0 < a < 1. Now, letting a = % and, 

again using the function f(x) = x* — 4x, find g(x), such that g(x) = f| (%x) 

Substitute % for x in f, giving g(x) = (%)2 — 4(%) On your GDC, graph the 

functions f and g using the indicated viewing window with fin bold. 

The graph of y = (%)z = 4(%) is a horizontal stretching of the graph of 

y = x* — 4x by scale factor % = % = 2. For example, the point (4,0) on y = f(x) 

3 Ifa> 1, then the graph 
. of y = flax) is obtained 

has been moved horizontally to the point (8,0) on y = g(x) = j(i) by horizontally shrinking 
the graph of y = fix). 

Figures 1.44 and 1.45 below show how multiplying the x variable of a function 1802 41, thenthe 
by a positive number, a, greater than 0 and less than 1, causes the function to graph of y = flax) is 

stretch horizontally by scale factor %A A point (x, y) on the graph of y = f(x) is :3:2?:312;7';:‘2}1)' 

transformed to the point (%x, y) on the graph of y = flax). Va2 

¥ 

y = flax)    
   

  

o fx) 

  

G f) 

0<a<l1 

@4 (-9 

Figure 1.44 Horizontal stretch of y = x* — 4x by scale Figure 1.45 Horizontal stretch of y = f{x) by scale factor % 
factor 2 0<a<l1 
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Example 1.24 

The graph of y = f(x) is shown. Sketch the graph of each transformation. 

  

J 
3 

2 y=fx) 

1 

—9—8—7—6-5—4—3—] 12N34567839¢% 

-2 
-3 

(@) y = 3fx) () y= %flx) 

© y=£3x) @y :f(%x) 

  
Solution 

(a) The graph of y = 3f(x) is obtained by vertically stretching the graph 
of y = f(x) with scale factor 3. 

o5 76545 %1 1 2\3 156780907 

3 

ained by vertically shrinking the graph 

S
N
 

(b) The graph of y = % -f(x) is obt: 

of y = f(x) with scale factor % 

=
N
 

e 

—‘9—'8—‘7—'6—‘5—‘4—‘3—2—:}10 L 456 7 

=2 

-3   
36



(c) The graph of y = f(3x) is obtained by horizontally shrinking the graph 

of y = f(x) with scale factor % 

y 
3 

2 

1 

  BRI ¥ M S S P 
-2 
-3 

(d) The graph of y = f(%) x is obtained by horizontally stretching the graph 

of y = f(x) with scale factor 3. 

57 
3 

2 

1 

  

  

Describe the sequence of transformations performed on the graph of y = x* 

to obtain the graph of y = 4x* — 3 

Solution 

Step 1: Start with the graph of y = x* 

Step 2: Vertically stretch y = x* by scale factor 4 

Step 3: Vertically translate y = 4x* three units down 

  

Step 1: Step 2: Step 3: 

y y 
10 10 

8 8 

6 o 

y=2\ 4 ot 
2 

-2 0 2 X -2 0 2 X R 
-2 -2 
-4 -4 

  37



  

In Table 1.4, assume that 
a, hand kare positive 

38 

real numbers. 

Note that in Example 1.25, a vertical stretch followed by a vertical translation 

does not produce the same graph if the two transformations are performed 

in reverse order. A vertical translation followed by a vertical stretch would 

generate the following sequence of equations: 

Stepl:y = x* Step2y=x'—3 Step 3: y = 4(x* — 3) = 4x* — 12 

This final equation is not the same as y = 4x* — 3 

‘When combining two or more transformations, the order in which they 

are performed can make a difference. In general, when a sequence of 

transformations includes a vertical or horizontal stretch or shrink, or a 

reflection through the x-axis, the order may make a difference. 

  

  

  

  

  

  

  

  

  

    

y=fix)+k vertical translation k units up 

y=fix)—k vertical translation k units down 

y=fix—h) horizontal translation h units right 

y=flx+h) horizontal translation h units left 

y=—flx) reflection in the x-axis 

y=fl—x reflection in the y-axis 

y=aftx) vertical stretch (a > 1) or shrink (0 < a < 1) 

y =flax) horizontal stretch (0 < a < 1) or shrink (a > 1) 

y= 1wl portion of the graph of y = f{x) below x-axis is reflected above the x-axis 

y=fx]) symmetric about the y-axis; portion right of the y-axis is reflected in the y-axis     
  

Table 1.4 Summary of transformations on the graphs of functions 

@ 1. Sketch the graph of f, without a GDC or plotting points, by using your 

knowledge of some of the basic functions shown at the start of the 
Section 1.5. 

@) fix—>x2—6 

(©) fixr—|x| +4 

(e) fx—>5+Vx—2 

1 
(g)fix»—»erz 

@) fx——|x—1+6 

(k) fix— 3Vx 
2 

(m)fixH(%x) 

(®) fix (x — 67 
(d) fix— |x + 4| 

S ® fxm—Ls 

() fixrs —x'— 4 

G) fix—V/=x+3 

w f:xH%xz 

() fixr— (=)



2. Write the equation for each graph. 

(b) ’ 

2%    
() y (d) 

    

i 

i—asymptotes 

  

3. The graph of fis given. Sketch the graph of each transformed function. 

@ y=flx-3 

(b) y=flx=3) 

(© y=2fx) 

(@) y = f2x) 

(@ y=-fx 

® y=f—x 

(®) y=2f) +4 

  

4. Specify a sequence of transformations to perform on the graph of y = x* 

to obtain the graph of the given function. 

(a) gxio (x— 372+ 5 

(b) hixis -2 +2 

© pixr 3G+ 47 
(@ fix s [3x = DE =6 
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Algebra and function basics 

Chapter 1 practice questions 

15 

. Consider the functions fix) = 5x — 2 and gix) = 

. The diagram shows the graph of y = f(x). 

The functions fand g are defined as fix — Vx — 3 and gix — x? + 2x. 

The function (fo g)x) is defined for all x € R, except for the interval 

Ja,bl. 

(a) Calculate the values of a and b (b) Find the range of fo g 

. Two functions g and h are defined as g(x) = 2x — 7 and h(x) = 32 — x) 

Find: (a) g'(3) (b) (heg)(6) 

  4 

3 

(a) Findg! (b) Solve the equation (fo g~!)(x) = 8 

. The functions g and h are defined by g:x — x — 3 and h:x — 2x 

(a) Find an expression for (g o /1)(x) 

(b) Show that g~'(14) + h~1(14) = 24 

It has maximum and minimum points at 

(0, 0) and (1, —1), respectively. 

(a) Copy the diagram, and then add in 

the graph of y = flx + 1) — % 

(b) Find the coordinates of the minimum 

and maximum points of y = flx + 1) — 

  

   

  

y=—1tx+5°2+3 

The graph of y = x2 may be transformed into the graph of 

Y= *%(x + 5)2 + 3 by these transformations: 

A reflection in the line y = 0, followed by a vertical stretch with scale 

factor k, followed by a horizontal translation of p units, followed by a 

vertical translation of g units. 

Write down the value of: 

() k (b) p (©) q



@7. 

@s. 

10. 

11 

e The function fis defined by f(x) = 
UTeEE 

for —4<x<4 

(a) Without using a GDC, sketch the graph of f. 

(b) Write down the equation of each vertical asymptote. 

(c) Write down the range of the function f. 

Letg:x»—»%,x:zo 

(a) Without using a GDC, sketch the graph of g. 

The graph of g is transformed to the graph of h by a translation of 

4 units to the left and 2 units down. 

(b) Find an expression for the function h. 

(c) (i) Find the x- and y-intercepts of h. 

(ii) Write down the equations of the asymptotes of h. 

(iii) Sketch the graph of h. 

. Consider f(x) = Vx + 3 

(a) Find: 

@) f® (i) f(46) (iii) f(—3) 

(b) Find the values of x for which fis undefined. 

(c) Letg:x+— x2 — 5. Find (g o f)(x). 

Letg():):xi8   and h(x) = x2 — 1 

(a) Find g~1(—2) 

(b) Find an expression for (g~ o h)(x) 

(c) Solve (g~!eh)(x) =22 

. Given the functions fix — 3x — 1 and g:x — é, find the following: X 

@ f! () fog 

(©) (fog)" ) gog 
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Algebra and function basics 

12. (a) The diagram shows part of the 

graph of the function 

o) = (X) s 

The curve passes through the 

point A(—4, —8). 

The vertical line MN is an 

asymptote. = =5 

Find the value of: -5 
(i) a (i) b b 

< T 

    

         
: 
i 
10 

i 

i 
N 

(b) The graph of h(x) is transformed o y 

as shown in the diagram. i 
The point A is transformed to 110 
A (—4,8). i 

Give a full geometric description i 

of the transformation. i 
1 
i i 
i i 

i 
4 

i 

: 
N 

13. The graph of y = f(x) is shown in the diagram. 

B
 

  
R ORNG I GAE R A 

  

(a) Make two copies of the coordinate system as shown in the diagram 

but without the graph of y = f(x). On the first diagram sketch a 

graph of y = 2f(x), and on the second diagram sketch a graph of 

y=flx—4 

(b) The point A(—3, 1) is on the graph of y = f(x). The point A’ is 

the corresponding point on the graph of y = —f(x) — 1. Find the 

coordinates of A". 
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14. 

15. 

16. 

i7e 

18. 

19¢ 

20. 

The diagram shows 

the graph of y; = f(x). 

The x-axis is a tangent 

to f(x) atx = m and 

f(x) crosses the x-axis 

atx =n. 

On the same diagram, 

sketch the graph of 

y2 = f(x — k), where 

0<k<n—mand 

indicate the coordinates of the points of intersection of y, with the x-axis. 

  

Given functions f:x - x + 1 and g:x + x*, find the function (fo g) ' 

  If f(x) = < i T for x # —1 and g (x) = (fo f)(x), find: 

(a) g(x) ®) (g22)(2) 

Let f:x — |-+ — 2. Find: 
V2 

(a) the set of real values of x for which fis real and finite 

(b) the range of f. 

The function f: x — 2 +11 P 

clearly stating its domain. 

  ,x € R, x # 1. Find the inverse function,f’l, 

The one-to-one function fis defined on the domain x > 0 by 

e — ke 
k= 2] 
  

(a) State the range, A, of f. 

(b) Obtain an expression for f !(x), for x € A. 

The function fis defined by f: x — x* 

Find an expression for g(x) in terms of x in each of the following 

cases: 

@) (fegx)=x+1 b) (gef)x) =x+1 

43



44 

Algebra and function basics 

21. (a) Find the largest set S of values of x such that the function 

O takes real values. 
VRESTE 
  

(b) Find the range of the function f defined on the domain S. 

ot 
> and 22. Let fand g be two functions. Given that (fo g)(x) = 

glx) = 2x — 1, find f(x — 3). 

  

23. The diagram shows part of the graph of y = f(x) that passes through the 

points A, B, C, and D. 

Sketch, indicating clearly the images of A, B, C, and D, the graphs of 

@ y=fe—9 b) y = f(=3x) 

=12 =10 =8 =6 —4 2 4 8 10 12% 

 



  

e 

    

    

    

: *“fl,;, 
e e, 

Functions, equations, 

and inequalities



1fa, b, and c are real 

numbers, and a # 0, 

then the function 

foo = ax® + bx + cis 
a quadratic function. 

‘The graph of y = fx)is 

46 

called a parabola. 

Functions, equations, and inequalities 

Learning objectives 

By the end of this chapter, you should be familiar with... 

» quadratic functions, and different forms in which to express them 

« finding characteristics of a parabola: axis of symmetry, x-intercepts, and 

vertex 

 solving quadratic equations and inequalities, both analytically and graphically 

« applying the quadratic formula and the discriminant of a quadratic equation 

« rational functions and their graphs, and identifying all asymptotes 

« solving a variety of equations, both analytically and graphically. 

This chapter will focus on polynomial functions (which includes quadratic 

functions) and rational functions. There are other function types that you 

need to be familiar with for this course. Chapter 4 will cover exponential 

functions and logarithmic functions, and Chapter 5 will focus on trigonometric 

functions. Along with polynomial and rational functions, this chapter will 

address solving polynomial equations, solving other types of equations and 

solving inequalities. 

Quadratic functions 

A linear function is a polynomial function of degree one that can be written 

in the general form f{x) = ax + b, where a # 0. Linear equations were briefly 

reviewed in Section 1.1. Any linear function will have a single solution (root) 

ofx= *%. This is a formula that gives the zero of any linear equation. 

In this section, we will focus on quadratic functions, which are functions 

expressed in terms of a second-degree polynomial that can be written in the 

form f(x) = ax? + bx + ¢, where a # 0. You are probably familiar with the 

formula that gives the zeros of any quadratic polynomial; that is, the quadratic 

formula. We will also investigate other methods of finding zeros of quadratics 

and consider important characteristics of the graphs of quadratic functions. 

Quadratic formula 
‘The solution(s) to a quadratic equation in the form ax® + bx + ¢ = 0 are given by 

  

Every parabola is symmetric about a vertical line called its axis of symmetry. 

The axis of symmetry passes through a point on the parabola called the vertex of 

the parabola, as shown in Figure 2.1. If the leading coefficient, a, of the quadratic 

function is positive, then the parabola opens upward (concave up), and the 

y-coordinate of the vertex is a minimum value for the function. If the leading 

coefficient is negative, then the parabola opens downward (concave down), and 

the y-coordinate of the vertex is a maximum value for the function.



axis of symmetry axis of symmetry 
| | | 
| | 
| | 
| 
| vertex, 
; f)—ad+br+c 
| 
| | 
| fix) = axt + bx + 

vertex] 

    
i i 

If @ > 0 then the parabola opens upward. If a < 0 then the parabola opens downward. 

Figure 2.1 ‘Concave up and ‘concave down’ parabolas 

+ k 

  

The graph of 

  

(P 

From Section 1.5, we know that the graph of the equation y = (x + 3)> + 2 can 

be obtained by translating y = x? three units to the left and two units up. As we 

are familiar with the shape and position of the graph of y = x* and we know the 

two translations that transform y = x? to y = (x + 3)* + 2, we can sketch the 

graph of y = (x + 3)? + 2, as shown in Figure 2.2. 

y=(x+3p+2 y=(x+3p+2 
) ¥    

   
  

  

\ 
y=iEHapy 

  

  

  
2 A vertexT(—3,2) 

2unithup| N\ i s < ! 
= SR 0 - il 2 0 X 6 4 2 6 41 -2 1 

3 units left | 

Figure 2.2 Translating y = x” to produce y = (x + 3/ + 2 Figure 2.3 The axis of symmetry and the vertex of a parabola 

We can also determine the axis of symmetry and the vertex of the graph. 

Figure 2.3 shows that the graph of y = (x + 3)* + 2 has an axis of symmetry 

of x = —3 and a vertex at (3, 2). The equation y = (x + 3)2 + 2 can also be 
written as y = x? + 6x + 11. As we can identify the vertex of the parabola 

easily when the equation is written as y = (x + 3)> + 2, we often refer to this as 

the vertex form of the quadratic equation, and y = x> + 6x + 11 as the general 

form (or expanded form). 

Ifa quadratic function is written in vertex form, that is f(x) = alx — h2 + k, with a 0, then the fo=ale—h? +kis 
graph of f has an axis of symmetry of x = h and a vertex at (f, k). sometimes referred to as 

the standard form of a 
quadratic function. 
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Functions, equations, and inequalities 

Completing the square 

‘When we are visualising and sketching quadratic functions, it is helpful to have 

them written in vertex form. We can convert a quadratic function written in 

general form into vertex form by completing the square. For any real number 
2 

s the quadratic expression x* + px + (g) is the square of (x g %) Convince 

@ 

yourself of this by expanding (x + ;i) . To complete the square, we add 

constant to a quadratic expression to make it the square of a binomial. If the 

coefficient of the quadratic term (x?) is +1, the coefficient of the linear term is 
P & P 2 P & 

P, and the constant term is (5) , then x2 + px + (5) = (x + 5) and the 

square is completed. Remember that the coefficient of the quadratic term 

(leading coefficient) must be equal to +1 before completing the square. 

Find the equation of the axis of symmetry and the coordinates of the vertex 

of the graph of f(x) = x> — 8x + 18 by rewriting the function in the form 

feo =alx—h)?*+ k. 

R 

Solution 

To complete the square and get the quadratic expression x> — 8x + 18 in the 
2 _g\2 

form x2 + px + (12—7) , the constant term needs to be (TS) = 16. We need 

to add 16, but also subtract 16, so that we are adding zero overall and not 

changing the original expression. 

fx) = (x> — 8x +16) — 16 + 18  This effectively adds zero (—16 + 16) to 

the right side. 

foo=x*—8x+16+2 x2 — 8x + 16 fits the pattern 
2 

AR DR (12—7) withp = —8. 

fo=GEx-—H2+2 x2—8x+16 = (x — 4)? 

¥, y=x—8x+18 
The axis of symmetry of the graph of fis the 
vertical line x = 4 and the vertex is at (4, 2). 

 



For the function g:x — —2x2 — 12x + 7: 

(a) find the axis of symmetry and the coordinates of the vertex of the graph 

ofg 

(b) indicate the transformations that can be applied to y = x? to obtain the 

graph of g 

(c) find the minimum or the maximum value. 

Lo e, 

Solution 

(a) gx— *Z(xz EHGx %) Factorise so that coefficient of 

quadratic term is +1. 
2 

gx— *2[(x2 SR 6 IO EIOED %] p=6= (%) = 9; hence, 

add +9 — 9 (zero). 

g:x>—>—2[(x+3)2*12—8*% P P e O = (Cear OF 

gx —2[<x +3)2— 22—5] 

  

gx— —2(x +3)2+25 Multiply through by —2 to remove 

outer brackets. 

sgpei= == (ED)P AR 25 Express in vertex form 

gx—alx—h?+k 

The axis of symmetry of the graph of g is the vertical line x = —3 and Figure 2.4 Graph of 

the vertex is at (—3, 25). The graph is shown in Figure 2.4. y=-22 12wt 

(b) Since g:x— —2x2 — 12x + 7 = —2(x + 3)2 + 25, we can obtain the 

graph of g by applying the following transformations (in the order given) 

on the graph of y = x% 

1 horizontal translation of 3 units left 

2 reflection in the x-axis (parabola opening down) 

3 vertical stretch of factor 2 

4 vertical translation of 25 units up. 

(c The parabola opens down because the leading coefficient is negative. 

Therefore, g has a maximum value and no minimum value. The 

maximum value is 25 (y-coordinate of vertex) at x = —3. 

We can use the technique of completing the square to derive the quadratic 

formula. Example 2.3 derives a general expression for the axis of symmetry 

and the vertex of a quadratic function in the general form f(x) = ax> + bx + ¢ 

by completing the square.



‘The result in Example 2.3 
leads to the following 

generalisation. 
For the graph of the 
quadratic function 

foo=ad +bx+c 
the axis of symmetry is 

the vertical line with the 
o b equation x = —% 

and the vertex has 

coordinates 

(-5 2a" 4a) 
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Functions, equations, and inequalities 

Find the axis of symmetry and the vertex for the general quadratic function 

feo=ax2+bx+c. 

| 

Solution 

foo=alx>+ Lx+ ) Factorise so that the 
coefficient of x term is +1. 

-t (B) -3+ -t- - (2] 

  

_ b )1 L2 @ oy ( b )2 _ ( b )Z = LN - 8 +2x+(Z) = = 
fo a[(x g 2a 4a> a S o i 2a 

2 
fx) = a( Za) % Multiply through by a. 

Z b2 q 
fx) = a(x ) o Express in vertex form 

fix) = alx — h)? + k. 

‘We can check the results from Example 2.2 using these formulae for the axis of 

symmetry and vertex. For the function g:x +— —2x> — 12x + 7: 

b —12 

  

il v —3 = axis of symmetry is the vertical line x = —3 

b (—12 _ 56 , 144 
o= o =7 2 3 + R =25 = vertex has coordinates (—3, 25) 

These results agree with the results from Example 2.2. 

Zeros of a quadratic function 

A specific value of x is a zero of a quadratic function f(x) = ax? + bx + cifitis 

a solution (or root) to the equation ax? + bx + ¢ = 0. The x-coordinate of any 

point(s) where f crosses the x-axis (y-coordinate is zero) is a real zero of the 

function. 

A quadratic function can have no, one, 

or two real zeros, as Figure 2.5 illustrates. 

Finding all real zeros of a quadratic 

function requires you to solve quadratic 

equations of the form ax? + bx + ¢ = 0. 

Although a # 0, it is possible for b or ¢ 

to be equal to zero. There are five general 
    no real 

zeros 

  

   
methods for solving quadratic equations, 

. 5 Figure 2.5 Different quadratic functio 
as outlined in Table 2.1. - e with different numbers of real zeros



  

  

   
  

Method Examples 

Square root ®=-25=0 (x +2) 
Ifx* = cand ¢ > 0, then x = +/c #=25 x+2 

x=45 x=- 

Factorising ¥+3x—10=0 #=7x=0 
If mn =0, thenm = Oorn =0 (x+5)(x—2)=0 Xx=7)=0 

  

P)l, (P)Z ’ 2 Py (P x+px+(z q+ (3], which 
» 

4 
square oot both sides (as above). 

o 
leads to (x+i) =—g+2 . andthen 

x=—-50rx=2 x=0orx=7 

Completing the square B—8x+5 
If% + px + g = 0, then ¥ —8x+16=-5+16 

x—42= 

  

  

Quadratic formula 

  

  

Graph the equation y = ax? + bx + con 

x-axis.   
If ax? + bx + ¢ = 0, then 4 

oo =bE Vb~ dac 
2a 

Graphing 22 —5x—7=0 

GDC calculations reveal that the zeros are 

    
  

your GDC. Use the GDC’s graph analysis Ziandz= —1 
features to determine the x-coordinates of [ * = 244~ 
the point(s) where the parabola intersects the | s T 

  

  

  
            

I 5 Taco L i | 

laartabe % M i o\ 1T e T |55 Goomarg———| & & Masimum 
[iTo-Satnoe. 1 & Intorsection 

5 oyiox 
\ e insgal 
o 7: Bounded ves o)   
    
  

Table 2.1 Methods for finding zeros of quadratic functions 

The quadratic formula and the discr 
   

an 

The expression beneath the radical sign in the quadratic formula, > — 4ac, tells 

us whether the zeros of a quadratic function are real or not real (imaginary). 

Because it acts to ‘discriminate’ between the types of zeros, b — 4ac is called 

the discriminant. It is often labelled with the Greek letter A (upper case delta). 

The value of the discriminant can also indicate if the zeros are equal and if they 

are rational. 

  
For the quadratic function fx) = ax® + bx + ¢, (a # 0) where a, b, and care real numbers: 
« IfA = b — dac > 0, then f has two distinct real zeros, and the graph of f intersects the x-axis twice. 
« IfA = B — dac = 0, then  has one real zero (double root), and the graph of fintersects the x-axis 

once (] is tangent to the x-axis). 

« IfA = b — 4ac < 0, then f has two imaginary zeros (non-real), and the graph of f does not intersect 
the x-axis. 

« Inthe special case when a, b, and ¢ are integers and the discriminant s the square of an integer 
(a perfect square), the polynomial ax® + bx + ¢ has two distinct rational zeros. 
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Ifthe zeros of a quadratic 
polynomial are rational 

(either two distinct 
rational zeros or two 

equal rational zeros) then 
the polynomial can be 

factorised. That is, if 
ax? + bx + ¢ has rational 
zeros then ax® + bx + ¢ 

= (mx+ n)(px + q) 
where m, n, p, and g are 

rational numbers. 

Remember that the roots 
ofa polynomial equation 

are those values of x for 
which P(x) = 0. These 

values of x are called the 
zeros of the polynomial P. 
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‘When the discriminant is 2€10, the solution of a quadram function is 

   
   

Thls solution of ~—- .s called a double zero (or root). 

  

2a D 
If a and b are integers, then the zero 727 will be ratmnal 

Example 2.4 

Use the discriminant to determine how many real roots each equation has. 

Confirm the result by graphing the corresponding quadratic function for 

each equation on your GDC. 

(@) 22+ 5c—3=0 (b) 4>—12x+9= 

  

(e)f 2> ="5x 1F6/— 

  

  

Solution 

(a) The discriminant is A = 5% — 4(2)(-3) = 49 > 0. 

Therefore, the equation has two distinct real roots. 

This result is confirmed by the graph of the 

quadratic function y = 2x2 + 5x — 3, which 
clearly shows that it intersects the x-axis twice. 

Since A = 49 is a perfect square, the two roots 

are also rational and the quadratic polynomial 

2x* + 5x — 3 can be factorised: 

22+ 5x—3=02x—1)(x+3)=0 
I 

  

y=2x245%-3       

The two rational roots are x = —~and x = —3 

  

P 

(b) The discriminant is A = (—12)2 — 4(4)(9) = 0. Therefore, the equation 

has one rational root (a double root). The graph on the GDC of 

y = 4x? — 12x + 9 appears to intersect the x-axis at only one point. We 

can be more confident with this conclusion by investigating further, for 

example by tracing or looking at a table of values on the GDC. 
  

  

  

TABLE SETUP X Y1 
ThlStart=1.2 1.2 [.36 

y=4x2-12x+9, ATbl=.1 13 [:3 
Indpnt Ask 155 |@ 
Depend: PEXWde] Ask 125 292 

1.8 |36                   ] I o   

Since the root is rational (A = 0) the polynomial 4x> — 12x + 9 can be 

factorised: B B 

42— 12x+ 9 = (2x — 32x-3) = Z(X—%)Z(x— 5)] - 4(x—5)2 =0 

There are two equal linear factors, which means there are two equal 

rational zeros, both equal to % in this case.



() The discriminant is A = (—5)2 — 4(2)(6) = —23 < 0. 
  Therefore, the equation has no real roots. 

This result is confirmed by the graph of 

the quadratic function y = 2x> — 5x + 6, 

which clearly shows that the graph does y=2x2-5x+6 

not intersect the x-axis.         

The equation will have two imaginary 

(non-real) roots. 

For 4x2 + 4kx + 9 = 0, determine the value(s) of k so that the equation has: 

(a) one real zero (b) two distinct real zeros (c) no real zeros. 

Solution 

(a) For one real zero, A = (4k)2 — 4(4)(9) = 0 

= 16k — 144 = 0= 16k>= 144 =>k2=9=k = =3 

(b) For two distinct real zeros, A = (4k)? — 4(4)(9) > 0 

=16k>> 144 = k*>9=k< -3 or k>3 

(c) For no real zeros, A = (4k)2 — 4(4)(9) < 0 

= 16k2<144=k*<9=k> -3 and k<3=-3<k<3 

  

The graph of f{ ax —p)x —q) 

If a quadratic function is written in the form f(x) = a(x — p)(x — q) then 

we can easily identify the x-intercepts of the graph of f. Consider that 

fip) =a@p = p)p — q) = a)(p — q) = 0 and that f(q) = a(q — p)@q — 9 
= a(q — p)(0) = 0. Therefore, the quadratic function f(x) = a(x — p)(x — q) 

will intersect the x-axis at the points (p, 0) and (g, 0). We need to factorise 

in order to rewrite a quadratic function in the form f(x) = ax® + bx + ¢ 

to the form f(x) = a(x — p)(x — q). Hence, fx) = a(x — p)(x — q) can be 

referred to as the factorised form of a quadratic function. As a parabola 

is symmetric, the x-intercepts (p, 0) and (g, 0) will be equidistant from the 

axis of symmetry (see Figure 2.6). As a result, the equation of the axis of 

symmetry and the x-coordinate of the vertex of the parabola can be found 

by finding the average of p and g. 

Ifa quadratic function s written in the form f(x) = a(x — p)(x — q), with @ # 0, then the graph 
of f has x-intercepts at (p, 0) and (g, 0, an axis of symmetry with equation 

ST 

axis of symmetry 

fx) ¥ 

(g, 0)\ 0 

  

  
Figure 2.6 Features of the 
graph of a quadratic function 
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Example 2.6 

Find the equation of each quadratic function from the graph in the form 

fix) = a(x — p)(x — q) and also in the form fix) = ax? + bx + c. 

(a) (b) 

  

Solution 

(a) Since the x-intercepts are —3 and 1 then y = a(x + 3)(x — 1). 

The y-intercept is 6, so when x = 0, y = 6. Hence, 

6=a(0+3)0— 1) = —3a=a = —2 (a < 0agrees with the fact 

that the parabola is opening downward). The function is 

Joo = =2(x + 3)(x — 1), 

Expanding the brackets: fix) = —2x2 —4x + 6 

(b) The function has one x-intercept at 2 (double root), so p = g = 2 and 

y = alx — 2)(x — 2) = alx — 2)2 The y-intercept is 12, so when 

x=0,y =12 Hence,12 = a(0 — 2)> = 4a = a = 3 (a > 0 agrees 

with the parabola opening up). The function is f(x) = 3(x — 2)% 

Expanding the brackets: f(x) = 3x> — 12x + 12 

Example 2.7 

The graph of a quadratic function intersects the x-axis at the points (—6,0) 

and (—2,0) and also passes through the point (2,16). 

(a) Write the function in the form f(x) = a(x — p)(x — g)- 

(b) Find the coordinates of the vertex of the parabola. 

(c) Write the function in the form f(x) = a(x — h)> + k. 

s 

Solution 

(a) The x-intercepts of (—6, 0) and (—2, 0) gives f(x) = a(x + 6)(x + 2). 

Since f passes through (2, 16), then 

fQ=16=f2) = a@ +6)2 +2) = 32a= 16:>a:% 

Therefore, f(x) = %(x +6)(x +2)



(b) The x-coordinate of the vertex is the average of the x-coordinates of the 

intercepts. x = > 
—6-2_   —4 

The y-coordinate of the vertexis y = fl—4) = J(~4 + 6)(~4 +2) = —2 
Hence, the coordinates of the vertex are (—4, —2). 

(c) In vertex form, the quadratic function is f(x) = %(x S )2 

  

Quadratic function, a # 0 Graph of function Results 
  

General form 

Sy =ax* +bx+c 

Parabola opens up if a > 0 
Parabola opens down if a < 0 

. ) b 
Axis of t = xis of symmetry is x = = 

  

  

A= b2 — dac (discriminant) | IfA = 0, fhas x-intercept(s) If A = 0, Fhas x-intercept(s) (# 0) A 
b ’ 

i 2a Vertex is (—i, c— 5) ! 2 4a 

—b—VA o\ R (zbtvE ) (2R (e Fh 2a” 4a 

If A <0, fhas no x-intercepts 

Vertex form x=h Axis of symmetry is x = h 

flo = albx — b2 + k ) Vertexis (I, k) 

Factorised form ta 
(two distinct rational zeros) 

fx) = atx — pix — q 

  

Axis of symmetry is x = PT 

x-intercepts are: (p, 0) and (g, 0) 

  

Factorised form 
(one rational zero) 

fx) = alx — pp     
  

  Axis of symmetry is x = p 

Vertex and x-intercept is (p, 0)     

Table 2.2 Properties of quadratics 
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Functions, equations, and inequalities 

1. For each of the quadratic functions f; find: 

(i) the equation for the axis of symmetry and the coordinates of the 

vertex by algebraic methods 

(ii) the transformation(s) that can be applied to y = x to obtain the 

graph of y = f(x) 

(iii) the minimum or maximum value of . 

Check your results by using your GDC. 

(@)FfE= i 8] (D)) jhestms e AF (B £ 

(@) jpr =2k = dbe A= 1) (d) fix—4x2 —4x+9 

(0 fixH%xz+7x+26 

2. Solve each quadratic equation by using factorisation. 

(@) x2+2x—8=0 (b) x2=3x+ 10 
(c) 6x2—9x=0 (d) 6 + 5x = x2 

(e) x2=6x—9 (f) 3x2+ 11x—4=0 

(g) 3x> + 18 = 15x (h) 9x — 2 = 4x2 

3. Use the method of completing the square to solve each quadratic equation. 

(@) x> +4x—3=0 (b) x> =4x—5=0 

() x2—2x+3=0 (d) 2x2+ 16x+6=0 
(€ x2+2x—8=0 (f) —2x2+4x+9=0 

4. Letflx) =x?—4x— L. 

(a) Use the quadratic formula to find the zeros of the function. 

(b) Use the zeros to find the equation for the axis of symmetry of 

the parabola. 

(c) Find the minimum value of f. 

5. Determine the number of real solutions to each equation. 

(@) x2+3x+2=0 (b) 2x2—3x+2=0 

(OPCEE (d)zfl—%xflzo 

6. Find the value(s) of p for which the equation 2x2 + px + 1 = 0 has one 

real solution. 

7. Find the value(s) of k for which the equation x2 + 4x + k = 0 has two 

distinct real solutions. 

8. The equation x?> — 4kx + 4 = 0 has two distinct real solutions. Find the 

set of all possible values of k. 

9. Find all possible values of m so that the graph of the function 

for quj‘}:‘;:‘;:;?mfi:i‘f:; g:x+— mx? + 6x + m does not touch the x-axis. 

R 10. Find the range of values of k such that 3x2 — 12x + k > 0 for all real 
y=32-12x+k values of x. 
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11. Prove that the expression x — 2 — x? is negative for all real values of x. 

12. Find a quadratic function in the form y = ax? + bx + ¢ that satisfies the 

given conditions. 

(a) The function has zeros of x = —1 and x = 4 and its graph intersects 

the y-axis at (0, 8). 

(b) The function has zeros of x = Landx=3andits graph passes 

through the point (—1, 4). 

13. Find the range of values for k in order for the equation 

2x2 + (3 — k)x + k + 3 = 0 to have two imaginary (non-real) solutions. 

14. Find the values of m such that the function f(x) = 5x> — mx + 2 has 

two distinct real zeros. 

15. Do the following for each function. 

(i) Write it in vertex form: y = a(x — h)> + k. 

(ii) State the coordinates of the vertex. 

(iii) Indicate whether the vertex is a maximum or minimum point. 

(@ y=x*+4x+1 (b) y=—-2x+4x+3 

(c) y=3x2+ 12x + 12 d) y=3+6x—x 

16. A quadratic function h(x) passes through the points (2,0) and (6,0). The 

graph of h is a parabola. 

(a) Write down the equation for the axis of symmetry of the parabola. 

(b) Given that the graph of h also passes through the point (8,6), find an 

expression for h and write it in the form h(x) = ax* + bx + c. 

17. Show that there is no real value ¢ for which the equation 

2x* + (2 — f)x + £ + 3 = 0 has real roots. 

18. Show that the two roots of ax? + bx + a = 0 are reciprocals of each other. 

Rational functions 

Another important category of functions is rational functions, which are 

5 () o 
functions in the form R(x) = %, where fand g are polynomials and the 

domain of the function R is the set of all real numbers not including the real 

zeros of polynomial g in the denominator. In this course, we will consider 

rational functions where the numerator and denominator are linear functions. 

Some examples of such rational functions are 
-2 

P = 2)( ¥5 
  and qx) = 

The domain of function p is all real numbers x not including 

x=5(ie.x € R, x # 5) and the domain of function g is x € R, x # *2 
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A fraction is only zero if 
its numerator is zero. 
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Functions, equations, and inequalities 

Example 2.8 

Sketch the graph of h. Find the domain and range of h(x) 

  

Solution 

Because the denominator is zero when x = 2, the domain of 4 is all real 

numbers except x = 2, x E R, x # 2. 

Determining the range of the function is a little less straightforward. It is 
clear that the function could never take on a value of zero because that will 
only occur if the numerator is zero. And since the denominator can have 
any value except zero, it seems that the function values of & could be any 
real number except zero. To confirm this, and to determine the behaviour of 

the function (and shape of the graph), some values of the domain and range 
(pairs of coordinates) are displayed in the tables below. 

  

  

  

  

  

  

  

  

  

                

x approaches 2 from the left x approaches 2 from the right 

x h(x) x h(x) 

o8 —0.01 102 0.01 

0 S0 12 0.1 

0 =015 4 0.5 

1 ol 5] % 

J185] =2 215 2 

g =10 21 10 

1.99 —100 2.01 100 

E090; —1000 2.001 1000 

The values in the table provide clear evidence vertical 

that the range of h is all real numbers except / isimzpmm    

     
zero; that is, h(x) € R, h(x) # 0. 

v
 

The values in the table also show that as o) 

x — —o0, h(x) — 0 from below (sometimes aaZ 

‘written h(x) — 0~) and as x — +%, h(x) — 0 

from above (h(x) — 07). It follows that the line 

with equation y = 0 (the x-axis) is a horizontal 

asymptote for the graph of h. As x — 2 from 

the left (sometimes written x — 27), h(x) 

appears to decrease without bound, whereas 

as x — 2 from the right (x — 2*), h(x) appears 

to increase without bound. This indicates that 

the graph of h will have a vertical asymptote at horizontal 

x = 2. This behaviour is confirmed by Syl 
x-axis, y = 0 

the graph.



The line x = cis a horizontal asymptoteof  Theline x = dis a vertical asymptote of the 
the graph of the function f ifat least one of the  graph of the function f if at least one of 
following statements is true: the following statements is true: 
o asx— oo, thenfi) — ¢ o asx—d*, thenflx) — +oo 
o asx— —oo, thenf(x) — ¢ « asx—d*, thenflx) — —co 
o asx— oo, then fix) > ¢ o asx—d, thenf(x) — +oo 
« asx— —oo, then f() — ¢~ o asx—d",thenfiy) — —eo 

Example 2.9 

  Consider the function f(x) = Sketch the graph of fand identify any 
2 S6 

asymptotes and any x- or y-intercepts. Use the sketch to confirm the domain 

and range of the function. 

  

Solution 

Firstly, factorise where possible. 

B0 i S 30018 

SO = T 6 267 3) 

An x-intercept occurs when the numerator is zero. Hence, (g, 0) is an 

Xx-intercept. 

A y-intercept occurs when x = 0 

floy= ;:g; 1 2 % = *%, s0, the y-intercept is (0, *%) 

Any vertical asymptote will occur when the denominator is zero - that is, 

where the function is undefined. From the factorised form of f we see that 

the line x = —3 will be a vertical asymptote for the graph of f. 

‘We need to determine if the graph of f goes down (f(x) — —o) or goes up 

  

(f(x) — ) on either side of the vertical asymptote. It's easiest to do this by As the number n gets 

analysing what the sign of f will be as x approaches —3 from both the left Cl ;“fimty’ i 
and right. For example, as x — —3~ we can use a test value close to and to number ;, gets closer to 0. 

the left of —3 (e.g. x = —3.1) to check whether f(x) is positive or negative to Conversely, as n gets 
helertot =3t closer to0, the number ;; 

gets closer to infinity. 
BaNEs -) ‘These facts can be 

f=3.1)= ERET3 = az +) = fo>0 e:;pressedsimplyas: 

—— = littleand 
= asx — —37, 50 f(x) — +oo (rises). BIG L 

——=BIG. The 
As x — —3" we use a test value close to and to the right of —3 li fl R 

_ s . . also be expressed more 
(eg. x 2.9) to check whether f(x) is positive or negative to the right e 

of —3. the concept of alimit 
B(E010) =) &) expressed in limit 

oS =y = fed=geve ~ m — @0 notation s lim 1 =0 
= asx — —3*, 50 f(x) — —oo (falls) and lim & 
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Functions, equations, and inequalities 

A horizontal asymptote (if it exists) is the value that f(x) approaches as 

X — *oo (far to the left and right on the graph). To find this value, we divide 

both the numerator and denominator by x. 

38 

g 2 8 7 &
 

o 2 S Z £ = i g S 7 2 e 

I 
N
 

  

  

Now we know the behaviour (rising or falling) ’ 

of the function on either side of the vertical 

asymptote and that the graph will approach the 

horizontal asymptote as x — oo, an accurate 
sketch of the graph can be made as shown. s 

o 293 
  S 7 

  

        

The domain of fis x € R, x # —3, and the range is f(x) € R, f(x) # %, which 

is confirmed in the sketch of the graph of fabove. 

(x) 
‘The steps to analyse a rational function R(x) = % given functions fand g have no common 
factors, are as follows. $ 
1. Factorise: Completely factorise both the numerator and denominator. 
2. Intercepts: A zero of f (numerator) will bea zero of R and hence an x-intercept of the graph 

of R. The y-intercept is found by evaluating R(0). 
3. Vertical asymptotes: A zero of g (denominator) will give the location of a vertical asymptote 

(if any). Then perform a sign analysis to see if R(x) — +cc or R(x) — —oc on either side of 
each vertical asymptote. 

4, Horizontal asymptotes: Find the horizontal asymptote (if any) by dividing both f (numerator) 
and g (denominator) by x, and then letting x — *cc. 

5. Sketch of graph: Start by drawing dashed lines where the asymptotes are located. Use the 
information about the intercepts, whether R(x) falls or rises on either side of a vertical 

asymptote, and additional points as needed to make an accurate sketch. 

6. Domain and range: The domain of R will be all real numbers except the zeros of g. You need 
to study the graph carefully in order to determine the range. The value of the function at the 
horizontal asymptote will not be included in the range. 

1. Sketch the graph of each rational function without the aid of your 

GDC. On your sketch clearly indicate any x- or y-intercepts and any 

asymptotes (vertical or horizontal). Use your GDC to verify your sketch. 

    

I _ @ fo =75 (b) gix) = 

© ho=1=% @ R = 
X 

D1 s ©po=5—; (ORVCIREE 
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Use your GDC to sketch a graph of each function and state the domain 

and range of the function. 

    

  

  

_x+12 _4-x (@ foo = 241 ®) g0 = =% 
__6 D (© hen =5 @ =222 

Consider the function g(x) = 3 — Pt 
$ i 

(a) Graph g on your GDC. 

(b) Determine the equations of all asymptotes for the graph of g. 

ax   0] 
il Graph your result on a GDC 

x—4 
to check that it is equivalent to g(x) = 3 — e 

(c) Express gin the form g(x) = 

x— 
e TOTIEACHY 
(=) o0 

If a, b, and c are all positive, sketch the curve y = 

of the following conditions. 

(@ a<b<c (b) b<a<c (© b<c<a 

A drug is given to a patient and the concentration of the drug in the 

bloodstream is carefully monitored. At time 0 < ¢ < 24 (in hours after 

patient receiving the drug), the concentration, in milligrams per litre 

(mgl~1) is given by the function 
B0 

Ct) = o] 

(a) Sketch a graph of the drug concentration (mgl-!) versus time 

(hours) for the relevant domain. 

  

(b) When does the highest concentration of the drug occur, and what is it? 

(c) How long does it take for the concentration to drop below 1.0 mgl~!? 

xta 
ider the functi = Consider the function f(x) T   L X F 7% The graph of fhas 

asymptotes x = —6 and y = 3, and the point (6, %) lies on the graph. 

Find the values of a, b, and c. 

Solving equations and inequalities 

You are familiar with solving linear equations and, in this chapter, we have 

studied some approaches to analysing and solving quadratic equations. Some 

problems lead to other kinds of equations. For example, some equations we 

encounter may involve radicals, fractions, absolute values, or expressions 

that are not quadratic but display a quadratic ‘structure’ Furthermore, some 

problems do not involve equations but inequalities. You need to be familiar 

with effective methods for solving inequalities involving quadratic expressions. 
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    quations involving a cal 

Example 2.10 

Solve V3x + 6 = 2x + 1 for x. 

| 

Solution 

Squaring both sides gives BYE G Ok )2 

3x+6=4x+4x+ 1 

4B = 0 

Factorising (4x+5)(x—1)=0 

= *% or x=1 

Check both solutions in the original equation. 

When 

A f ey = B - 3 
= x= *% is not a solution. 

Whenx=1,/301) +6=2(1)+1 = /9=3 = 3=3 
= x = lis the only solution. 

If two quantities are equal, for example a = b, then it is certainly true that 
a*> = b% and a® = b3, and so on. However, the converse is not necessarily true. 

A simple example can illustrate this. 

Consider the trivial equation x = 3. There is only one value of x that makes the 
equation true, and that is 3. Now if we take this original equation and square 
both sides we transform it to the equation x> = 9. This transformed equation 

has two solutions, 3 and —3, so it is not equivalent to the original equation. 
By squaring both sides, we gained an extra solution, often called an extraneous 
solution, that satisfies the transformed equation but not the original equation, 
as we saw in Example 2.10. Whenever you raise both sides of an equation by a 
power, it is imperative that you check all solutions in the original equation. 

quations involving fraction 

It is also possible for extraneous solutions to appear when solving equations 

with fractions. 

2x 
Find all real solutions of the equation = 3 and verify 

solution(s) with a GDC. 

  

 



1 

Solution 

Multiply both sides of the equation by the least common denominator of the 

fractions. 

Factorising 4 — x° gives (2 — x)(2 + ) s0 4 — 2° is the least common 
denominator. 

— ) i 

Dok R D3 

3 +x—10=0 

(BxESE5) (B ) =1 0] 

ngor K= =2 
  

Clearly x = —2 cannot be a solution because 

that would cause division by zero in the original 

equation. The GDC image shows that the 

4 2x it oG S 3 h 7% equation y 3 3 hasan ” 

Xx-intercept at (%, 0), confirming the solution x = % 

Equations in quadratic fi 

In the first section of this chapter we covered methods of solving quadratic 
equations. As the two previous examples illustrate, quadratic equations 
commonly appear in a range of mathematical problems. The methods of solving, 
quadratics can sometimes be applied to other equations. An equation in the form 
at* + bt + ¢ = 0, where t is an algebraic expression, is an equation in quadratic 
form. We can solve such equations by substituting for the algebraic expression 
and then applying an appropriate method for solving a quadratic equation. 

0. 

I 

.61,0 «f         
        

    Find all real solutions of the equation 2m* — 5m? + 2 

Solution 

The equation can be written as 2(m?” — 5(m? + 2 = 0, so it is quadratic in 

terms of m?. 

2mt —5m2 +2 =10 

substitute t for m* 22 —5t+2=0 

=l =2) =) 

t:%or t=2 

Not only is it possible 
to gain an extraneous 
solution when solving 
certain equations, it 
is also possible to lose 
a correct solution by 
incorrectly dividing both 
sides of an equation by 
a common factor. For 
example, solve for x in 
the equation 
4x+2)% =3x(x +2). 
Dividing both sides by 
(x + 2) gives 
4x+2)=3x 
= 4x+8=3x 
= x=-8 

However, there are two 

solutions, x = —8 and 
x= —2. The solution 
of x = —2 was lost 
becausea factor of 
x + 2 was eliminated 
from both sides of the 
original equation. This 
is a common error to be 

avoided. 
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substituting m? for #: 

or m=*/2 

  

Check the solutions (which are in two pairs of opposites) by substituting 

them directly into the original equation. A value for m will be raised to the 

4th and 2nd powers, so we only need to check one value from each pair of 

opposites. 

2 i\ 2\ Whenm:‘T: 2(%) —5(?) +2=0 

. 2(%)—5(%%2:0 = %—%Jrz:o = 0=0 

Whenm = /2: 20v2)' =52 +2=0 

= 24)-502)+2=0 = 8—-10+2=0 = 0=0 

Therefore, the solutions to the equation are m = g, *g, V2, and —V2 

. 
Find all solutions, expressed exactly, to the equation wi=dwi—2 

  

Solution 

wi—awi+2=0 Set the equation to zero 

(wi)?—(Awi) +2=0 Attempt to write in quadratic form 

a +bt+c=0 

2—4t+2=0 Make appropriate substitution: let wi=t 

e e 00} 
t Trinomial does not factorise, so apply 

quadratic formula 

  

    

  

t = =2+v2 
1 2 2 \/7 1 

wi=2%/2 Substitute w* back in for ¢ 

w=@2+2) orw=(2-2)' ) 
5 o Approximate values 

w=(2+V2F) orw= (2 = v2)) found with GDC: 
w=(6+4/2  orw=(6—4/2) 68+4842 

135.882251 
w =68 + 48/2 or 684842 

w =68 — 48/2 0.1177490061      



It is difficult to check these two solutions by substituting them directly into 

the original equation as we did in Example 2.12. It is more efficient to use 

our GDC. 

Most GDC models have an equation solver. A limitation of this GDC feature 

is that it will usually return only an approximate solution. However, even if 

exact solutions are required, approximate solutions from a GDC are still very 

helpful as a check of the exact solutions obtained 

algebraically. The image shows a GDC solver ) 5 B i 0117749 
being used to find the approximate solutions m\a(wi =4-wi-2,w’ 
to the equation 135.882 1 1 
dwi=wit2, 

i 1 
nsmve(wzq-w‘.z,u |1 

Equations involving absolute value ulus) 

Equations involving absolute value occur in a range of different topics in 

mathematics. To solve an equation containing one or more absolute value 

expressions, we apply the definition that states that the absolute value of a real 

number a, denoted by |al, is given by 

  

      

_[a ifa=0 
|a] = . 

—a ifa<0 

|a| also has the geometric interpretation of being the distance between the 

coordinate a and the origin on the real number line. 

  

Example 2. 

Use an algebraic approach to solve the equation |2x + 7| = 13. Check any 

solution(s) on a GDC. 

| 

Solution 

The expression inside the absolute value symbols must be either 13 or —13, 

s0 2x + 7 equals 13 or —13. Hence, the given equation is satisfied if either 

2x+7=13 or 2x+7=-13 

2x =6 =20 

x=3 =0 

The solutions are x = 3 and x = —10 

To check the solutions on a GDC, graph the equation y = [2x + 7| — 13 and 

confirm that x = 3 and x = —10 are the x-intercepts of the graph. 

See Figure 2.7 on the right: the x-intercepts of the graph of y = [2x + 7| — 13 

agree with the solutions to the equation. 

If you are solving an 
equation in an exam for 
which a GDC is allowed 

and an exact answer 

is not required, then 

usually the most effective 
and efficient method 
is to solve the equation 

with your GDC. Two 
options include solving 
the equation with the 

GDCS solver or graphing 
and finding relevant 
x-intercepts. These two 

approaches, and other 
GDC methods, will be 

illustrated throughout 
this book. 

‘We will encounter 

equations in quadratic 
form in later chapters; 

for example, in equations 

with logarithms and 
trigonometric functions. 

  
[¥1=abs (2x+7)-13 : 

  
  
[¥1=abs (2x+7)-13 

  
X=3 Y=0       

Figure 2.7 GDC screens 

for checking the solutions to 
Example 2.14 

65



  

4,5 

£100=[2-x-3] 

200=[7-3-x]| 
Hdy 
  
e 1 7 s         

Figure 2.8 GDC screen for 

the checking solutions to 
Example 2.15 
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Functions, equations, and inequalities 

Find algebraically the solution(s) to the equation |2x — 3| = |7 — 3x]. 

Check the solution(s) graphically. 

Solution 

There are four possibilities: 

2% =131=17 =13 OO e 3=t (783 0) 

@ —@e=8)=7 =53 @ ===/ =) 

The first and last equations are equivalent, and the second and third equations 

are also equivalent. So, it is only necessary to solve the first two equations. 

22 =13 =N/ A O SI= = (73 7) 

5x = 10 2 3t 3% 

=0 4=x = x=4 

To check, we can graph the equations y; = [2x — 3| and y, = |7 — 3xl, and 

confirm that the x-coordinates of their points of intersection agree with the 

solutions to the given equation. 

Quadratic inequalities 

In the topics covered in this course, you will need to be as proficient with 

solving inequalities as with solving equations. Four important properties for 

inequalities are given below. 

For three real numbers a, b, and ¢: 

o Ifa>bandb>c thena>c. « Ifa>band ¢ <0, thenac < bc. 

« Ifa>band ¢ >0, then ac > bc. o Ifa>b,thena+c>b+c 

Example 2.16 

Find the values of x that solve the inequality x2 > x 
  

Solution 

It is possible to determine the solution set to this inequality by a method of 
trial and error, or simply using a mental process. That may be successful, but 
generally speaking it is a good idea to attempt to find the solution set by some 
algebraic method and then check, usually by means ofa GDC. 

For this example, it is tempting to consider dividing both sides by x, but that 
cannot be done because it is not known whether x is positive or negative. Recall 
that when multiplying or dividing both sides of an inequality by a negative 
number, it is necessary to reverse the inequality sign (see the third property of 
inequalities listed above). A better approach is to place all terms on one side of 
the inequality (with zero on the other side) and then try to factorise.



2 ‘The solution set, x < 0 or 
s 

x> 1, for Example 2.16 
B0 comprises two intervals 

that do not intersect 
xx—=1>0 (they are disjoint). It s 

g 3 A s incorrect to write the 
Now analyse the signs of the two different factors in a ‘sign chart’ ldtonmet 1L 

0 1 oras 1 < x < 0.Both of 

e e these formats imply that 
i = [!) e ! r the solution set consists 

. ' of the values of x between 

=1 - - 0+ Oand 1, but that s not 
x—1 + 0 = M the case. Only write the 

‘combined” inequality 
a<x<bifx>aand 

The sign chart indicates that the product of the two factors, x(x — 1), will x < b, where the two 

be positive when x is less than 0 or greater than 1. Therefore, the solution intervals are intersecting 
P between a and b. 

setisx <0 or x> 1. 

Inequalities with quadratic polynomials arise in many different contexts. 

Problems in which we need to analyse the value of the discriminant of a 

quadratic equation will usually require us to solve a quadratic inequality, as the 

next example illustrates. 

Example 2.17 

Given f(x) = 3kx? — (k + 3)x + k — 2 = 0, find the range of values of k for 

which fhas no real zeros. 

| 

Solution 

The quadratic function f will have no real zeros when its discriminant is 

negative. Since fis written in the form ax? + bx + ¢ = 0 then, in terms of 

the parameter k, a = 3k, b = —(k + 3), and ¢ = k — 2. Substituting these 

values into the discriminant, we have the inequality: 

(—(k+3)) - 46Kk —2) <0 

K2+ 6k +9 — 12k2 + 24k <0 

—11k2 + 30k + 9 <0  Easier to factorise if leading coefficient is 

  

positive. 

11k? = 30k —9 >0 Multiply both sides by —1 and reverse 

inequality sign. 

5= =) == (P = AR _ 30%v1296 _ 30 % 36 

2(11) 22 22 

30 +36 _ 66 _ _30-36__6__3 
R 21 

67



68 

Functions, equations, and inequalities 

The two rational zeros indicate 11k> — 30k — 9 could have been factorised 

into (11k + 3)(k — 3). 

11k +3)(k —3)>0 1 3 1 
e 

The results of the sign chart s - . 
indicate that the solution k-3 - ! L 

set to the inequality is (lk+3)k—3) + d s 0+ 

k< *%ork>3A 
Therefore, any value of k such that k < *13—1 or k > 3 will cause the function 

fto have no real zeros. 

1. Solve for x in each equation. If possible, find all real solutions and 
express them exactly. If this is not possible, then solve using your GDC 

and approximate any solutions to three significant figures. Be sure to 
check answers and to recognise any extraneous solutions. 

    

      

(@) xF6+2x=9 ) xF7+5=x 
OF e @ X;Z:if; 

SR x+1 _5x—1 
O = O v35 773 

    
® %7x41r1:xi4 ) &=22=1B=0 
() SR o= () () x6—35x3+216 =0 

(k) 1Bx+4l=38 ) [=dl=8 

(m) [5x + 1] = 2x m x—Vx+10=0 

2. Find the values of x that satisfy each inequality. 

) 2 =6=2 (b) x*+4<3x 

() 2x2+5x>3 ) 16x<32+5 

3. Given f(x) = 3kx? — (k + 3)x + k — 2 = 0, find the range of values of k 

for which fhas no real zeros. 

4. Find the values of p for which the equation px> — 3x + 1 = 0 has: 

(a) one real solution  (b) two real solutions (c) no real solutions. 

5. Given f(x) = x? + x(k — 1) + k2, find the range of values of k so that 

ftx) > 0 for all real values of x. 

6. Show that both of the following inequalities are true for all real numbers 
mand n such that m = n > 0. 

@ m+i=2 ® m+m(L+l)=4 
7. Find all of the exact solutions to the equation (x* + x)> = 5x* + 5x — 6. 

8. Use your GDC to find the values of x that satisfy the inequality 

  

 



Chapter 2 practice questions 

1. 

28 

10. 

. p(x) is a quadratic function that passes through the points (* 

. Consider the rational function f(x) = 

Solve for x in terms of a and b for the equation x> — (a + 3b)x + 3ab = 0. 

Find the value of ¢ such that the vertex of the parabola y = 3x*> — 8x + ¢ 

is (é *l) 
F g 

o
 0) 

(a) Write down the equation for the axis of symmetry of the parabola. 

and (%, 0). The graph of p is a parabola. 

(b) Given that the graph of p also passes through the point (~3,15), find 

an expression for p and write it in the form p(x) = ax? + bx + c. 

. The quadratic function f(x) = ax? + bx + c has the following 

characteristics: 

o passes through the point (2, —5) 

 has a maximum value of 4 when x = —1 

o hasazeroofx = —3. 

Find the values of @, b, and c. 

. Find all values of m such that the equation mx? — 2(m + 2)x + m + 2 =10 

has: 

(a) two real roots 

(b) two real roots (one positive and one negative). 

. Solve the inequality x> + 3 < 4x. 

. Find the range of values for k in order for the equation 

2x% + (3 — k)x + k + 3 = 0 to have no real solutions. 

8x+4 

st ) 
  . Do not use your GDC for 

this question. 

(a) The graph of fhas a vertical asymptote and a horizontal asymptote. 

Write down the equation for each asymptote. 

(b) Find the coordinates of the x-intercept for f. 

(c) Find the coordinates of the y-intercept for f. 

(d) Sketch a graph of f. Clearly label all asymptotes and axis intercepts. 

. Find the values of k so that the equation (k — 2)x> + 4x — 2k + 1 =0 

has two distinct real roots. 

The equation kx> — 3x + (k + 2) = 0 has two distinct real roots. 

Find the set of possible values of k. 
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Ifa, is the nth term of a. 
sequence, then a,, is the 

term before itand a,,  is 

72 

the term after. 

Sequences and series 

  

= 

By the end of this chapter, you should be familiar with... 

  

ing objectives 

« arithmetic sequences and series 

+ sum of finite arithmetic sequences 

+ geometric sequences and series 

« sum of finite and infinite geometric series 

+ sigma notation 

« the binomial theorem and the expansion of (a + b)", n € N. 

The heights of consecutive bounces of a ball, compound interest, population 

growth, and Fibonacci numbers are only a few of the applications of sequences 

and series that we have seen in previous courses. In this chapter we will review 

these concepts, consolidate understanding, and take them one step further. 

m Sequences 

Look at this pattern: 

. 
. o0 

. oo cee ’ 
. oo Oy es e e 

. o0 s e e ss e e seeee 
e o0 o0e o000 c000e scccee 
1 & 3 4 5 6 

Figure 3.1 Sequence of dots in triangular arrays 

The first term represents 1 dot, the second represents 3 dots, etc... 

This pattern can be represented as a list of numbers written in a definite order: 

a=1la,=3,a,=6,... 

The number a, is the first term, a, the second term, a; the third term, and so on. 

The nth term is a,,. 

While the idea of a sequence of numbers, a,,a,,as, ... is straightforward, it is 

useful to think of a sequence as a function. The sequence in Figure 3.1 can also 

be described in function notation as: 

f(1) = 1,f(2) = 3,f(3) = 6, and so on, where the domain is Z* 

Here are some more examples of sequences: 

1 6,12,18,24,30 

  

4 {by,b,, ..., b, ...}, sometimes used with an abbreviation {b,}



The first and third sequences are finite and the second and fourth are infinite. 

In the second and fourth sequences, we were able to define a rule that yields the 

nth number in the sequence (called the nth term) as a function of #, the term’s 

number. In this sense, you can think of a sequence, as a function that assigns a 

unique number (a,) to each positive integer n. 

Find the first 5 terms and the 50th term of the sequence {b,} such that 
il b,=2-— 

| 

Solution 
Since we are given an explicit expression for the nth term as a function of 

its term number 7, we only need to find the value of that function for the 

required terms: 

e ) s e T CERR e RS T 

=gl a1 42 —,_ L 249 
Caa2 2 %6 b 5 1% b 502 2500 

So, informally, a sequence is an ordered set of real numbers. That is, there is 

a first number, a second, and so on. The notation used for these sets is shown 

in Example 3.1. The way the function was defined in Example 3.1 is called the 
explicit definition of a sequence. There are other ways to define sequences, 
one of which is the recursive definition (also called the inductive definition). 

The following example will show you how this is used. 

Find the first 5 terms and the 20th term of the sequence {b,} such that b, = 5 

and b, = 2(b,—, + 3) 

Solution 

The defining formula for this sequence is recursive. It allows us to find 

the nth term b, if we know the preceding term b, ,. Thus, we can find the 

second term from the first, the third from the second, and so on. Since we 

know the first term b; = 5, we can calculate the rest: 

b,=2(b; +3)=265+3)=16 

by = 2(b, + 3) = 2016 + 3) = 38 
by=2(b, + 3) = 2(38 + 3) = 82 

bs = 2(b, + 3) = 2(82 + 3) = 170 

So, the first 5 terms of this sequence are 5, 16, 38, 82, and 170. However, to 

find the 20th term, we must first find all 19 preceding terms. This is one of 

the drawbacks of this type of definition, unless we can change the definition 

into explicit form. This can easily be done using a GDC (Figure 3.2). 

  
Plotl Plot2 Plot3 

nMin=1 
- U(n)E2(u(n—1)+3 

  
  

U(nMin)E5m 

U(5) 
170 

U(20) 
5767162       

Figure 3.2 GDC screens for 
Example 3.2 

13
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Sequences and series 

A Fibonacci sequence is defined recursively as: 

il o=yl 

Fy= il =) 
e D) 

(a) Find the first 10 terms of the sequence. 

(b) Find the sum of the first 10 terms of the sequence. 

(c) By observing that F; = F; — F,,F, = F, — F;, and s0 on, derive a 

formula for the sum of the first # Fibonacci numbers. 

| 

Solution 

(E0) 1, 11,25 % 55, 65, 113%, 20 241 65 

(b) S, =1,5,=28,=4,8,=7,5=12,§, = 20,5,=33,5; = 54, 
Sy = 88,8,y =143 

(c) Since F; = F, + F,, then: 

L=k 

F=F-F 

F,=F—F, 

=55 

    

w2 = Fu 

  

Sy =Fuy— F, 

Notice that S, = 12 = F, — F, = 13 — 1and $; = 54 = F,y— F, = 55 — 1 

Note: parts (a) and (b) can be made easy by using a spreadsheet: 

An) S(n)   

  

      

 



Notice that not all sequences have formulae, either recursive or explicit. Some 
sequences are given only by listing their terms. 

1. Find the first 5 terms of each infinite sequence. 

(@) s(n)=2n—3 (b) g(k) =2—-3 

(c) fin)=3Xx27" ) a, = (=1)"2") +3 

D b=3 
© {a =a, +3; forn>1 ® {b:b,,,,+2n; forn=2 n 

2. Find the first 5 terms and the 50th term of each infinite sequence. 

    

@) a,=2n—-3 (b)FhE= st 

e 2n . @ w= -0t 2) @ a,=nt 
3 

(e) a,=2a, +5and a, =3 (£) tyin = mand u =0 

(g) b, =3b,_,and b, =2 ()R | 

B3 Suggest a recursive definition for each sequence. 

Ei 

()3 12 48 192° 

S 2T (b)za,3a a*,>-a 

() a— 5k,2a — 4k,3a — 3k,4a — 2k,5a — k, -+ 

4. Write down a possible formula that gives the nth term of each sequence. 

(a) 4,7,12,19, ... (b) 2,5,8,11, ... 
357 9 ISR 

(9 1’1’3’1_6’E"“ d - 5% §"“ 

5 
5. A sequence is defined as a, = ;“ 

'n 
  ,n > 1, where F, is a member of the 

Fibonacci sequence. 

(a) Write down the first 10 terms of a,, 

1 

n—1 
  (b) Show thata, =1 + & 
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Definition of an 
arithmetic sequence 

Asequence dy, @y, @y, ... 
is an arithmetic sequence 
if there is a constant d for 

whicha, = a,_; +d 
for all integers n > 1, where 

dis called the common 
difference of the sequence, 
andd = a, — a, forall 

integers 1> 1. 

‘The general (nth) term of 
an arithmetic sequence, 
a, with first term a; and 

common difference d may 
be expressed explicitly as 

ay=ay + (n— 1)d. 
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Sequences and series 

m Arithmetic sequences 

There are two types that we will look at here: arithmetic and geometric 

sequences. We will look at them in the next two sections. 

Examine each sequence and the most likely recursive formula for each of them. 

  

     

7,14,21,28,35,42, ... a,=7anda,=a,_,+7forn>1 
2,11,20, 29, 38,47, ay=2anda,=a, ,+9forn>1 
39,30,21, 12,3, =6, a,=39anda,=a,_, —9,forn>1 

Note that in each case, every term is formed by adding a constant number to the 

preceding term. Sequences formed in this manner are called arithmetic sequences. 

So, for the sequences above, 7 is the common difference for the first, 9 is the 

common difference for the second, and —9 is the common difference for the third. 

This description gives us the recursive definition of the arithmetic sequence. 

It is possible, however, to find the explicit definition of the sequence. 

Applying the recursive definition repeatedly will enable us to see the expression 

we are seeking: 

a=a +d 

a;=a,+d=a +d+d=a +2d 

a,=a;+d=a +2d+d=a, +3d 

So, we get to the nth term by adding d to a,, (n — 1) times. 

This result is useful in finding any term of a sequence without knowing the 

previous terms. 

‘The arithmetic sequence can be looked at as a linear function as explained in the introduction to this 
chapter. In other words, for every increase of one unit in , the value of the sequence wil increase 
by d units. As the first term is ay, the point (1, a;) belongs to this function. The constant increase d 
can be considered to be the gradient (slope) of this linear model, hence the nth term, the dependent 

variable in this case, can be found by using the point-slope form of the equation of a line: 
y =y =mlx—x) 
ap—ay=dn—1)sa,=a+n—1)d 

“This agrees with our definition of an arithmetic sequence. 

Example 3.4 

Find the nth term and the 50th term of the sequence 2, 11, 20, 29, 38, 47, ... 

e e 

Solution 

This is an arithmetic sequence with first term 2 and common difference 9. 

Therefore: 

=g t(n—1)d=2+n-1)X9=9n—7 

= 4= 9 X 50— 7 =443



(a) Find the recursive and the explicit forms of the definition of the sequence: 

13,8,3, -2, ... 

(b) Calculate the value of the 25th term. 

Solution 

(a) This is clearly an arithmetic sequence, with common difference —5. 
an=13 

Recursive definition: _ 
=8, =5 

Explicit definition: a,=13—5(n—1)=18 — 5n 

(b) a =18 — 5 X 25 = —107 

Example 3.6 

Find a definition for the arithmetic sequence whose first term is 5 and fifth 

termis 11. 

Solution 

Since the fifth term is given, using the explicit form, we have: 

a5:u,+(571)d#11:5+4d$d:% 

This leads to the general term: 

a,=5+ %(n — 1), or equivalently 

@ =5 
= 3 

@y= Gy t=n>1 
2 

Example 3.7 

Insert four arithmetic means between 3 and 7. 

Solution 

Since there are four means between 3 and 7, the problem can be reduced to a 
situation similar to Example 3.6, by considering the first term to be 3 and the 

sixth term to be 7. The rest is left as an exercise for you. 

In a finite arithmetic 

sequence a, ay, ay, ., o 
the terms 

3 e g a0 
called arithmetic means 

between a; and a;. 

7



Sequences and series 

1. Insert four arithmetic means between 3 and 7. 

2. State whether or not each sequence is an arithmetic sequence. If it is, 

find the common difference and the 50th term. If it is not, say why not. 

@) a,=2n-3 ®) b,=nt+2 

(€) ¢y=¢cpy t2,andg =—1 (d) u,=3u,, +2 

(€ 2,57,12,19, ... (f) 2,-5—12,-19, ... 

3. For each arithmetic sequence find: 

(i) the 8th term 

(ii) an explicit formula for the nth term 

(iii) a recursive formula for the nth term. 

(@) —2,2,6,10, ... (b) 29,25,21,17, ... 

(©) —6,3,12,21,... (d) 10.07,9.95,9.83,9.71, ... 

SR (e) 100,97,94,91, ... (O S 

4. Find five arithmetic means between 13 and —23. 

5. Find three arithmetic means between 299 and 300. 

6. In an arithmetic sequence, a; = 16 and a,, = 42. 

Find an explicit formula for the nth term of this sequence. 

7. In an arithmetic sequence, a; = —40 and ay = —18. 

Find an explicit formula for the nth term of this sequence. 

8. The first three terms and the last term are given for each sequence. 

Find the number of terms. 

(a) 3,9,15, ..., 525 (b) 9,3, 3, ..., —201 
105 3 112 5 (O R0 S S (FTE .- 

() 1—k1+kl+3k...,1+19%   

9. Find five arithmetic means between 15 and —21. 

10. Find three arithmetic means between 99 and 100. 

11. In an arithmetic sequence, a; = 11 and a,, = 47. 

Find an explicit formula for the nth term of this sequence. 
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12. In an arithmetic sequence, a, = —48 and a,; = —10. 

Find an explicit formula for the nth term of this sequence. 

13. The 30th term of an arithmetic sequence is 147 and the common 

difference is 4. Find a formula for the nth term. 

14. The first term of an arithmetic sequence is —7 and the common 

difference is 3. Is 9803 a term of this sequence? If so, which term? 

15. The first term of an arithmetic sequence is 9689 and the 100th term is 

8996. Show that the 110th term is 8926. Is 1 a term of this sequence? 

If so, which term? 

16. The first term of an arithmetic sequence is 2 and the 30th term is 147. 

Is 995 a term of this sequence? If so, which term? 

Geometric sequences 

Examine the following sequences and the most likely recursive formula for 

each of them. 

    

7,14,28,56, 112,224, ... a,=7anda,=a, ,X2,forn>1 

2,18,162, 1458, 13122, a,=2anda,=a,_, X9 forn>1 

48,-24,12,-6,3,—15,... a,=48anda,=a,_, X (—05),forn>1 

Note that in each case, every term is formed by multiplying a constant 

number with the preceding term. Sequences formed in this manner are 

called geometric sequences. 

Thus, for the preceding sequences, 2 is the common ratio for the first, 9 is the 

common ratio for the second and —0.5 is the common ratio for the third. 

This description gives us the recursive definition of the geometric sequence. 

It is possible, however, to find the explicit definition of the sequence. 

Applying the recursive definition repeatedly will enable us to see the expression 

we are seeking: 

a=a Xr 

G=aXr=aXrXr=a X 

a=aXr=a,XrPXr=a Xr 

We can see that we get to the nth term by multiplying r by a,, (n — 1) times. 

This result is useful in finding any term of a sequence without knowing the 

previous terms. 

Definition of a 
geometric sequence 
A sequence ay, ay, as, is 
a geometric sequence if 
there is a constant r for 
which 

ay=a,_ Xr 

for all integers 1> 1, 
where 7 is the common 

ratio of the sequence, 
andr = a, + a,_, forall 
integersn > 1. 

nth term of a geometric 
sequence 
The general (nth) term 
of a geometric sequence, 
a, with common ratio r 
and first term a, may be 
expressed explicitly as 
4, —a; Xnta) 
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Sequences and series 

Example 3.8 

(a) Find the geometric sequence with @, = 2and r = 3 

(b) Describe the sequence 3, —12, 48, —192, 768, ... 

(c) Describe the sequence 1, ,i,é- 

o
=
 

(d) Graph the sequence g, = —- 3"} 

i
 

e 

Solution 

(a) The geometric sequence is 2, 6, 18, 54, ..., 2 X 3"~ !. Notice that the 
ratio of any two consecutive terms is 3. 

(b) This is a geometric sequence with @, = 3 and r = —4. The nth term is 

a, = 3 X (—4)"'. Notice that when the common ratio is negative, the 

terms of the sequence alternate in sign. 
1 

(c) The nth term of this sequence is a, = 1 X (%) . Notice that the ratio 

of any two consecutive terms is 7 Also, notice that the terms decrease 

in value. 

(d) Use a GDC to graph the sequence. 
The terms of the sequence lie on the graph 

  

of the exponential function y = i 2 

      
Example 3.9 

At 8:00 a.m., 1000 mg of medicine is given to a patient. At the end of each 

hour, the amount of medicine in the patient’s bloodstream is 60% of the 

amount present at the beginning of the hour. 

(a) What portion of the medicine remains in the patient’s bloodstream at 

12 noon if no additional medication had been given? 

(b) Ifa second dose of 1000 mg is given at 10:00 a.m., what is the total 

amount of the medication in the patient’s bloodstream at 12 noon? 

" —] 

Solution 

(a) Use the geometric model, as there is a constant multiple at the end of 

each hour. Hence, the amount at the end of any hour after giving the 

medicine is: 

a, = a, X r"~ !, where n is the number of hours. 

So, at 12 noon, n = 5 and as = 1000 X 0.6~ = 129.6 mg



(b) For the second dose, the amount of medicine at noon corresponds to n = 3: 

a; = 1000 X 0.6° Y = 360 

So, the amount of medicine is 129.6 + 360 = 489.6 mg 

[@Zelaglole Vel NlaI TR 

Compound interest is an example of a geometric sequence. 

Interest compounded annually 

When we borrow money we pay interest, and when we invest money we receive 

interest. Suppose an amount of €1000 is put into a savings account that has an 

annual interest rate of 6%. How much money will we have in the bank at the 

end of 4 years? 

It is important to note that the 6% interest is given annually and is added to the 

savings account, so that in the following year it will also earn interest, and so on. 
  

  

  

  

  

  

Time in years | Amount in the account (€) 
0 1000 
1 1000 + 1000 X 0.06 = 1000(1 + 0.06) 
2 1000(1 + 0.06) + (1000(1 + 0.06)) X 0.06 = 1000(1 + 0.06) (1 + 0.06) = 1000(1 + 0.06)* 

3 1000(1 + 0.06) + (1000(1 + 0.06)2) X 0.06 = 1000(1 + 0.06)* (1 + 0.06) = 1000(1 + 0.06)* 
4 1000(1 + 0.06)° + (1000(1 + 0.06)%) X 0.06 = 1000(1 + 0.06)* (1 + 0.06) = 1000(1 + 0.06)*         

Table 3.1 Compound interest 

This appears to be a geometric sequence with five terms. You will notice that 

the number of terms is five, as both the beginning and the end of the first year 

are counted. (Initial value, when time = 0, is the first term.) 

In general, if a principal of P euros is invested in an account that yields an annual 

interest rate r (expressed as a decimal), and this interest is added at the end of 

every year to the principal, then we can use the geometric sequence formula to 

calculate the future value A, which is accumulated after # years. 

If we repeat the steps above, with 

A, = P = initial amount 

r = annual interest rate 

t = number of years 

it becomes easier to develop the formula: 
  

  

  

  

  

  

Timeinyears | Amount in the account 
0 A, =P 
1 A, =P+Pr=PQ1+1) 

2 A =A0+0=P1+rp 

t A,=P(+ 0!         

Table 3.2 Compound interest formula 
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Notice that since we are counting from 0 to t, we have t + 1 terms, so we are 

using the geometric sequence formula: 

X-l= A=A X (I+r)+1-1 

Interest compounded n times per year 

Suppose that the principal P is invested as before but the interest is paid # times 

per year. Then % is the interest paid every compounding period. Since every 

year we have n periods, for ¢ years we have nt periods. The amount A in the 

account after t years is: 

a=p(1+1)" 

Example 3.10 

€1000 is invested in an account paying compound interest at a rate of 6% per 

annum. Calculate the amount of money in the account after 10 years if the 

compounding is: 

(a) annual (b) quarterly (c) monthly. 

Solution 

(a) The amount after 10 years is: 

A =1000(1 + 0.06)!° = €1790.85 

(b) The amount after 10 years quarterly compounding is: 

= 1000(1 + &) = €1814.02 

(c) The amount after 10 years monthly compounding is: 

1000(1 P &) — €1819.40 

You invest €1000 at 6% per annum, compounded quarterly. How long will it 

take for this investment to increase to €2000? 

Solution 

Let P = 1000, r = 0.06, n = 4, and A = 2000 in the compound interest formula 
_ e 

A=p(1+1) 

and then solve for t. 
4t 

2000 = 1000(1 + %) =2 =1.015% 
Using a GDC, we can graph the functions y = 2 and y = 1.015" and then 

find the intersection between their graphs.



It will take the €1000 investment 11.64 years to double to €2000. 

This translates into approximately 47 quarters. 

‘We can check our work to see that this is accurate by using the compound 

interest formula: 
47 

A= 1000(1 s %fl) = €2013.28 

In the next chapter you will learn how to solve Example 3.11 algebraically, 

using logarithms. 

You want to invest €1000. What annual interest rate is needed to make this 

investment grow to €2000 in 10 years if interest is compounded quarterly? 

_ 

Solution 

Let P = 1000, n = 4, t = 10 and A = 2000 in the compound interest formula 
' 

A=p(1+1) 
and solve for r: 

40 40 

2000:1000(1+Z') $2:(1+£) 

S1+2=%2 = r=4V2 - 1) = 00699 
4 

So, at an annual rate of 7% compounded quarterly, the €1000 investment 

will grow to at least €2000 in 10 years. 

‘We can check to see if our work is accurate by using the compound interest 

formula: 
40 

A= 1000(1 + %) = €2001.60 

Population growth 

The same formulae can be applied when dealing with population growth. 

The population of Baden in Austria grows at an annual rate of 0.35%. 

The population of Baden in 1981 was 23 140. What is the estimate 

of the population of Baden for 20252 

L 

Solution 

This situation can be modelled by a geometric sequence with first term 

23140 and common ratio 1.0035. Since we count the population of 1981 

among the terms, the number of terms is 45. 

In Chapter 4, more 
realistic population 
‘growth models will 
be explored and more 
efficient methods 
will be developed, 
including the ability 
to calculate interest 

that is continuously 
compounded. 
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2025 is equivalent to the 45th term in this sequence. The estimated 

population for Baden is therefore: 

Population (2025) = a,; = 23140(1.0035)* = 26 985 

1. For each sequence: 

(i) determine whether the sequence is arithmetic, geometric, or neither. 

(ii) find the common difference for the arithmetic ones and the 

common ratio for the geometric ones. 

(iii) find the 10th term for each arithmetic or geometric sequence. 

(€) BT ERR, o (b) a,=3n—3 

(c) b,=2m+2 (d) c,=2¢,-; —2,and¢; = —1 

(€) u,=3u, andu, =4 (f) 2,5,12.5,31.25,78.125, ... 

(g) 2, —5,12.5, —31.25,78.125, ... (h) 2,2.75,3.5,4.25,5, ... 
i 16 32 @) 18-12,8 -2 35 . 

(k) —1,3,-9,27, 81, ... (1) 0.1,0.2,04,08,1.6,32, ... 

(m) 3,6,12,18,21,27, ... (n) 6,14,20,28,34, ... 

(0) 24,3.7,5,63,7.6,... 

() 52,55,58,61,... 

2. For each arithmetic or geometric sequence, find: 

(i) the 8th term 

(ii) an explicit formula for the nth term 

(iii) a recursive formula for the nth term. 

@ =327 10 (b) 19,15,11,7, ... 

(© —8,3,14,25,... (d) 10.05,9.95,9.85,9.75, ... 

(e) 100,99,98,97, ... ® z,%,—l,—%,.“ 

® 3,6,12,24, ... (h) 4,12, 36, 108, ... 
@) 5 =55 = G) 3.-6,12,—24, ... 

(&) 972, —324, 108, —36, ... O -2,3, —%,%,“. 

) 35,25,%,‘12—95,“. ) =G=5) —%, —%,m 

(0) 9.5,19,38,76, ... (p) 100,95,90.25, ... 
@232 2 

432256
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14. 

153 

16. 

73 

18. 

. Find three geometric means between 7 and 4375. 

. Find four geometric means between 7 and 1701. 

. Find four geometric means between 3 and 96. Ina finite geometric 
  

sequence a,, ay, s ..., 
the terms ay, as, ... a; — 1 
are called geometric means 
between a; and ay 

. Find a geometric mean between 16 and 81. 

In questions 5 and 7, this 

is also called the mean 

. Find a geometric mean between 9 and 64. proportional. 

. The first term of a geometric sequence is 24 and the fourth term is 3. 

Find the fifth term and an expression for the nth term. 

. The first term of a geometric sequence is 24 and the third term is 6. 

Find the fourth term and an expression for the nth term. 

The common ratio in a geometric sequence is % and the fourth term 

is 13—4 Find the third term. 

Which term of the geometric sequence 6, 18, 54, ... is 118 0982 

The fourth term and the seventh term of a geometric sequence are 18 

  and % Is 591239 a term of this sequence? If so, which term is it? 

The third term and the sixth term of a geometric sequence are 18 and 23—3 

Is % a term of this sequence? If so, which term is it? 

Vitoria put €1500 into a savings account that pays 4% annual interest 

compounded semiannually. How much will her account hold 10 years 

later if she does not make any additional investments in this account? 

At the birth of her daughter Jane, Charlotte deposited £500 into a 

savings account. The annual interest rate was 4% compounded quarterly. 

How much money will Jane have on her 16th birthday? 

How much money should you invest now if you wish to have an 

amount of €4000 in your account after 6 years if interest is compounded 

quarterly at an annual rate of 5%? 

In 2017, the population of a town in Switzerland was estimated to be 7554. 

How large would the town’s population be in 2022 if it grows at a rate of 

0.5% annually? 

The common ratio in a geometric sequence is % and the fourth term 

is %4 Find the second term. 
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19. Which term of the geometric sequence 7, 21, 63, ... is 137 7812 

20. At her son Erik’s birth, Astrid deposited £1000 into a savings account. 

The annual interest rate was 6% compounded quarterly. How much 

money will Erik have on his 18th birthday? 

Series 

In common usage, the word series is the same thing as sequence. But in 

mathematics, a series is the sum of terms in a sequence. For a sequence of 

values a,, the corresponding series is the sequence of S, with: 

Si=ayta,+..+a,  +ta, 

If the terms are in an arithmetic sequence, then the sum is an arithmetic series. 

Sigma notatiol 

Most of the series we consider in mathematics are infinite series. This is to 

emphasise that the series contain an infinite number of terms. Any sum in the 

series S will be called a partial sum and is given by: 

Se=a tayt .. ta +a 

For convenience, this partial sum is written using sigma notation: 
k 

Se=2   i=a tay .t a o 

Sigma notation is a concise and convenient way to represent long sums. 

The symbol Y is the Greek capital letter Sigma that refers to the initial letter of 

the word ‘sum’ So this expression means the sum of all the terms a; where i 
" 

takes the values from 1 to k. We can also write Za, to mean the sum of the 
= 

terms a; where i takes the values from m to n. In such a sum, m is called the 

lower limit and » the upper limit. 

This indicates ending with i = n . 

‘This indicates addition — > 4, 

‘This indicates starting withi = m 

For example, suppose we measure the heights of six children. We will denote 

their heights by x,, x,, x5, x,, x5 and x. 

The sum of their heights x; + x, + x3 + x; + x5 + x4 is written more neatly, 
6 

by using sigma notation, as »_%;. 
=



The symbol > means ‘add up. Underneath > we see i = 1 and on top of it 6. 

This means that i is replaced by whole numbers starting at the bottom number, 

1, until the top number, 6, is reached. 
[3 5 

Thus ) % =x;+ %, + %5+ X, and D %= X3+ x, + x5 
=3 i=3 

So, the notation 

  

 to add the scores x; 

o where to start: x, 

 where to stop: x, (where n is some integer) 

Now take the heights of the children to be x, = 112cm, x, = 96 cm, x; = 120 cm, 

x, = 132cm, x5 = 106 cm, and x, = 120 cm. 

Then the total height (in cm) is 

ixk:x,+xz+x3+x‘+xs+x6 

= =112 + 96 + 120 + 132 + 106 + 120 = 686 cm 

Notice that we have used k instead of i in the formula above. The i is what we 

call a dummy variable - any letter can be used. 
n n 
D x=3 
= =1 

Example 3. 

Write each series in full: 
5 7 n 

@ Yt ®) 33 © Sxp(s) 
= = 7 

s 

Solution 
5 

R =l di ey 
=1 

7 

(DS s SRk e 
=3 

(© 305) = xp(x) + 52p(x0) + . +50p(5) 

¥ 

Evaluate »_2" 
=0 

  

Solution 
x 

2%2":20+21+22+23+24+25:63 
= 
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Example 3.16 

° ©° 5 2 ) 
Wntethesumz §+Z 35 G +W using sigma notation. 

| 

Solution 

The numerator and denominator in each term are consecutive integers, so 

  they take on the absolute value of or any equivalent form. The signs of 
k 

ISt 

the terms alternate and there are 99 terms. To take care of the sign, we use 

some power of (—1) that will start with a positive value. If we use (—1)¥, 

then the first term will be negative, hence we can use (— 1)k*+ 1instead. 

‘We can therefore write the sum as 

o3+ (3 + e e e ) 
100 

99, k () &2 e 

Properties of sigma notation 

There are a number of useful results we can obtain when we use sigma notation. 

1. For example, suppose we have a sum of constant terms: 
5 
>2 
= 
What does this mean? If we write this out in full, we get: 

5 
S2=2+2+2+2+2=5X2=10 
= 
In general, if we sum a constant 7 times then we can write: 

Sk=k+k+..+k=nXk=nk 
= 

N Suppose we have the sum of a constant multiplied by i. For example: 

i5i25><1+5><2+5><3+5><4+5><5 

T oosxa+243+449=75 
However, this can also be interpreted as: 

iSiZSXl+5X2+5X3+5X4+5X5 
=1 s 

=5X(1+2+3+4+5=5)i 
=1 

which implies that: 
5 5 
S5i=5%i 
= = 

In general, we can say: 

Ski=kX1+kX2+...+kXn 

kXU t2+4 . 

=kYi 
=



3. Suppose that we need to consider the summation of two different 

functions, such as: 
" 
YR =1+ 1)+ Q2+ 2)+ ..+ 2+ nd) 
= 

' =242+ ..+ n)+ 1P+ 22+ ..+ 1) 

—Yr+Y R 
k=1 k=1 

In general 

U0 + gh) = 30 + 3k = = = 

4. At times it is convenient to change powers, for example: 

+ ...+ a;_, + a,is the same as 

  

Arithmetic series 

In arithmetic series, we are concerned with adding the terms of arithmetic 

sequences. It is very helpful to be able to find an easy expression for the partial 

sums of such a series. 

Let's start with an example: 

Find the partial sum for the first 50 terms of the series 

ik 8- 1318k 

Write the 50 terms in ascending order and then in descending order underneath. 

Add the terms together as shown. 

Sp= 3+ 8+ 13+.. +248 
S =248+ 243+ 238+ ...+ 3 

285 =251 + 251 + 251 + ... + 251 

There are 50 terms in this sum, and hence 

28, = 50 X 251 = Sy, = 6275 

This reasoning can be extended to any arithmetic series in order to develop a 

formula for the nth partial sum . 

Let {a,} be an arithmetic sequence with first term @, and common difference d. 

We can construct the series in two ways: Forwards, by adding d to a, repeatedly, 

and backwards by subtracting d from a, repeatedly. We get the following two 

expressions for the sum: 

Sy=aytaytayt..ta,=a+(a+d)+(a+2d)+...+ @+ nm—1)d) 

Sy=ayt @y @yt o+ = a,+ (a,— d) + (a,—2d) + ... + (a,— (n— 1)d) 
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By adding, term by term vertically, we get: 

  

S, =a+ (a,+d) + (a, +2d) + ... + (a, + (n— 1)d) 
Sp=an+ (a,—d) + (a,—2d) + ... + (@, — (n — 1)d) 

N 1 1 7/ 
28,=(a, +a,)+(a,+a)+(a+a)+..+(@a+a,) 

Since there are n terms, we can reduce the expression above to: 

28, =n(a, + a,) 

which can be reduced to: 

n $,= 2o+ a) 
which in turn can be changed to give an interesting perspective of the sum: 

(al + a,,) 
S,=n   

2 

which is n times the average of the first and last terms! 

If we substitute a, + (n — 1)d for a, then we get an alternative formula for the sum: 

S,,Z%(a, +a+ (n—1)d :g(zm +(n—1)d) 

‘The partial sum S, of an arithmetic series is given by one of the following: 
_n _ [ tay, _n 8u=5(ay +a),orS, = 1| orS, =5a; + (1= D) 

Example 3.17 

Find the partial sum for the first 50 terms of the series3 + 8 + 13 + 18 + ... 

  

  

Solution 

Using the second formula for the sum we get: 

Sy :5_20(2 X 3+ (50 — 1)5) = 25 X 251 = 6275 

Using the first formula requires that we know the nth term. 

So, a5y = 3 + 49 X 5 = 248 which now can be used: 

S5 = 25(3 + 248) = 6275 

Example 3.18 

You are given a sequence of figures as shown in the diagram. 

  

                    
P1 B 23 

(a) P1 has six line segments. How many line segments are in P20?



(b) Is there a figure with 4401 segments? If so, which one? If not, why not? 

(c) Find the total number of line segments in the first 880 figures. 

1 

Solution 

(a) In each new figure, 5 line segments are added. This is an arithmetic 

sequence with first term 6, and common difference 5. 

Using the nth term form: 

P20 = 6 + 5(20 — 1) = 101 

(b) The term whose value is 4401 satisfies the nth term form: 

440126 5(ni 1)) thusis :%+ 1 =880 

Therefore, 4401 is the 880th figure. 

(c) We use one of the formulae for the arithmetic series: 

Ssso = ?(6 + 4401) = 1939080 

xS ?(2 X 6 + 5(880 — 1)) = 1939080 

Geometric series 

As is the case with arithmetic series, in several cases it is desirable to find a 

general expression for the nth partial sum of a geometric series. 

Let us start with an example: 

Find the partial sum for the first 20 terms of the series 3 + 6 + 12 + 24 + ... 

We express Sy, in two different ways and subtract them: 

Sp=3+6+12+ ...+ 1572864 
28,= 6+ 12+ ... + 1572864 + 3145728 

S,=3  —31578 
= 8y = 3145725 

This reasoning can be extended to any geometric series in order to develop a 

formula for the nth partial sum §,. 

Let {a,} be a geometric sequence with first term @, and common ratio r # 1. 

We can construct the series in two ways as before, and, using the definition of 

the geometric sequence, a, = a,,_, X r, then: 

S/=a, Shi S ARy A 
rSy=ray *ray+ras+ ... +ra,, +ra, 

- 1 
= a,+ta, +..+a,_, +a,+tra, 

Now, we subtract the second expression from the first to get: 
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a,—ra, 
S,,*rS,,:a,*ra,,fis,,(l*r):a,*ra,,:%i,,:fi,ratl 

This expression, however, requires that r, a;, and a, be known to find the sum. 

But, using the nth term expression developed earlier, we can simplify this sum 

formula to: 

  

‘The partial sum, S,,, of n terms of a geometric sequence with common ratio r (r # 1) 
and first term a, is: 

_ayl—rm 
T 1-r 

Example 3.19 

Find the partial sum for the first 20 terms of the series 3 + 6 + 12 + 24 + ... 

S     
ayr = u} 

[cquivalem 08 = = — 

  

Solution 

1—2%)  3(1— 1048576 
Sp=3 Nt R Ul 0 5 

8=t il 

Infinite geometric series 
" 1 k=1 1 1 1 

Consider the series ‘;2 (5) =2+1+ 3 + 1 + 5 + ... 

Consider also finding the partial sums for 10, 20, and 100 terms. 

‘We are looking for the partial sums of a geometric series: 
10 

B ! 7(%) 2(5) —ax——2L_x3996 
{ = - 

o
=
 

8 

— | 

=
 

20 1 Kok 

22(—) =2x——2 3999996 

P i o | 
o
=
 

g 

— | 

=
 

14 = 

g (p\k-1 
Yofd) =ax 
=2 

- | 
D
=
 

As the number of terms increases, the partial sum appears to be approaching 

the number 4. This is no coincidence. In the language of limits, 
k 

= (%) 1-0 —2=2x 18 since fim (1) =0 1 a2 

G 
1im22(5) = lim 2 % : 

2 2 
=0 = 11—



This type of problem allows us to extend the usual concept of a sum of a finite 

number of terms to make sense of sums in which an infinite number of terms 

are involved. Such series are called infinite series. 

One thing to be made clear about infinite series is that they are not true sums! 

The associative property of addition of real numbers allows us to extend the 

definition of the sum of two numbers, such as a + b, to three or four or n 

numbers, but not to an infinite number of numbers. For example, you can add 

any specific number of 5s together and get a real number, but if you add an 

infinite number of 5s together, you cannot get a real number. The remarkable 

thing about infinite series though is that in some cases, such as the example 

above, the sequence of partial sums (which are true sums) approaches a finite 

limit L. The limit in our example is 4. 

  

We say that the series converges to L, and it is convenient to define L as the 

sum of the infinite series. We use the notation: 

We can therefore write the limit in the previous example: 
k-1 & (1 k1 n 

£2G) -mEa(y) - 
If the series does not have a limit, then it diverges. 

We are now ready to develop a general rule for infinite geometric series. 

As we know, the sum of a geometric sequence is given by: 

a,(1 —r") 
S Al    

If |r| < 1, then lim r” = 0 and hence: e 
a1 —r") a 

lim S, = $ = lim ————— = —'— a5 M= T1=r 

‘We will call this the sum of an infinite convergent geometric sequence. 

In all other cases the series diverges. The proof is left as an exercise. 

k-1 
%) . 4 as already shown. 

0 
In the case of ZZ( 

= i= 

D
=
 

Sum of an infinite convergent geometric sequence 
‘The sum, S.., of an infinite convergent geometric sequence with first term ay such that the 
common ratio, r, satisfies the condition | r| < 1is given by: 

a   
T=r 
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Example 3.20 

A rational number is a number that can be expressed as a quotient of two 

integers. Show that 0.6 = 0.666... is a rational number. 

Solution 

0.6 = 0.666...= 0.6 + 0.06 + 0.006 + 0.0006 + ... 
2 3 

=£+£.L+£.(L) +£.<L) s 
10 10 10 10 {10/ " 10 \10 

This is an infinite geometric series with a, = % andr = 1—10, therefore: 

A ball has elasticity such that, on each bounce, it bounces to 80% of its 
previous height. Find the total vertical distance travelled down and up by 

this ball when it is dropped from a height of 3 m and is allowed to keep 

bouncing until it comes to rest. Ignore friction and air resistance. 

Solution 

  

After the ball is dropped the initial 3 m, it bounces up and down a distance 

of 2.4 m. On each bounce after the first bounce, the ball travels 0.8 times the 
previous height twice - once upwards and once downwards. So, the total 

vertical distance is given by 

h=3+224+024%X08) +24%X08)+..]=3+2x1 

The terms inside the square brackets form an infinite geometric series with 

a, = 2.4and r = 0.8. The value of that quantity is: 

24 

= 
Hence the total distance required is h = 3 + 2(12) = 27m 

=12  



Applications of series to compound interest calculations 

Annuities 

An annuity is a sequence of equal periodic payments. If you are saving money 

by depositing the same amount at the end of each compounding period, 

the annuity is called an ordinary annuity. Using geometric series, you can 

calculate the future value (FV) of this annuity, which is the amount of money 

you will have after making the last payment. 

You invest €1000 at the end of each year for 10 years at a fixed annual interest 

rate of 6%, as shown in Table 3.3. 

  

  

  

  

  

    

Year | Amount invested (€) | Future value (€) 
10 1000 1000 
9 1000 1000(1 + 0.06) 
3 1000 1000(1 + 0.06)? 

1 1000 1000(1 + 0.06)°       
  

Table 3.3 Calculating the future value 

The future value FV of this investment is the sum of the entries in the last column: 

FV = 1000 + 1000(1 + 0.06) + 1000(1 + 0.06)> + ... + 1000(1 + 0.06)° 

This sum is a partial sum of a geometric series with n = 10 and r = 1 + 0.06 

  

Hence: 

1000(1 — (1 + 0.06)!9)  1000(1 — (1 + 0.06)) 
= = ———————————— = €13,180.79 

1—(1+0.06 —0.06 

Compound Interest Compound Interest 
I% =6 FV =13180.79494 

      

    

  

  

Figure 3.4 This result can also be produced with a GDC 

We can generalise the previous formula in the same manner. Let the periodic 

payment be R, and the periodic interest rate be i - that s, i = % 

Let the number of periodic payments be m. 
  

  

  

  

  

    

Period | Amount invested | Future value 
m R R 

m—1 R R(1 + 1) 
m—2 R R(1+ip 

1 R RO+ i)       
  

Table 3.4 Formula for calculating the future value 
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The future value FV is the sum of the entries in the last column: 

FV=R+RA+i)+R(L+i)?+...+R1+im1 

This is a partial sum of a geometric series with 7 terms and r = 1 + i. Hence: 

_RQ—(@ i) RO— (@D (i — 1) FV——_——_—R( 
1—(1+1) =i i 

If the payment is made at the beginning of the period rather than at the end, then the annuity is 
called an annuity due and the future value after m periods will be slightly different. 
  

  

  

  

  

Period | Amount invested | Future value 

m R R(1+ 1) 

m—1 R R+ i)? 

m—2 R R+ i) 

i R R(1+ )"           

‘The future value of this investment is the sum of the entries in the last column: 
FV=R(+ i)+ R(L+ i)+ ... + R(L+ )"+ R+ )" 
‘This is a partial sum of a geometric series with 1 termsand r = 1 + i. 

RA+)I—Q+)™ _RO+i—+im™) R((l +imti—1 1) 
1= (1+10) —i i 

If the previous investment is made at the beginning of the year rather than at the end, 
then in 10 years we have: 

(S (IFR006)IES 
— ) - 1= 1000 ————— i 0.06 

  

V= 

Y= R( i l) =13971.64 

1. Find the sum of the arithmetic sequence 11 + 17 + ... + 365 

2. Find the sum of this sequence: 

ONN27 _177147 
2*3+57T+.“ 1024   

13 
3. Evaluate (2 — 0.3k) 

k=0 

4_ 8 16 
4. Evaluate 2 §+E m+ 

1SS P I 
5.Evaluate§+fi+fi+a+fi+“_ 

6. Express each repeating decimal as a fraction: 

(a) 0.52 (b) 0.453 (c) 3.0137 

7. At the beginning of every month, Maggie invests $150 in an account 

that pays a 6% annual rate of interest. How much money will there be in 

the account after six years?



10. 

'S 

12. 

i}, 

14. 

157 

16. 

I 

18. 

19. 

20. 

1% 

. Find the sum of each series. 

(@ 9+13+17+ ... +85 (b) 8+ 14 +20+ ... + 278 

(c) 155+ 158 + 161 + ... + 527 

. The kth term of an arithmetic sequence is 2 + 3k. Find, in terms of n, 

the sum of the first n terms of this sequence. 

For the arithmetic sequence that begins 17 + 20 + 23 + ..., for what 

value of 1 will the partial sum S, of the sequence exceed 6782 

For the arithmetic sequence that begins —18 — 11 — 4 ..., for what 

value of n will the partial sum S, of the sequence exceed 2335? 

An arithmetic sequence has a as first term and 2d as common difference, 

ie.,a,a+ 2d,a+ 4d, .... The sum of the first 50 terms is T. Another 

sequence, with first term a + d and common difference 2d, is combined 

with the first one to produce a new arithmetic sequence. Let the sum of 

the first 100 terms of the new combined sequence be S. If 2T + 200 = S, 

find d. 

Consider the arithmetic sequence 3,7, 11, ..., 999. 

(a) Find the number of terms and the sum of this sequence. 

(b) Create a new sequence by removing every third term, i.e,, 11, 23, .... 

Find the sum of the terms of the remaining sequence. 

The sum of the first 10 terms of an arithmetic sequence is 235 and the 

sum of the second 10 terms is 735. Find the first term and the common 

difference. 

Use your GDC or a spreadsheet to evaluate each sum. 
2, 2] Y 100 3 

8 )3 
@ 2 ® X (753) © 20 
Find the sum of the arithmetic series 13 + 19 + ... + 367 

  

Find the sum of the arithmetic series: 

4.8 16 4096 
23t Tt T 

11 
Evaluate Y (3 + 0.2k) 

  

4,8 16 —242-204 Evaluate 2 3t9 3 

1R 2SR 2 
Evaluate — + — + = — 

2 2/3 3 3/3 9 
  

Find the first four partial sums and the nth partial sum of each sequence. 
S _ 1 _ - show that @ =2 (b)./rm () u,=Vn+1—Vn po L1 

"Thn+1 n+2 

For question 21 part (b), 

  

97



Sequences and series 

22. 

23. 

24. 

25. 

98 

A ball is dropped from a height of 16 m. Every time it hits the ground it 

bounces to 81% of its previous height. 

(a) Find the maximum height it reaches after the 10th bounce. 

(b) Find the total distance travelled by the ball until it comes to rest. 

(Assume no friction and no loss of elasticity.) 

The sides of a square are 16 cm in length. A new square is formed by 

joining the midpoints of the adjacent sides and then two of the resulting 

triangles are coloured, as shown. 

IO 
(a) If the process is repeated six more times, determine the total area of 

the shaded region. 

(b) If the process were to be repeated indefinitely, find the total area of 

the shaded region. 

The largest rectangle in the diagram below measures 4 cm by 2 cm. 

Another rectangle is constructed inside it, measuring 2 cm by 1 cm. 

The process is repeated. The region surrounding every other inner 

rectangle is shaded, as shown. 

4cm 

  

(a) Find the total area for the three regions shaded already. 

(b) If the process were to be repeated indefinitely, find the total area of 

the shaded regions. 

Find each sum. 

@7 -t ir+0 4.t 710 

(b) 9486 + 9479 + 9472 + 9465 + ... + 8919 + 8912 

() 2+ 6+ 18+ 54+ ... + 3188646 + 9565938 

24 24 24 Srs (a)f20Bitg o e



The binomial theorem 

A binomial is a polynomial with two terms. For example, x + y is a binomial. 

In principle, it is easy to raise x + y to any power, but raising it to high powers 

would be tedious. In this chapter, we will find a formula that gives the 

expansion of (x + y)" for any positive integer . 

Let's look at some particular cases of the expansion of (x + y)" 

(ety) =1 

()t =x+y 
(x+yP? =+ 2xy+ 

(x+y) = %0 + 3x2y + 3xp2 + p 

(x+y)t = X+ 4%y + 6532 + dxy® + 

(x+y)s = 25 + 5xly + 102%)2 +10x3° + 5xp4 + 95 

(x+y)s = X6 + 6x5y + 15x42 +20x% + 152204 + 65 + 35 

There are several things that we notice after looking at the expansion: 

o Thereare n + 1 terms in the expansion of (x + y)" 

« The degree of each term is n. 

« The powers on x begin with # and decrease to 0. 

o The powers on y begin with 0 and increase to n. 

« The coefficients are symmetric. 

For instance, notice how the powers of x and y behave in the expansion of (x + y)* 

The powers of x decrease: 

(x+ )5 = x8 + 5aly + 1022 + 10x8y3 + 5:llyt + 35 

The powers of y increase: 

(x+y)° = + 52 y0 + 108 + 10:2)8 + 5y + B 

With these observations, we can now proceed to expand any binomial raised to 

power n: (x + y)". For example, leaving a blank for the missing coefficients, the 

expansion for (x + y)7 can be written as: 

(e +y7 = Ox7 + Oasy + Oasyz + Oty + Oatyt + Oazys + Oeye + 07 
To finish the expansion, we need to determine these coefficients. In order to see 

the pattern, look at the coefficients of the expansion at the start of the section. 
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Pascal’s triangle 
Every entry ina row is the 
sum of the term directly 

above it and the entry 
to theleft of that, When 

thereis no entry, the 
value is considered zero, 

Several sources use 

a slightly different 
arrangement for Pascal’s 

triangle. The common 
usage considers the 
triangle as isosceles 

and uses the principle 
that every two entries 

add up to give the entry 
diagonally below them, 

as shown in the diagram. 
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(x+y)° 1 row 0 

x+yt 1 1 row 1 

(x+y)? m row 2 

(x+yp m row 3 

x+y* 1 4 6 4 1 row 4 
x +y)° 10 row 5 (x+y) @ 
(x+y* 1 6 15 20 15 6 1 rowé 

© ~ a @ w »u © 
o g g g g g 
E E € & 8 E £ 
2 2 2 2 = = =2 
o o o o o o o 8 8§ 8 8 8 8 % 

A triangle like the one above is known as Pascal’s triangle. The first and second 

terms in row 3 give you the second term in row 4, the third and fourth terms 

in row 3 give you the fourth term of row 4, the second and third terms in row 5 

give the third term in row 6, and the fifth and sixth terms in row 5 give you the 

sixth term in row 6. So now we can state a key property of Pascal’s triangle. 

Take the last entry in row 5, for example; there is no entry directly above it, 

soits valueis 0 + 1 = 1. 

From this property it is easy to find all the terms in any row of Pascal’s triangle 

from the row above it. So, for the expansion of (x + y)7, the terms are found 

from row 6 as follows: 

0—1—6—>15—>20—>15—>6—>1—>0 

ool 
1 7 21 35 35 21 7 1 

    

1 

1 4 3\6‘/3 4 1 

1 \5/ \10‘/ \10/ \5/ 1 

Use Pascal’s triangle to expand (2k — 3)° 

| 

Solution 

We can find the expansion by replacing x by 2k and y by —3 in the binomial 

expansion of (x + y)°. 

Using the fifth row of Pascal’s triangle for the coefficients will give: 

1(2k)° + 5(2k)4(—3) + 10(2k)3(—3)2 + 10(2k)2(—3)? + 5(2k)(—3)* + 1(—3) 
= 32Kk5 — 240k* + 720k* — 1080k? + 810k — 243



Pascal’s triangle is a useful tool for finding the coefficients of the binomial 
expansion for relatively small values of n. It is not very efficient for large values 
of n. Imagine we want to evaluate (x + ). Using Pascal’s triangle, we would 
need the terms in the 19th row, and the 18th row and so on. This makes the 

process tedious and not practical. 

Luckily, there is a formula we can use to find the coefficients of any Pascal’s 
triangle row. This formula is the binomial formula, which we will prove 

in Chapter 5. Every entry in Pascal’s triangle is denoted by ( )or C, - this 

is also known as the binomial coefficient. In ,C,, n is the row number and r 

is the column number. To understand the binomial coefficient, we need to 

understand what factorial notation means. 

Factorial notation 

‘The product of the first 1 positive integers is denoted by ! and is called 1 factorial: 
n=nXhm—1DXMH—-2 X X3X2X1 

We also define 0! = 1. 

This definition of the factorial makes many formulae involving the multiplication 

of consecutive positive integers shorter and easier to write. That includes the 

binomial coefficient. 

‘The binomial coefficient 
With and ras non-negative integers such that 1 = 1, the binomial coefficient , C [or (7)) is 
defined by 

! 

nC= ()= r!(nn— o 

  

  

When simplified, C; can be written as yCy =2 — U = 2-ln = r+ 1) 
nin— 1in—2) For example ,C; == f == 

Find the value of: 

7 7 
(@) ,Cy (®) ,C, (©) (0) @ (7) 

Solution 

Ta7 -3 34 TP Por 
or using the other form of the expression for the binomial coefficient 

7.6:5_210 s 
i 7' _ 1-2-3-4.5-6:7 _5:6-7 

(ERr==n (Pore N Eor 
7 7! 1 

© (0)70|(7 0)V7W7_71 

@ ()= 75 =7 =1 =" 
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You will be able to 
provide reasons for the 

steps affer you do the 
exercises. 
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Although the binomial coefficient (:’) appears as a fraction, all the results 

where n and r are non-negative integers are positive integers. Also notice the 

symmetry of the coefficient in Example 3.23. 

Example 3.24 

Calculate each binomial coefficient: 

G- 6 6 6 6 6 @ 

=1 0= 9=+ - 
The values in Example 3.24 are the entries in the 6th row of Pascal’s triangle. 

  

We can write Pascal’s triangle in the following manner: 

Calculate ,C,—, + ,C, (This is called Pascal’s rule.) 

—_— 

Solution 
n! n! Coyt,C= 

L e Din—r+ 1) rln—1) 
_ nl-r " = (el 

R () (e T ) (et (R (e ) 

nl-r e =kl 

(et (e rE 1! 

ST s st L) 

(e 

__ (mt+1 

A+ 1-1) 

B



If we read the result in Example 3.25 carefully, it says that the sum of the terms 

in the nth row, (r — 1)th and rth columns, is equal to the entry in the (n + 1)th 

row and rth column. 

(r — )th column  rth column 

nth row 4Gy + i o8 

I 
(n + Dth row Gy 

That is, the two entries in blue are adjacent entries in the nth row of Pascal’s 

triangle and the entry in red is the entry in the (n + 1)th row directly below the 

rightmost entry. This is precisely the principle behind Pascal’s triangle! 

Using the binomial theorem 

‘We are now prepared to state the binomial theorem: 

n e e (e e (e st 2 o o e 
or 

(x4 3)" = 1Cox" +,Cix" 1y +,Cox" 2y + ,Coxn Y+ e+ Gyt 

In a compact form, we can use sigma notation to express the theorem as follows: 

o 2 ; 
=3 Ty = DGty 

=0 = 

Example 3.26 

Use the binomial theorem to expand (x + y)” 

Solution 

= (e (s Qv Qe s (e 
w g (GGl 

R 0 2R S5 R S 5 X0 ek )l v s 7y SR 

Example 3.27 

Find the expansion for (2k — 3)° 

Solution 

(2k —3)5 = (g)(zk)s + (i’)(zk)fl(—a) 4 (;)(21()3(—3)2 + (g’)(zk)Z(—a)3 

i (i)(zk)(—w + (g)(—s)s 

= 30k5 — 240K* + 720K* — 1080K? + 810k — 243 
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Example 3.28 

Find the term containing a* in the expansion (2a — 3b)° 

Solution 

To find the term, we do not need to expand the whole expression. 

Since (x + y)" = gnC; X"~1yi, the term containing a? is the term where 

n —i= 3, (i.e. when i = 6). So the required term is 

9Cs(2a)°6(—3b)° = 84 - 8a* - 729b° = 489 888a°b° 

Example 3.29 

Find the term independent of x in: 
9 5 

@ (222-2) ®) (4~ 2} e ) 

|>
{ 

Solution 

(a) ‘Independent of x’ means the term with no x variable - that is, the constant 
9 9—k 

o S 3 2 w3 
term in the expansion of (le - ;) )‘;flng (2x? ( ;) 

9-k 

The constant term contains x°. Thus it is the term where (x2)* (%) SR 
6 

$02k=9—k=>k= 3,d\usthetermisgcg(le)S(—%) R4 w@ 
X 

= 489 888 
gk 

(b) Similarly, (24 (-) = % 50 3k = 10 — 2k = k = 2,thus the term i 
X   

    

i (9C3)x(2%)x(-3)° 
5C1(4x3)1(7—2) = —1280 489888 

& (5C2)x42x(-2)3 
You can also use your GDC. -1280 

  

Example 3.30 

13 

Find the coefficient of b° in the expansion of (2172 = l) 

| 

Solution 

The general termis ) (2h2)flfl'(—%)’ =Y uff(bZ)ufl'(—%)’ 

— (1) yz-ip-upmi-y 

— () @yt 

24— 3i = 6 = i = 6. So the coefficient in question is (162) (2)5(=16 = 59136



. Use Pascal’s triangle to expand each binomial. 

@ (x+2° ® @by © (-3 
@) @ =P (e) (x—3b) (f) (Zn e %)6 

® (2-2) 
. Evaluate each expression. 

@ (3) ®(5)-03 @@ 
@ (3)+()+G)+ () + (6 
@ () -6+ -6)+@-6)+C 

. Use the binomial theorem to expand each expression. 

@) (x—2y7 (b) 22 —b)° () (x—4y 

(@) @+ (€) (3x— by ® (20~ iz)6 
n 

© (2-33) () (1+5)t + (1 + /)t 

@) (3+1)F—(3+1)¢ 

. Consider the expression (x = ;) b 

(a) Find the first three terms of this expansion. 

(b) Find the constant term if it exists or justify why it doesn't exist. 

(c) Find the last three terms of the expansion. 

(d) Find the term containing x* if it exists or justify why it doesn't exist. 

. Prove that ,C, = ,C,_foralln,keNandn =k 

. Prove that for any positive integer n: A 

() e () =2 
. Consideralln, ke Nandn =k 

(a) Verify that k! = k(k — 1)! 

(b) Verify that (n — k + 1)! = (n — k + 1)(n — k)! 

(c) Justify the steps given in the proofof( - ) &G (n) = (n i 1) 
4 | i 7 
in Example 3.25. 

. Find the value of the expression: 

ORI RHIDIEREEHE) 
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9. Find the value of the ex}iression: 

O Q6 6+ 6 - +EE) 
10. Find the value of the expression: 

G 06 B EG G+~ 
11. Find the term independent of x in the expansion of (xz = l) e 

2 

8 
12. Find the term independent of x in the expansion of (Sx = %) 

8 
13. Find the term independent of x in the expansion of (Zx = %) 

5 

14. Find the first three terms in the expansion of (1 + x)'° and use them to 

find an approximation to: 

(a) 1.01'° (b) 0.99'° 

15. Show that (r f 1) it 2(:’) i (r: 1) = (:’:12) and interpret your 

result on the entries in Pascal’s triangle. 

16. Express each repeating decimal as a fraction: 

(@) 0.7 (b) 0.345 (c) 3.2129 

17. Find the coefficient of x° in the expansion of (2x — 3)° 

18. Find the coefficient of x*b* in the expansion of (ax + b)” 

19. Find the constant term in the expansion of (% - Z) b 

20. Expand (3n — 2m)* 

21. Find the coefficient of 71 in the expansion of (4 + 3r2)° 

22. In the expansion of (2 — kx)3, the coefficient of x* is —1080. 

Find the constant k. 

Chapter 3 practice questions 

1. In an arithmetic sequence, the first term is 4, the 4th term is 19 and the 

nth term is 99. Find the common difference and the number of terms, n. 

2. How much money should you invest now if you wish to have $3000 in 

your account after 6 years, if interest is compounded quarterly at an 

annual rate of 6%? 
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3. Two students, Nick and Maxine, decide to start preparing for their IB 

exams 15 weeks ahead of the exams. Nick starts by studying for 12 hours 

in the first week and plans to increase the amount by 2 hours per week. 

Maxine starts with 12 hours in the first week and decides to increase her 

time by 10% every week. 

(a) How many hours will each student study in week 52 

(b) How many hours in total will each student study for the 15 weeks? 

(c) In which week will Maxine exceed 40 hours per week? 

(d) In which week will Maxine catch up with Nick in the number of 

hours spent studying per week? 

4. Two diet schemes are available for people to lose weight. Plan A 

promises the patient an initial weight loss of 1000 grams the first month 

with a steady loss of an additional 80 grams every month after the first, 

for a maximum duration of 12 months. 

Plan B starts with a weight loss of 1000 grams the first month and an 

increase in weight loss by 6% more every subsequent month. 

(a) Write down the number of grams lost under Plan B in the second 

and third months. 

(b) Find the weight lost in the 12th month for each plan. 

(c) Find the total weight loss during a 12-month period under 

(i) Plan A (ii) Plan B. 

5. You start a savings plan to buy a car, where you invest €500 at the 

beginning of each year for 10 years. Your bank offers a fixed rate of 

6% per year, compounded annually. 

Calculate, giving your answers to the nearest euro(€): 

(a) how much the first €500 is worth at the end of 10 years 

(b) the total value of your investment at the end of the 10 years. 

6. {a,} is defined as follows: 

= o= a,=\8 —ap_, 
(a) Given that a; = 1, evaluate a,, a5, and a,. Describe {a,}. 

(b) Given that a, = 2, evaluate a,, a;, and a,. Describe {a,}. 

7. A marathon runner plans her training program for a 20 km race. 

On the first day she plans to run 2 km, then she wants to increase 

her distance by 500 m on each subsequent training day. 

(a) On which day of her training does she first run a distance of 20 km? 

(b) By the time she manages to run the 20 km distance, what is the total 

distance she would have run for the whole training program? 
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8. In a certain country, smartphones were first introduced in the year 2010. 

During the first year, 1600 people bought a smartphone. In 2011, the 

number of new participants was 2400, and in 2012 the new participants 

numbered 3600. 

(a) You notice that the trend follows a geometric sequence. 

Find the common ratio. 

(b) Assuming that the trend continues: 

(i) how many participants will join in 20222 

(ii) in what year would the number of new participants first exceed 

50000? 

Between 2010 and 2012, the total number of participants reached 7600. 

(c) What is the total number of participants between 2010 and 20222 

Assume that all users continue to have a smartphone. 

During this period, the total adult population remains approximately 

800 000. 

(d) Use this information to suggest a reason why this trend in growth 

would not continue. 

9. The midpoints M, N, P, and Q of M 

the sides of a square of side 1 cm 

are joined to form a new square. 

(a) Show that the side length of 

the square MNPQ is % 

  

  

  
  

N O Q 
          (b) Find the area of square MNPQ. 

A new third square RSTU is 

constructed in the same manner. T u 

  

      

() (i) Find the area of the square 

RSTU. - 
(ii) Show that the areas of the squares are in a geometric sequence 

and find the common ratio. 

      

The procedure continues indefinitely. 

(d) (i) Find the area of the 10th square. 

(ii) Find the sum of the areas of all the squares. 

10. Aristede is a dedicated swimmer. He goes swimming once every week. 

He starts the first week of the year by swimming 200 metres. 

Each week after that he swims 20 metres more than the previous week. 

He does this for the whole year (52 weeks). 

(a) How far does he swim in the final week? 

(b) How far does he swim altogether? 
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11. The diagram shows three iterations of constructing squares in the 

following manner: A square of side 3 units is drawn, then it is divided 

into nine smaller squares and the middle square is shaded (below; left). 

Each of the unshaded squares is in turn divided into nine squares and 

the process is repeated. The area of the first shaded square is 1 unit. 

FRHEFF 
L 
e 

(a) Find the area of each of the squares A and B. 

  

  

  

  

                  
  

  

  

                        
  

(b) Find the area of any small square in the third diagram. 

(c) Find the area of the shaded regions in the second and third iterations. 

(d) If the process was continued indefinitely, find the area left unshaded. 

12. The table shows four series of numbers. One is an arithmetic series, one 

is a converging geometric series, one is a diverging geometric series, and 

the fourth is neither geometric nor arithmetic. 
  

  

  

  

  

Series Type of series 

()N RN 2o 020 e 

(if) 4,8, 16 oR 

(iii) | 0.8 + 0.78 + 0.76 + 0.74 + ... 

UDH PRRSHE. oS 2 . 
37927       
  

(a) Copy and complete the table by stating the type of each series. 

(b) Find the sum of the infinite geometric series. 

13. Two IT companies offer apparently similar salary schemes for their new 

appointees. Kell offers a starting salary of €18,000 per year and an annual 

increase of €400 each year after the first. YBO offers a starting salary of 

€17,000 per year and an annual increase of 7% each year after the first year. 

(a) (i) Write down the salary paid in the 2nd and 3rd years for each 

company. 

(ii) Calculate the total amount that an employee working for 

10 years will accumulate over 10 years in each company. 

(iii) Calculate the salary paid in the tenth year in each company. 

(b) Tim works at Kell and Merijayne works at YBO. 

(i) When would Merijayne start earning more than Tim? 

(ii) What is the minimum number of years that Merijayne requires 

so that her total earnings exceed Tim’ total earnings? 
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N 
/N 
7RI N       

Figure 3.5 Diagram for 
question 14 

110 

Sequences and series 

14. 

157 

16. 

173 

18. 

192 

20. 

21. 

22. 

23. 

A theatre has 24 rows of seats. There are 16 seats in the first row, 

and each successive row increases by 2 seats. 

(a) Calculate the number of seats in the 24th row. 

(b) Calculate the number of seats in the whole theatre. 

The amount of €7000 is invested at 5.25% annual compound interest. 

(a) Write down an expression for the value of this investment after 

t full years. 

(b) Calculate the minimum number of years required for this amount 

to become €10,000. 

(c) For the same number of years as in part (b), would an investment 

of the same amount be better if it were invested at a 5% rate 

compounded quarterly? 

With S, denoting the sum of the first # terms of an arithmetic sequence, 

we are given that §; = 9 and S, = 20. 

(a) Find the second term. 

(b) Calculate the common difference of the sequence. 

(c) Find the fourth term. 

Consider an arithmetic sequence whose second term is 7. The sum of 

the first four terms of this sequence is 12. Find the first term and the 

common difference of the sequence. 

Given that 

1+ x50 + ax)* =1 + bx + 1022 + ... + adx'l, 

find the values of a, b € Z. 

In an arithmetic sequence of positive terms, a, represents the nth term. 

Given that s oh and a; X a, = 32, find lz“ua,- 
4 13 =1 

In an arithmetic sequence, a, = 5 and a, = 13. 

(a) Write down, in terms of 1, an expression for the nth term, a,,. 

(b) Find 7 such that a, < 400. 

Consider the arithmetic sequence 85,78, 71, ... 

Find the sum of its positive terms. 

R : 7 g Z ‘When we expand (x z) , the coefficient of x is 

Find all possible values of k. 

The sum to infinity of a geometric sequence is %, and the sum of its 

first three terms is 13. Find the first term.



258 

26. 

7 

28. 

29. 

30. 

318 

32. 

333 

. A geometric sequence is defined by u, = 3(4)" *!, n € Z*, where u, is 

the nth term. 

(a) Find the common ratio r. 

(b) Hence, find S,,, the sum of the first n terms of this sequence. 

Consider the infinite geometric series: 
2 3 

1+ () + () + () + .- 
5 5 5 

(a) For what values of x does the series converge? 

(b) Find the sum of the series if x = 1.5 

Consider the arithmetic series S, =2 + 5+ 8 + ... 

(a) Find an expression for the partial sum S,,, in terms of n. 

(b) For what value of nis S, = 1365? 

50 
Find ) In(2), giving the answer in the form a In 2, where a € Q 

= 

Consider the sequence {a,} defined recursively by: 

Ay s1=3a,— 2a,_,n € Z*,witha, =1,a, =2 

(a) Find a,, a;, and a,. 

(b) (i) Find the explicit form for a,, in terms of n. 

(ii) Verify that your answer to part (i) satisfies the given recursive 

definition. 

The sum to infinity of a geometric sequence with all positive terms is 27, 

and the sum of the first two terms is 15. Find the value of: 

(a) the common ratio (b) the first term. 

The first four terms of an arithmetic sequence are 2,a — b,2a + b + 7, 

and a — 3b, where a and b are constants. Find a and b. 

Three consecutive terms of an arithmetic sequence are: a, 1, and b. 

The terms 1, a, and b are consecutive terms of a geometric sequence. 

If a # b, find the value of a and of b. 

The diagram in Figure 3.6 shows a sector AOB of a circle of radius 1 

and centre O, where AOB=6. 

The lines (AB,), (A,B,), and (A,B;) are perpendicular to OB. 

A,B, and A, B, are arcs of circles with centre O. 

  

o 
Calculate the sum to infinity of the arc lengths: BB, B B 

AR AR AR AT R Figure 3.6 Diagram for 
question 32 

(a) Expand (2 + x)?, giving your answer in ascending powers of x. 

(b) Hence, find the exact value of 2.01° 

m
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34, 

357 

36. 

37 

38. 
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You invest $5000 at an annual compound interest rate of 6.3%. 

(a) Write an expression for the value of this investment after ¢ full years. 

(b) Find the value of this investment at the end of five years. 

(c) After how many full years will the value of the investment exceed 

$10,000? 

The sum of the first # terms of an arithmetic sequence {u,,} is given by 

the formula S, = 4n? — 2n. Three terms of this sequence, u, u,, and 3, 

are consecutive terms in a geometric sequence. Find m. 

The sum of the first 16 terms of an arithmetic sequence {u,} is 12. 

Find the first term and the common difference if the ninth term is zero. 

(a) Write down the first four terms of the expansion of (1 — x)", 

with n > 2, in ascending powers of x. 

(b) The absolute values of the coefficients of 2nd, 3rd, and 4th terms 

of the expansion in (a) are consecutive terms in an arithmetic 

sequence. 

(i) Show thatn® —9n? + 14n =0 (ii) Find the value of n. 

(a) Write down the full expansion of (3 + x)* in ascending powers of x. 

(b) Find the exact value of 3.1* 

(a) Write down how many integers between 10 and 300 are divisible by 7. 

(b) Express the sum of these integers in sigma notation. 

(c) Find the sum in (b) above. 

(d) Given an arithmetic sequence with first term 1000 and common 

difference —7, find the smallest 7 so that the sum of the first n terms 

of this sequence is negative. 

. Let {u,}, n € Z*, be an arithmetic sequence with first term a and 

common difference d, where d # 0. Let another sequence {v,},n € Z*, 

be defined by v, = 2. 

Vut1 n 

Vn 
  (a) (i) Show that is a constant. 

(ii) Write down the first term of the sequence {v,}. 

(iii) Write down a formula for v, in terms of a, d, and n. 

Let S, be the sum of the first n terms of the sequence {v,}. 

(b) (i) Find S, in terms of 4, d, and n. 

(i) Find the values of d for which ) _v; exists. 
T 

You are now told that Y_v; does exist and is denoted by S.... 
T 

(iii) Write down S in terms of @ and d. 

(iv) Given that S = 2°*1, find the value of d.
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x | y=x|y=2* 

0 0 1 

1 1 2 

2 4 4 
3 9 8 

4 16 16 
5 25 32 

6 36 64 

7 49 128 

8 64 256 

9 81 512 

10 100 1024     

Table 4.1 Contrast between a 

power function, y = x2 and an 
exponential function, y = 2* 
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Learning objectives 

By the end of this chapter, you should be familiar with... 

« exponential functions and their graphs 

« concepts of exponential growth and decay, and applications 

o the nature and significance of the number e 

 logarithmic functions and their graphs 

« properties of logarithms 

» solving equations involving exponential expressions 

« solving equations involving logarithmic expressions. 

Exponential functions help us model a wide variety of physical phenomena. 

The natural exponential function (or simply, the exponential function), 

fix) = e, is one of the most important functions in calculus. Exponential 

functions and their applications - especially to situations involving growth 

and decay - will be covered at length. 

Logarithms, which were originally invented as a computational tool, lead 

to logarithmic functions. These functions are closely related to exponential 

functions and play an equally important part in calculus and a range of 

applications. We will learn that certain exponential and logarithmic functions 

are inverses of each other. 

m Exponential functions 

Characte 

  

al function. 

  

cs of expo 

The two equations, y = x?and y = 2%, are similar in that they both contain 

abase and an exponent (or power). In y = x2, the base is the variable x and 

the exponent is the constant 2. In y = 2% the base is the constant 2 and the 

exponent is the variable x. 

The quadratic function y = x? is in the form ‘variable baseconstantpover where the 

base is a variable and the exponent is an integer greater than or equal to zero 

(non-negative integer). Any function in this form is called a power function. 

The function y = 2*is in the form ‘constant base"#ri2bl Power” where the base is 

a positive real number (not equal to one) and the exponent is a variable. Any 

function in this form is called an exponential function. 

To illustrate a fundamental difference between exponential functions and power 

functions, consider the function values for y = x? and y = 2* when x is an 

integer from 0 to 10. Table 4.1 shows clearly how the values for the exponential 

function increase at a significantly faster rate than the power function.



Power functions can easily be defined, and computed, for any real number. To demonstrate just how 
For any power function y = x", where n is any positive integer, y is found by quickly y = 2¥increases, 

taking x and repeatedly multiplying it n times. Hence, the domain of all power consider what would 

functions is all real numbers. For example, for the power function y = x?, R Eon Rete e 
if s h _oa_ ~31.006198 11, Si fanct to repeatedly fold a piece 
ifx=mtheny=rm=m m w3L . Since a power function ok et el 50 el 
like y = x* has a domain of all real numbers, its graph is a continuous curve A typical piece of paper is 

(no gaps) where every real number is the x-coordinate of some point on the about five thousandths of 
) o a centimetre thick. Each 

curve. Is the same true for exponential functions? In other words, can we : e time you fold the paper, 
compute a value for y for any real number x? For example, considering the o e 

exponential function y = 2% is it possible to compute 272 Table 4.2 shows a list paper doubles, so after 50 

of exponential expressions getting closer and closer to the value of 27. Clearly, ?’}:s;}“ ‘hi‘k";:‘ fif';“: 
. . fronge : folded paper is the height 

there will be a limiting value to the list that will give us the value of 27. With e e 

our GDC we can evaluate 27 to at least 10 significant figures and we could of paper. The thickness 

carry out a similar computation for any value of x that is a real number. of the paper after being 
folded 50 times would be Although we have not formally proved it, it seems reasonable to accept that 5 
250X 0.005 cm which 

the domain of any exponential function (with the base being a positive real is more than 56 million 

  

  

  

  

  

  

  

  

  

number) is all real numbers. kilometres. Compare that 
‘with the height of a stack 

x 2 (125.£) 0f 502 picces of paper 
3 8.00000000000 that would be a meagre 

12.5 centimetres - only 
3.1 8.57418770029 0.000125 kilometres. 

3.14 8.81524092701 

3.141 8.82135330455 

3.1415 8.82441108248 

3.14159 8.824961 59506 

3.141592 8.82497382906 

3.1415926 8.82497749927 

3.14159265 8.82497780512         

Table4.2 Limiting value for 27 

Graphs of exponential functions 

Thus, the graph of any exponential function fix) = b%, b >0, b# 1,isa 

continuous curve. 

Example 4.1 

Graph each exponential function by plotting several points and then 

drawing a smooth curve through the points. 

@) fio =3 ® goo = (3’ 

Solution 

Calculate values for each function for integral values of x from —3 to 3. 
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x flx) =3¢ g(x)=(%) y 

1 = gt 27 8 27 - : 
y=(% 73 

=7 % 9 
6 

1 1 1 3 

0 il 1 E 

1 1 3 0 3 
1 2 9 o 5 
1 i e % 3 27 27 e 3:9 X 2 3         

Knowing that exponential functions are defined for all real numbers, not just 

integers, we can sketch a smooth curve filling in between the ordered pairs 

shown in the table. 

Remember that in Section 1.5 we established that the graph of y = fi—x) is 

obtained by reflecting the graph of y = fix) in the y-axis. It is clear that the 

graph of function g is a reflection of function fabout the y-axis. We can use 

some laws of powers to show that g(x) = fi—x). 

(Ao lEl 
t=5] ~m =g =37 =f# i 

It is useful to point out that both graphs, y = 3*and y = (%) , pass through 

the point (0, 1) and have a horizontal asymptote of y = 0 (x-axis). The same 

is true for the graph of all exponential functions in the form y = b* given 

thatb € R, b # 1.If b = 1, then y = 1* = 1, and the graph is a horizontal line 

rather than a constantly increasing or decreasing curve. 

Ifb>> 0 and b # 1, an exponential function with base b s the function defined by fix) = b* 
‘The domain of fis the set of real numbers (x € R) and the range of fis the set of positive real 
numbers (y > 0). The graph of fpasses through (0, 1), has the x-axis as a horizontal asymptote, 
and, depending on the value of the base of the exponential function b, will either be a continually 
increasing exponential growth curve or a continually decreasing exponential decay curve. 

% ¥ 

©,1) 

3 % 
fix) = b forb>1 
asx — 00, flx) — 00 

Exponential growth curve: fis an increasing 
function. As x — 00, fix) — oc. 

0,1) 

3 X 
f)=bforo<b<1 
asx— 00, flx) — 0 

Exponential decay curve: fis a decreasing 
function. As x — oo, fix) — 0.



The graphs of all exponential functions will display a characteristic 

growth or decay curve. As we shall see, many natural phenomena exhibit 

exponential growth or decay. Also, the graphs of exponential functions behave 

asymptotically for either very large positive values of x (decay curve) or very 

large negative values of x (growth curve). This means that there will exist a 

horizontal line that the graph will approach but not intersect as either x — oo 

orasx — —oc. 

Transformations of exponential functions 

Recalling from Section 1.5 how the graphs of functions are translated and 

reflected, we can efficiently sketch the graph of many exponential functions. 

Example 4.2 

Using the graph of fix) = 2%, sketch the graph of each function. State the domain 

and range for each function and the equation of its horizontal asymptote. 

(a) gy=2*+3 (b) hx)=2"% (c) ptxy= —2* 

(d) rx) =2+ (e) v =32 

L 

Solution 5 

(a) The graph of g(x) = 2* + 3 can be obtained & 
by translating the graph of fix) = 2* . 

vertically three units up. @7 

The domain of g is all real numbers 6 

(x € R) and the range is y > 3. 

The horizontal asymptote is y = 3. 

(b) The graph of h(x) = 2* can be obtained 

by reflecting the graph of fix) = 2~ in 

the y-axis. 

The domain is x € R and the range 

isy>0. 

The horizontal asymptote is 

y = 0 (x-axis).   =J=p=10) 1 J & 

17



Note that for function 

P = —2%in 
part (c) of Example 4.2, 

the horizontal asymptote 
is an upper bound (i.e. no 
function value is equal to 

or greater than y = 0). 
In parts (a), (b), (d), 

and (e) the horizontal 
asymptote for each 

function is a lower bound 

(i.e. no function value is 
equal to or less than the y 
value of the asymptote). 

Exponential models are 
equations of the form 

A(D) = Agb', where Ay # 0, 
b>0,and b= LA®Dis 
the amount or value of a 

variable after time 
AO) = Agb0=Ag()= Ay, 

50 Ayis called the initial 
amount (often the value 
attime t = 0).1fb > 1, 

then A(») is an exponential 
growth model, and if 

0<b<1,then A(t) is an 

exponential decay model. 
‘The value of b, the base of 

the exponential function, is 
often called the growth or 

decay factor. 
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(c) The graph of p(x) = —2* can be obtained 

by reflecting the graph of fix) = 2*in 

the x-axis. 

The domain is x € R and the range is y < 0. 

The horizontal asymptote is y = 0 (x-axis). 

(d) The graph of r(x) = 2% can be obtained 

by translating the graph of fix) = 2* four 

units to the right. 

The domain is x € R and the range 

isy > 0. 

The horizontal asymptote is y = 0 (x-axis). 

  
(e) The graph of v(x) = 3(2%) can be obtained 

by a vertical stretch of the graph of 

fix) = 2% by scale factor 3. 

The domain is x € R and the range is y > 0. 

The horizontal asymptote is y = 0 (x-axis).   
Mathematical models of growth and decay 

Exponential functions are well suited as a mathematical model for a wide 
variety of steadily increasing or decreasing phenomena, including population 
growth (or decline), investment of money with compound interest, and 
radioactive decay. Recall from Chapter 3 that the formula for finding terms 
in a geometric sequence (repeated multiplication by common ratio r) is an 
exponential function. Many instances of growth or decay occur where there is 

repeated multiplication by a growth or decay factor that can be modelled with 
an exponential function.



Example 4.3 Recall from Chapter 3 
how the formula for the 

A sample count of bacteria in a culture indicates that the number of bacteria is nth term in a geometric 
doubling every hour. Given that the estimated count at 15:00 was 12 000 bacteria: g o 

develop a formula (an 
(a) find the estimated count three hours earlier, at 12:00. exponential function) for 

: . ; - an investment of mon (b) write an exponential growth function for the number of bacteria at e med’;c 

any hour t. account (compounded) a 
] certain number of times 

Solution per year. This exponential 
function for calculating 

(a) Consider the time at 12:00 to be the starting, or initial, time and label it the future value, 4, 

t = 0 hours. Then the time at 15:00 is t = 3. The amount at any time ¢ (in gegiyears where R urs. Thes e at 15:00 is . The amou 1y time i 

hours) will double after an hour, so the growth factor, b, is 2. Therefore, (principal), the annual 
A(t) = Ay(2)". Knowing that A(3) = 12 000, compute A,. interest rate is r, and 

3 is the number of times 

12000 = 4,(2) interest is compounded 
12000 = 84, per year, is given by 

ryit 
Ap=P(1+1)". Ay = 1500 0=P(1+5) 

Therefore, the estimated count at 12:00 was 1500. 

(b) The growth function for the number of bacteria at time # is 

A(H) = 1500(2)". 

Example 4.4 

An initial amount of 1000 euros is deposited into an account earning 5%% 

interest per year. Find the amounts in the account after 8 years if interest 

is compounded: 

(a) annually (b) semi-annually (c) quarterly 

(d) monthly (e) daily. 

e 

Solution 

We use the exponential function associated with compound interest with 

values of P = 1000, r = 0.0525 and t = 8 to compute the results below. 
  

  

  

  

  

  

  

  

          

Compounding n | Amount (€) after 8 years 

() Annually 1 1000(1 + %)x = 1505.83 

(b) Semi-annually D 1000(1 + 0'02525)2'5' = 1513.74 

(© Quarterly 4 1000(1 it 0'0225)“5' = 1517.81 

(d) Monthly 12 1000(1 Fe 0.115;25)” = 152057 

() Daily 365 1000(1 FS O';’::s)]“( '~ 152192 
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Example 4.5 

A new car is purchased for $22,000. If the value of the car decreases 

(depreciates) at a rate of approximately 15% per year, what will be the 

approximate value of the car to the nearest whole dollar in 4% years? 

L 

Solution 

The decay factor for the exponential functionis 1 — r =1 — 0.15 = 0.85. 

In other words, after each year the car’s value is 85% of what it was one 

year before. We use the exponential decay model A(f) = A, b’ with values 

Ay =22000,b = 0.85and t = 4.5. 

A(4.5) = 22000(0.85)*5 ~ 10 588 

The value of the car will be approximately $10,588. 

1. (a) Write the equation for an exponential equation with base b > 0. 

(b) Given b # 1, state the domain and range of this function. 

(c) Sketch the general shape of the graph of this exponential function 

for each of two cases: 

@ b>1 (i) 0<b<1 

2. Sketch a graph of each function and state: 

(i) the coordinates of any x-intercept(s) and y-intercept 

(ii) the equation of any asymptote(s) 

(iii) the domain and range. 

@) flx) = 3x+ (b) gy =2>+3 (c) h =22 

@ po =5 (€) g =269 — 1 

3. A general exponential function is written in the form fix) = a(b)* < + d. 

State the domain, range, y-intercept and the equation of the horizontal 

asymptote in terms of the parameters a, b, ¢, and d. 

4. Using your GDC and a graph viewing window with Xmin = —2, 

Xmax = 2, Ymin = 0 and Ymax = 4, sketch a graph for each 

exponential equation on the same set of axes. 

(@) y=2% (L) =4 (OFyE38 

) =2+ ©) p=4+ (f) y=8= 

5. Write equations that are equivalent to those in question 4(d), (e), and (f) 

but with an exponent of positive x rather than negative x.



6. Given that 1 < a < b, state which is steeper: the graph of y = a* or the 

graph of y = b*. Give reasons for your answer. 

7. The population of a city triples every 25 years. At time ¢ = 0, the 

population is 100 000. 

(a) Write a function for the population P(t) as a function of . 

(b) Calculate the population after: 

(i) 50 years (ii) 70 years (iii) 100 years. 

8. An experiment involves a colony of bacteria in a solution. It is determined 

that the number of bacteria doubles approximately every 3 minutes and 

the initial number of bacteria at the start of the experiment is 10*. 

(a) Write a function for the number of bacteria N(#) as a function of ¢ (in 

minutes). 

(b) Calculate approximately how many bacteria there are after: 

(i) 3 minutes (ii) 9 minutes (iii) 27 minutes (iv) one hour. 

9. A bank offers an investment account that will double your money in 

10 years. 

(a) Write a function for the amount of money in the account A(t) after 

t years for an initial investment of A,. 

(b) If interest was added into the account only at the end of 

each year, find the annual interest rate for the account (to 

3 significant figures). 

10. $10 000 is invested at an annual interest rate of 11%, compounded 

quarterly. Find the value of the investment after: 

(a) 5 years (b) 10 years (c) 15 years. 

11. A sum of $5000 is deposited into an investment account that earns 

interest at a rate of 9% per year compounded monthly. 

(a) Write the function A(f) that computes the value of the investment 

after t years. 

(b) Use your GDC to sketch a graph of A(#) with values of ¢ on the 

horizontal axis ranging from t = 0 years to t = 25 years. 

(c) Use the graph on your GDC to determine the minimum number 

of years (to the nearest whole year) that it will take for this 

investment to have a value greater than $20,000. 

12. $10,000 is invested at an annual interest rate of 11% for a period of 5 

years. Find the value of the investment if the interest is compounded: 

(a) annually (b) monthly (c) daily (d) hourly 
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13. The population of deer in a national park increases at a steady rate of 

3.2% per year. The present population is approximately 248 000. 

(a) Calculate the approximate number of deer one year before. 

(b) Calculate the approximate number of deer six years in the future. 

14. An open can is filled with 1000 ml of fluid that evaporates at a rate of 

30% per week. 

(a) Write a function, A(w), that gives the amount of fluid after w weeks. 

(b) Use your GDC to find how many weeks, to the nearest week, it will 

take for the volume of fluid to be less than 1 ml. 

15. You are offered a very highly paid job that lasts for one month (exactly 

30 days). You may choose from one of the following two payment plans. 

(I) One dollar on the first day of the month, two dollars on the second 

day, three dollars on the third day, and so on (getting paid one dollar 

more each day), until the end of the 30 days. (You would have a total 

of $55 after 10 days.) 

(II) One cent ($0.01) on the first day of the month, two cents ($0.02) on the 

second day, four cents on the third day, eight cents on the fourth day 

and so on (each day getting paid double from the previous day), until 

the end of the 30 days. (You would have a total of $10.23 after 10 days.) 

(a) State which of the payment plans, (I) or (II), would give you the 

greater salary. 

(b) Calculate how much you would get paid with this plan? 

16. Each exponential function graphed below can be written in the form 

fix) = k(a)*. Find the value of a and k for each function. 

(a) (b) 
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The number e and continuous growth 
or decay 

In an exponential function, fix) = b% b is any positive constant and x is any 

real number. Graphs of y = b* for a few values where b = 1 are shown in 

Figure 4.1. As noted in Section 4.1, all the graphs pass through the point (0, 1). 

The question arises: what is the best number to choose for the base b when 

we are modelling a particular phenomenon? There is a good argument for 

b = 10, since we most commonly use a base 10 number system. Your GDC 

will have the expression 10* as a built-in command. The base b = 2 is also 

plausible because a binary number system (base 2) is used in many processes, 

especially in computer systems. However, the most important base is an 

irrational number that is denoted with the letter e. As we will see, the value of 

e approximated to five significant figures is 2.718 28. The importance of e will Figure 4.1 Graphs of y = b* 

be clearer when we get to calculus topics. You already know about the number for some values when b = 1 
7, another very useful irrational number, which has a natural geometric 

significance as the ratio of circumference to diameter for any circle. The 

number e also occurs in a ‘natural’ manner. We will illustrate this by taking 

another look at compound interest and considering continuous change rather 

than incremental change. 

Continuously compounded interest 

In the previous section of this chapter, and in Chapter 3, we computed amounts 

  

of money resulting from an initial amount (principal) with interest being 

compounded (added in) at discrete intervals (e.g. yearly, monthly, or daily). 

In the formula that we used, A(f) = P (1 o+ %) m, n is the number of times that 

interest is compounded per year. Instead of adding interest only at discrete 

intervals, let’s investigate what happens if we try to add interest continuously. 

That is, let the value of n increase without bound (n — o0). 

Consider investing $1 at a very generous annual interest rate of 100%. How 

much will be in the account at the end of one year? It depends on how often 

the interest is compounded; in other words, it depends on the value of 7 in the 
t 

compound interest formula A(f) = P(l + %)n . Results for different values of 

n are shown in Table 4.3 on the next page. 

As the number of times, n, per year that interest is compounded increases, the 

amount at the end of the year appears to approach a limiting value. We realise 

that as n — oo the quantity of (1 + 1) approaches the number e. To twelve 

decimal places, e is approximately 2.718 281 828 459. 
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Leonhard Euler (1701 
1783) was the dominant 

mathematical figure of 
the 18th century. 

He proved 
mathematically that 

. 1y the limit of (1 + 1 
as n tends to infinity 

is precisely equal to an 

irrational constant, which 
he labelled e. 

Examples of continuous 
growth or decay: area 

covered by a growing oil 
spill, radioactive decay, 

height of a plant. 

Examples of discrete 
growth or decay: 

population of rabbits, 
number of people 

remaining in a tennis 
tournament, number 

of books being added to 

alibrary. 
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G 
Compounding | n aw=(1+1) 

Annual 1 2 

Semi-annual 2 225 

Quarterly 4 2.44140625... 

Monthly 12 2.61303529022... 

Daily 365 2.714 567 482 02... 

Hourly 8760 2.718 126 691 62... 

Every minute 525600 2718279242 57... 

Every second 31536 000 2.718 281 785 36... 
  

Table 43 Values for (1 + 1) asn — oo 

tim (1+3)' 

  

“This definiton for the number ¢ s read e equals the limit of (1 + ) as n tends to infnity: 

As the number of compoundings, 1, increases without bound, we approach 

continuous compounding, where interest is being added continuously. In the 

formula for calculating amounts resulting from compound interest, if we let 

=2 = r,weget 

  

An=P1+ )" =p(1+ 

Now if n — oc and the interest rate r is constant then—n; = m — oc. From the 

m 
limit definition of e, we know that if m — oo, then (1 + %) — e. Therefore, 

" 

= Ple]™. 

  

n 
for continuous compounding, it follows that A(f) = P [(1 + %) 

This result is part of the reason that e is the best choice for the base of an 

exponential function modelling change that occurs continuously (changing 

every instant) rather than change that occurs discretely (changing at specific 

intervals). 

Continuous compound interest formula 
An exponential function for calculating the amount of money after ¢ years, A(), for interest 
compounded continuously, where P s the initial amount or principal and ris the annual interest 
rate, is given by A(f) = Pet



Example 4.6 

The starting balance of an investment account is €1000. The account 

earns interest at an annual rate of Si%. Assuming there are no further 

withdrawals or deposits (other than interest), find the total amount in the 

account after 10 years if the interest is added to the account: 

(a) annually (b) quarterly (c) continuously 

| 

Solution 

(a) A®) = P(1 + "= 1000(1 + 0.0525)!° = €1669.10 

0.0525)“‘“’ 
1 (b) A =P(1+ %)' = 1000(1 s = €1684.70 

(c) A() = Pe"™ = 1000e*%210 = €1690.46 

The natural exponential function and continuous change 

For many applications involving continuous change, the most suitable choice 
for a mathematical model is an exponential function with a base having the ‘The natural exponential 
al £ function is the function 
value of e. e 

The formula developed for continuously compounded interest, A(f) = Pe", Sy =e* 

does not only apply to applications involving adding interest to financial ?:n “’:ld‘ °d:;‘ :‘P"“f"“‘?l 
. . . ctions, the domain of 

accounts. It can be used to model growth or decay of a quantity that is changing the natural exponential 

exponentially (i.e. repeated multiplication by a constant ratio, or growth/decay function is the set of all 

factor) when the change is continuous or approaching continuous. real numbers (x € R), 
) 8 PP s and its range s the set of 

positive numbers (y > 0). 
Continuous exponential growth/decay ‘The natural exponential 
Ifan initial quantity P grows or decays continuously at a rate r over a certain time period, then the function is often referred 
amount A(®) after ¢ time periods is given by the function A(§) = Pe".If > 0, then the quantity is toas the exponential 
increasing (growing). If 7 < 0, then the quantity is decreasing (decaying). function. 

A particular new commercial jet costs $150 million. The aeroplane will 

lose value at a continuous rate. This is modelled by the continuous decay 

function A(f) = 150e ~%%3 where A(#) is the value of the aeroplane (in 
millions) after ¢ years. 

(a) Find how much (to the nearest million dollars) the aeroplane would be 

worth precisely five years after being purchased. 

(b) If the aeroplane is purchased in 2020, determine the first year that the jet 
is worth less than half of its original cost. 
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Exponential and logarithmic functions 

  TTotl PIo0Z PIoEE . ________________________________________________________________} 

\Y1B150e~(-.053X Solution 
:¥§§75 (a) C(5) = 150609535 ~ 115 

The value is approximately $115 million after five years. 

(b) Using a GDC, we graph the decay equation y = 150e "3 and the 

horizontal line y = 75 and determine the intersection point. 

  

  
  

The x-coordinate of the intersection point is approximately 13.08. At the 

start of 2033, the jet’s value is not yet half of its original value. Therefore, 

the first year that the jet is worth less than half of its original cost is 2034. 
Intersection 
¥=13.078249 Y=75 aaaaa| 

solution to Example 4.7(b) 

1. Sketch a graph of each function and state: 

      

(i) the coordinates of any x-intercept(s) and y-intercept 

(ii) the equation of any asymptote(s) 

(iii) the domain and range. 

() foy=ex! (b) g = e (¢) hix)=2e 

@pm=et3 (@ hw=% 

2. Two different banks, Bank A and Bank B, offer accounts with exactly 

the same annual interest rate of 6.85%. The account from Bank A has 

the interest compounded monthly whereas the account from Bank B 

compounds the interest weekly (52 weeks in a year). To decide which 

bank to open an account with, you calculate the amount of interest 

you would earn from each bank after three years, given an initial 

deposit of €500. It is assumed that you make no further deposits 

and no withdrawals during the three years. 

(a) Calculate how much interest you would earn from each account. 

(b) State which account earns more, and by how much. 

3. Dina wishes to deposit $1000 into an investment account and then 

withdraw the total in the account in five years. She has the choice of two 

different accounts. 

Blue Star account: Interest is earned at an annual interest rate of 6.1% 

compounded weekly (52 weeks in a year). 

Red Star account: Interest is earned at an annual interest rate of 6.2% 

compounded monthly. 

(a) Determine which investment account will result in the greatest total 

at the end of five years. 

(b) Calculate the total after five years for this account. 
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. Strontium-90 is a radioactive isotope of strontium. Strontium-90 decays 

according to the function A(f) = Ce 9%, where t is time in years, and 

Cis the initial amount of strontium-90 when ¢ = 0. Find the percentage 

remaining of a sample of strontium-90 after: 

(a) 1 year (b) 10years  (c) 100 years (d) 250 years 

. A radioactive substance decays in such a way that the mass 

(in kilograms) remaining after t days is given by the function 
A(f) = 5e-00347t, 

(a) Find the mass at time ¢ = 0 (i.e. the initial mass). 

(b) Calculate how much of the initial mass remains after 10 days. 

. (a) Consider that £1000 is invested at 4.5% interest compounded 

continuously. Calculate the amount of money in the account after: 

(i) 10 years (ii) 20 years. 

(b) Use your GDC to determine how many years (to the nearest tenth of 

a year) it takes for the initial investment to double to £2000. 

. In certain conditions the bacteria that causes cholera, Vibrio cholerae, 

can grow rapidly. In a laboratory experiment a culture of Vibrio cholerae 

is started with 20 bacteria. The bacteria’s growth is modelled with the 

continuous growth model A(f) = 20e%%%, where A(#) is the number of 

bacteria after t minutes. 

(a) Find the number of bacteria after 10 minutes. 

(b) Find how many minutes it takes, to the nearest minute, for the 

number of bacteria to be at least twice the number at the start 

of the experiment 

Logarithmic functions 

In Example 4.6 we used the equation A(f) = 1000e"%2%' to compute the amount 

of money in an account after t years. Now suppose we wish to determine how 

much time, ¢, it takes for an initial investment of €1000 to double. To find this, 

we need to solve the following equation for #: 

2000 = 100000525 = 2 = 00525t 

The unknown, £, is in the exponent. So far, we have not seen an algebraic 

method to solve such an equation. Developing the concept of a logarithm will 

provide us with the means to do so. 
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Forb>0and b # 1, the 

logarithmic function 
7 = logyx (read 

“logarithm with base b 
of x’) is the inverse of 

the exponential function 
with base b. 

y = logpxifand only if 
x=b 

‘The domain of the 

logarithmic function 
y=logjxis the set of 

positive numbers 
(x> 0) and its range is 

all real numbers (y € R). 
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Exponential and logarithmic functions 

The inverse of an exponential function 

For b > 1, an exponential function with base b is increasing for all x, and for 

0 < b < 1 an exponential function is decreasing for all x. It follows from this that 

all exponential functions must be one to one. In Section 1.4 we demonstrated 

that an inverse function exists for any one to one function. Thus, an exponential 

function with base b such that b > 0 and b # 1 will have an inverse function. Also 

recall from Section 1.6 that the domain of a function fix) is the range of its inverse 

function f~!(x), and, similarly, the range of f(x) is the domain of f ~'(x). The domain 

and range are switched around for a function and its inverse. 

Logarithmic expressions and equations 

‘When evaluating logarithms, note that a logarithm is essentially an exponent. 

This means that the value of log, x is the exponent to which b must be raised to 

obtain x. For example, log,8 = 3 because 2 must be raised to the power of 3 to 

obtain 8. That is, log,8 = 3 if and only if 2° = 8. 

‘We can use the definition of a logarithmic function to translate a logarithmic 

equation into an exponential equation and vice versa. When doing this, it is 

helpful to remember, as the definition stated, that in either form, logarithmic 

or exponential, the base is the same. 

Logarithmic equation Exponential equation 
exponent exponent, 

| 
¥ = log,(x) x=b 

1 
base base 

Example 4.8 

Find the value of each logarithm without using a calculator. 

(@) log49  (b) logs(%) (© logg/8  (d) logi64 () logyo0.001 

Solution 

We set each logarithmic expression equal to y and use the definition of a 

logarithmic function to obtain an equivalent equation in exponential form. 

We then solve for y by applying the logical fact that if b > 0, b # 1 and 

b’ = b¥ theny = k. 

(a) Let y = log,49, which is equivalent to the exponential equation 7* = 49. 

Since 49 = 72, then 7> = 72. Therefore, y = 2 = log,49 =2 

= 

(b) Lety = logs(é), which is equivalent to the exponential equation 5/ = —. 

w 

Si.nceé = 571, then 5% = 5-1, Therefore,y = —1 = logs(é) =il



(c) Lety = logs 6, which is equivalent to the exponential equation 6” = V6. 

Since V6 = 6% then 6 = 6. Therefore, y = % = logV6 = % 

(d) Let y = log,64, which is equivalent to the exponential equation 4 = 64. 

Since 64 = 47, then 47 = 4. Therefore, y = 3 = log,64 = 3 

(e) Lety = log,,0.001, which is equivalent to the exponential equation 

107 = 0.001. Since 0.001 = —=~ = —L = 103, then 107 = 10-2. 

Therefore, y = —3 = log;,0.001 = —3 

Example 4.9 

Find the domain of the function fix) = log,(4 — x2). 

Solution 

From the definition of a logarithmic function, the domain of y = log, x is x > 0, 

thus for fix) it follows that 4 —x2>0=> 2 + 02 —x)>0=> —2<x<2. 

Hence, the domain is —2 <x < 2. 

Properties of logarithms 

For any function with an inverse, the graph of the inverse is the graph of 

the function reflected in the line y = x. Figure 4.3 illustrates this relationship 

for exponential and logarithmic functions, and also confirms the domain 

and range for the logarithmic function. 

Notice that the points (0, 1) and (1, 0) are mirror images of each other 

in the line y = x. This corresponds to the fact that since b° = 1, then y 

log, 1 = 0. Another pair of mirror image points, (1, b) and (b, 1), 

highlights the fact that log, b = 1. 

Notice also that since the x-axis is a horizontal asymptote of y = b*, y=x/ 

then the y-axis is a vertical asymptote of y = log, x. 

  

Figure 4.3 Reflection of 
= logyxin theline y = x In Section 1.4 we established that a function fand its inverse function f-! 

satisfy the equations 

S fw) = x for x in the domain of f 

fif'w)=x for x in the domain of ! 

‘When applied to fix) = b* and f~!(x) = log, x these equations become 

log,(b) = x xER 

blogw = x x>0 
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Common logarithm: 
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logox = logx 

Exponential and logarithmic functions 

Properties of logarithms I 
Forb>0and b# 1, the following statements are true: 
1. logyl =0 because b0 = 1 
2. logyhb=1 because b! = b 
3. logyb¥)=x  because b* = b* 
4. blogx=x because log, x is the power to which b must be raised to get x 

The logarithmic function with base 10 is called the common logarithmic 

function. On calculators this function is denoted by log. The value of the 

expression log,,1000 is 3 because 103 is 1000. Generally, for common 

logarithms (i.e. base 10) we omit writing the base of 10. Hence, if log is written 

with no base indicated, it is assumed to have a base of 10. 

The other logarithmic function supplied on calculators is the logarithmic 

function with the base of e. This function is known as the natural logarithmic 

function and it is the inverse of the natural exponential function y = e*. The 

natural logarithmic function is denoted by the symbol In, and the expression 

Inx is read as ‘the natural logarithm of x’ 

Example 4.10 

Evaluate each expression. Find an exact value without using a GDC if possible. 

Otherwise, use your GDC to approximate the value to 4 significant figures. 

(@) 1og(1—10) (b) log/T0) 

(c) logl (d) 10'°8¥7 

(e) log50 (f) Ine 

©® 1n(§) (b)In1 

(i) et (j) In50 

s 

Solution 

(@ 1og(1—10) = log101) = —1 (b) ToglvT0) = log(10}) = 

(c) logl = log(109 = 0 (d) 1027 = 47 

(e) log50 ~ 1.699 [using GDC] (f) Ine=1 

© 1n(§) =Infe=) = —3 (b) In1 = In(e%) = 0 

(i) ems=5 (j) In50 ~ 3.912 [using GDC]



Example 4.11 

The diagram shows the graph of the line 

y = xand of two curves. Curve A is the 

graph of the equation y = logx. Curve B 

is the reflection of curve A in the line 

y=x 

(a) Write the equation for curve B. 

(b) Write the coordinates of the 

y-intercept of curve B. 

  

Solution 

(a) Curve A is the graph of y = logx, the common logarithm with base 

10, which could also be written as y = log;x. Curve B is the inverse of 

y = log,,x since it is the reflection of curve A in the line y = x. Hence, 

the equation for curve B is the exponential equation y = 10*. 

(b) The y-intercept occurs when x = 0. For curve B, y = 10° = 1. Therefore, 

the y-intercept for curve Bis (0, 1). 

The logarithmic function with base b is the inverse of the exponential function 

with base b. Therefore, it makes sense that the laws of exponents (Section 1.1) 

should have corresponding properties involving logarithms. For example, 

the exponential property b® = 1 corresponds to the logarithmic property 

log, 1 = 0. We will state and prove three further important logarithmic 

properties that correspond to the following three exponential properties. 

o bm. b= pmin 

o 08 
b 

o (bm)r=bm 

Properties of logarithms IT 
Given M > 0, N > 0 and any real number k, the following properties are true for logarithms with 
b>0andb=1. 
  

Property Description 

1 | log, (MN) = logy, M + log, N | the log of a product is the sum of the logs of ts factors 
  

  

the log of a quotient i the log of the numerator minus the M\ _ = 

2 l°g"(fi)’l°3"M 10853 | 1 of the denominator 
  

3 | log, (M) = klog, M the log of a number raised to a power is the power times 
the log of the number         
  

Any of these properties can be applied in either direction. 
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‘The notation fix) uses 
brackets not to indicate 

multiplication, but to 
indicate the argument 
ofthe function £, The 

symbol fis the name of a 
function, not a variable; 
itis not multiplying the 
variable x. Therefore, in 

general, fix + y)is not 
equal to fix) + fiy)- 

Likewise, the symbol 
log s also the name of a 

function. Therefore, 

logyfx + )is not equal 
tologyx) + logy(y). 

Other mistakes to avoid 

include incorrectly 
simplifying quotients or 

powers of logarithms. 
Specifically, 

logyx 
logyy #log() 

and (logy x)* # K{logy 1) 
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Exponential and logarithmic functions 

Proof of property 1 

Letx = log, M and y = log,N . 

The corresponding exponential forms of these two equations are 

b*=Mand b’ = N. 

Then, log,(MN) = log,(b*b’) = log,(b**) = x + y. 

It is given that x = log, M and y = log, N, hence x + y = log, M + log, N. 

Therefore, log,(MN) = log, M + log, N. 

Proof of property 2 

Again, let x = log,M and y = log,N = b* = Mand b” = N. 

Then, logb( ) logb( ;) log,(b*™) = x — y. 

With x = log, M and y = log;, N, then x — y = log, M — log, N. 

Therefore, logb(%) = log, M — log, N. 

Proof of property 3 

Letx = log, M = b¥ = M. 

Now, take the logarithm of MF* and substitute b* for M. 

log,(M¥) = log,[(b*)4] = log,(b*) = kx 

It is given that x = log, M, hence kx = klog, M. 

Therefore, log,(M) = klog, M. 

Example 4.12 

Use the properties of logarithms to write each logarithmic expression 

as a sum, difference, and/or constant multiple of simple logarithms (i.e. 

logarithms without sums, products, quotients, or exponents). 

(a) log,(8x) (b) ln(%) (© logl/?) 

o) logb(;—:) (©) In(5ed) © log(™-1)   

Solution 

(a) log,8x) =log,8 + log,x = 3 + log,x 

(b) ln(%) = 1In3 — Iny 

(c) log(y7) = log(7fl = %log7 

3 
(d) logb(x—z) = log,(x?) — log,(y?) = 3log,x — 2log,y 

J



@ log,,(;—;) — log,(x?) — logyly?) = 3logyx — 2logyy 

(e) In(5¢?) = In5 + In(e?) = In5 + 2lne = In5 + 2(1) = 2 + In5 
[2 + In5 = 3.609 using GDC.] 

() l(:-g(”":,r ") = log(m + n) — logm 

(Remember log(m + n) # logm + logn.) 

  

Example 4. 

Write each expression as the logarithm of a single quantity. 

(a) log6 + logx (b) log,5 + 2log,3 

(© Iny—Ind (@) logy12 — %logfi 

(e) logsM + logsN — 2log; P (f) log,80 — log,5 

] 

Solution 

(a) log6 + logx = log(6x) 

(b) log,5 + 2log,3 = log,5 + log,(3?) = log,5 + log,9 
= log,(5 X 9) = log,45 

(© Iny—Ind = m(%) 

(d) log,12 — %log,,Q = log,12 — logb(Q%) = log, 12 — log,(v9) 

=log,12 — log,3 = logb(g—z) =log,4 

(e) logs M + log; N — 2log; P = log;(MN) — log,(P?) = logJ(%) 

(f) log,80 — logs5 = 1og2(35—°) —log,16=4 [because2* = 16] 

Change of base 

The answer to Example 4.13, part (f), was log, 16, which we can compute 

to be exactly 4 because we know that 21 = 16. The answer to Example 4.12, o Leta, b, and x be positive 

  

part (e), was 2 + In5, which we approximated to 3.609 using the natural real numbers such that 

logarithm function key (In) on our GDC. But, what if we wanted to compute a#landb# 1. Then 
. . logy x can be expressed an approximate value for log, 45, the answerv to Example 4.13, part (b)? Some T o et 

calculators can only evaluate common logarithms (base 10) and natural any other base a, as: 

logarithms (base e). To evaluate logarithmic expressions and graph logarithmic hpsrm log,x 

functions with other bases, we need to apply a change of base formula. log,b 
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Exponential and logarithmic functions 

Proof of change of base formula 

y =log,x=b"=x Convert from logarithmic form to exponential form. 

log,x = log,(b”) If b» = x, then log of each with same bases must be equal. 

log,x = ylog,b Applying the property log,(M¥) = klog, M. 

_ log,x   ¥y Divide both sides by log, b. 
B log, b 

To apply the change of base formula, let @ = 10 or a = e. Then the logarithm of 

any base b can be expressed in terms of either common logarithms or natural 

logarithms. For example: 

logyx = 8 o nx o Jogx | inx 
82 log2 ~ In2 85 log5 ~ In5 

log45 
logy45 = —2> — 1045 549> [using GDC) 

log2  In2 

Example 4.14 

Use the change of base formula and common or natural logarithms to 

evaluate each logarithmic expression. Start by making a rough mental 

estimate. Write your answer to four significant figures. 

(a) log;30 (b) logs6 

| 

Solution 

(a) The value of log, 30 is the power to which 3 is raised to obtain 30. 

Because 3° = 27 and 3* = 81, the value of log;30 is between 3 and 4, 

and will be much closer to 3 than 4, perhaps around 3.1. 

Using the change of base formula and common logarithms, we obtain 
log30 

log;30 = 1g—3 ~ 3.096. This agrees well with the mental estimate. 
08, 

  
After computing the answer on your GDC, log(30)/1log(3) 
use your GDC to also check it by raising 3 3 AAns3 -095903274 

to the answer and confirming that it gives a 30 
n 

result of 30.       

(b) The value of log, 6 is the power to which 9 is raised to obtain 6. Because 

0i— V9 =3and 9! = 9, the value of log, 6 is between % and 1, perhaps 

around 0.75. 

  
Using the change of base formula and natural [Tn(6)/In(9) 

s 8154648768 2 . In6 
1 thms, we obtain log,6 = — ~ 0.8155. -~ logarithms, we obtain log, o 9°An. . 

    This agrees well with the mental estimate. 1  



1. Express each logarithmic equation as an exponential equation. 

(a) log,16 =4 (b) In1 =0 (c) log100 =2 

(@ log00l=—2  (e) log,343=3 ® m(3) =1 

(® logs0=y () Inx = 12 @) InGc+2)=3 

2. Express each exponential equation as a logarithmic equation. 

(a) 2= 1024 (b) 10~ = 0.0001 (c) 4} :% 

(d 34=81 (e) 100=1 () ex=5 
(g) 27°=0125 (h)et=y (i) 101 =y 

3. Find the exact value of each expression without using your GDC. 

(a) log,64 (b) log, 64 © logz(é) 

(@ logi(39) © log,¢8 ® log,,3 
(® logi(0.001) (h) Ine? @) logsl 

G) 100 ®log,(5;) W ene 
(m) log1000 () In(ve) (0 1n(l2) 

£ 

() log(512) (@) log,2 @ 3wt 
(5) logi(V3) () 10 

4. Use a GDC to evaluate each expression, correct to 3 significant figures. 

  

(a) log50 (b) logy3 (¢) In50 
e 

@ Inv3 (@) log25 ® 103(1 *2‘ 5) 

(g) In100 (h) In(100%) 

5. Find the domain of each function exactly. 

(@) y=loglx —2) (b) y = In(x?) 

(c) y=logx)—2 (d) y = log,(8 — 5% 

(e) y=vx+2—logy9— 3x) (f) y=vIn(l —x) 

6. Find the domain and range of each function exactly. 

- = = == (@) y= b7 (b) y = lIn(x — 1 ©y s 
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Exponential and logarithmic functions 

7. Find the equation of the function that is graphed in the form fix) = log; x. 

  

  

@ ® 
2 2 

1 41 1 

-1 0 1 2 3 4 5% -1 A 2 3 4 5% 

=l S LGS 

-2 -2 

© @ 9,2) 
2 2 

10, 1 
1 o) 1 

-19/i234567891011¥x -19/A234567891011% 
-1 -1 

-2 -2 

8. Use properties of logarithms to write each logarithmic expression 

as a sum, difference, and/or constant multiple of simple logarithms 

(i.e. logarithms without sums, products, quotients, or exponents). 

() log,2m) ®) log(2) (¢) In(¥x) 

(d) log;(ab?) (e) log[10x(1 + 1] (f) ln(mTl) 

9. Write each expression in terms of log, p, log, q and log,r. 

  
R 

(a) log, par (b) tog,( L) © logy(¥fpa) 
‘/7 3 

@ logu 7 © log 204 ® tog 22 
P r Vr 

10. Write each expression as the logarithm of a single quantity. 

(@) logle?) +log(L)  (b) log:9 +3logs2  (¢) 4Iny — Ind 

I =1 (d) log,12 — %logbg (e) logx — logy —logz (f) 2In6 — 1 

11. Use the change of base formula and common or natural logarithms 

to evaluate each logarithmic expression. Approximate your answer to 

three significant figures. 

(a) log,1000 (b) logi40  (c) logq40 (d) logs(0.75) 
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12. Use the change of base formula to rewrite each function in terms 
of natural logarithms. Then graph the function on a GDC and use 

the graph to approximate to three significant figures the value of the 
function when x = 20. 

(@) fx) = log,x (b) fix) = logsx 

13. Use the change of base formula to prove the statement 

logya = —— 
b log, b 

14. Show that loge = w1 
In10 

15. The relationship between the number of decibels dB (one variable) and 

the intensity I of a sound in watts per square metre is given by 
the formula 

_ i 
dB =10 log(fi) 

(a) Use properties of logarithms to write the formula in simpler form. 

(b) Find the number of decibels of a sound with an intensity of 
10-* watts per square metre. 

Exponential and logarithmic equations 

Solving exponential equations 

At the start of Section 4.3, we wanted to find a way to determine how much 

time # (in years) it would take for an investment of €1000 to double if the 

investment earned interest at an annual rate of 5.25%. Since the interest is 

compounded continuously, we need to solve the equation 

2000 = 1000 00525 = 3 = @0.0525¢ 

This equation has the variable, #, in the exponent. With the properties of 

logarithms established in Section 4.3, we now have a way to algebraically 

solve such equations. Along with these properties, we need to apply the logic 

that if two expressions are equal then their logarithms must also be equal. 

That is, if m = n, then log, m = log,n. 
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We could have used 
natural logarithms 
instead of common 
logarithms to solve 

the equation in 
Example 4.16. Using 

the same method but 
with natural logarithms 

will give you the same 
answer: 

—In24 +4~6.89. 
In3 

x 
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Exponential and logarithmic functions 

Solve the equation for the variable ¢. Give your answer accurate to three 
significant figures. 

= e0.[157.5t 

  

Solution 

2 = 00525t 

In2 = In(e00525) Take natural logarithm of both sides. 

In2 = 0.0525¢ Apply the property log,(b*) = x. 
In2 

= ~13.2 
¢ 0.0525 2 

Example 4.15 shows a general strategy for solving exponential equations. To solve 

an exponential equation, first isolate the exponential expression, then take the 

logarithm of both sides. Then apply a property of logarithms so that the variable 

is no longer in the exponent and can be isolated on one side of the equation. 

By taking the logarithm of both sides of an exponential equation, we are making 

use of the inverse relationship between exponential and logarithmic functions. 

Symbolically, this method can be represented as follows, solving for x: 

y=Db*=log,y =log,b* = log,y = x 

Although most calculators can evaluate a logarithm with a base other than 

10 or e, some calculators cannot. If your calculator is not able to evaluate a 

logarithm with a base of b, you will need to use the change of base formula 

to convert into a base that your calculator can handle (e.g. base 10, or base e). 

log.y 
log, b 
  y="b*=log,y = log,b* = log,y = xlog,b = x = 

Example 4.16 

Solve for x in the equation 3*** = 24. Approximate the answer to three 

significant figures. 

    

Solution 

B =0l 
log(3+~%) = log24 Take common logarithm of both sides. 

(x — 4log3 = log24 Apply the property log,(M*) = klog, M. 

- logj Divide both sides by log3. 
log3 

x= li)g;; [note: lloogg 234 # logS] 

X~ 6.89 Using GDC.



Recall Example 3.11, in which we solved an exponential equation graphically 

because we did not yet have the tools to solve it algebraically. Let’s solve it now 

using logarithms. 

Example 4.17 

You invested €1000 at 6% compounded quarterly. How long will it take for 

this investment to increase to €2000? 

L] 

  

      

Solution Be sure to use brackets 
PR appropriately when 

Using the compound interest formula from Section 4.2, A(f) = P(l it 7) B entering the 
o In2 

with P = €1000, r = 0.06 and n = 4, we need to solve for t when A(f) = 2P. Wfissmm 

it on your GDC. Following 
2P = P(l + %) Substitute 2P for A(t). thylis for order .;}" ¢ 

tions, your GDC 2=1015% Divide both sides by P. e e 

In2 = In(1.015%) Take natural logarithm of both sides. {;i“g];?ls:::enh‘: . 

_ _ if entered without the In2 = 4tIn1.015 Apply the property log,(M¥) = klog, M. e 

_ In2 GDC models will enter 
= nLols the necessary brackets 

i automatically. 
t~ 11.6389 Evaluate on GDC. Tn(Z)/AIn(1.015 

The investment will double in about 11.64 years, or about 11 years and .5‘&257999}2 
8 months. ‘missing brackets 

The number of the bacteria that causes strep throat will grow at a rate of 

about 2.3% per minute. Find, to the nearest whole minute, how long it will 

take for these bacteria to double in number. 

T 

Solution 

Let ¢ represent time in minutes and let A, represent the number of bacteria 

att=0. 

Using the exponential growth model from Section 4.1, A(f) = Ayb", the T 8 - _ - - . e same equation would 
growth factor, b, is 1 + 0.023 = 1.023 giving A(t) = A(1.023)". apply to money earning 

2.3% annual interest with 
Our mathematical model assumes that the number of bacteria increases e mznn:: b:n::;d:; 
incrementally by 2.3% at the end of each minute. To find the doubling time, (compounded) once per 

find the value of £ so that A(f) = 2A,. Jear ':“"e’ (Eacionceper 
minute. 

24, = A,1.023)'  Substitute 24, for A(t). 

2 =1.023" Divide both sides by A,. 

In2 =In(1.023/) Take natural logarithm of both sides. 
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In2 = ¢1n1.023 Apply the property log,(M¥) = klog, M. 

_ In2 
In1.023 

The number of bacteria will double in about 30 minutes. 

~30.482   

Example 4.19 

$1000 is invested in an account that earns interest at an annual rate of 10%, 
compounded monthly. Calculate the minimum number of years needed for 

the amount in the account to exceed $4000. 

Solution 

‘We use the exponential function associated with compound interest, 

Am=P(1+ %)' with P = 1000, 7 = 0.1 and n = 12. 

4000 = 1000(1 + %)"' = 4 = (1.0083)> = logd = log[(1.0083)12] 
log4 

= log4 = 12tlog(1.0083) = t 25 
" 1210g(1.0083) 

The minimum time needed for the account to exceed $4000 is 14 years. 

~13.92 years 

Example 4.20 

A 20 gram sample of radioactive iodine decays so that the mass remaining 

after ¢ days is given by the equation A(f) = 20e~%%"!, where A() is measured 
in grams. Find how many days (to the nearest whole day) it will take until 

there are only 5 grams remaining. 

  

Solution 

5 = 20e-0087 = % = €007 =5 10,25 = In(e-097) = In0.25 = —0.087¢ 
_ 1025 _ 
= o0s7 1% 

After about 16 days there are only 5 grams remaining. 

Example 4.21 

Solve for x in the equation 3 — 18 = 3**!, Express any answers in exact form. 

Solution 

The key to solving this equation is recognising that it can be written in 

quadratic form.



‘We need to apply some laws of exponents to show that the equation is 

quadratic for the expression 3*. 

32— 18 = 3+ 

392 —-(3)(39) —18=0 Applying rules b = (b")" and b™*" = b b". 

Substituting a single variable, for example y, for the expression 3* clearly 

makes the equation quadratic in terms of 3*. We solve first for y and then 

solve for x after substituting 3* back for y. 

y—3y—18=0 ‘There are a couple of 
+3)(y—6)=0 common errors to avoid 

(y )U’ ) in Example 4.21. 

A RO TE G <173 = =3, then it 
B v — does not follow that 

3 SRCT x= —1. An exponent 
3* = —3 has no solution. Raising a positive number to a power cannot of ~Lindicatesa 

produce a negative number. rmpmlmsl' 
< Ifx =02 it does =g In3 
not follow that 

In(39) = In6 Take logarithms of both sides. x = In2. The rule 
N logm — logn = log( %) 

xIn3 =In6 doesnotapply 
Therefore, the one solution to the equation is exactly x = % to the expression }:—2 

Solving logarithmic equations 

A logarithmic equation is an equation where the variable appears within the 

argument of a logarithm. For example, logx = % or Inx = 4. We can solve 

both of these logarithmic equations directly by applying the definition of a 

logarithmic function from Section 4.3: 

y = log,xif and only if x = b* 

The logarithmic equation logx = % is equivalent to the exponential equation 

x=10'= V10, which leads directly to the solution. Likewise, the equation 

Inx = 4 is equivalent to x = e ~ 54.598. Both of these equations could have 

been solved by means of another method that makes use of the following 

two facts: 

ifa = bthen n® = n® 

blosw = x 

To understand the second fact, remember that a logarithm is an exponent. 

The value of log, x is the exponent to which b is raised to give x. And b 

is being raised to this value, hence the expression bl°e= is equivalent to x. 

141



In the context of 
solving equations, to 

exponentiate means to 
use two equal expressions 

as powers to construct 
another equality 

involving equal bases. 
For example: 

Ifa = b then m = m®. 
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Therefore, another method for solving the logarithmic equation Inx = 4 is to 

exponentiate both sides; that is, use the expressions on either side of the equal 

sign as exponents for exponential expressions with equal bases. The base needs 

to be the base of the logarithm. 

Inx=4=em=cl=x=e¢' 

Example 4.22 

Solve for x in the equation log;(2x — 5) = 2. 

Solution 

log;2x —5)=2 

Method 1 Method 2 

2x—5=3> y=log,x<rx=0b" 39829 =32  Exponentiate with 
base =3 

2= 955 2% =45=19 

% =7 X% =7 

Example 4.23 

Solve for x (in terms of k) in the equation log,(5x) = 3 + k. 

Solution 

log,(5x) = 3 + k = 2'°e:59 = 23tk Exponentiate both sides with base = 2 

5x = (2%)(2%) Law of powers (b™)(b") = b™*" used 

8 ‘in reverse’ 
x= 5(2") 

For some logarithmic equations it is necessary to simplify by applying a 

property, or properties, of logarithms before solving. 

Example 4.24 

Solve for x in the equation log, x + log,(10 — x) = 4. 

Solution 

log,x + log,(10 — x) = 4 

log,[x(10 — x)] =4  Property of logarithms: 
log, M + log, N = log,(MN) 

10x — x> =2  Changing from logarithmic form to 
exponential form 

x—10x+16=0 

(=2)(ce Y= 10 

x=2o0rx=8



When solving a logarithmic equation, we must be careful to always check if the 

original equation is a true statement when any solutions are substituted in for 

the variable. For Example 4.24, both of the solutions x = 2 and x = 8 produce 

true statements when substituted into the original equations. Sometimes ‘extra’ 

(extraneous) invalid solutions are produced, as illustrated in Example 4.25. 

Example 4.25 

Solve for x in the equation In(x — 2) + In(2x — 3) = 2 Inx. 

. 

Solution 

In(x — 2) + In(2x — 3) = 2Inx 

In[(x — 2)2x — 3)] = Inx2 Properties of logarithms 

In(2x% — 7x + 6) = Inx? 

chip sl = ey Exponentiate both sides 

2 et d6 =l 

P 26E=10) 

(x=6)x—1)=0 Factorise 

X=16 or xi=— 1 

Substituting these two possible solutions indicates that x = 1 is not a valid 

solution. If we try to substitute 1 in for x into the original equation, we get 

the expression In(2x — 3) = In(—1). This cannot be evaluated because we can 

only take the logarithm of a positive number. Therefore, x = 6 is the only 

solution. x = 1 is an extraneous solution that is not valid. 

Solving, or checking the solutions to, a logarithmic equation on your GDC will 

help you avoid, or determine, extraneous solutions. To solve Example 4.25 on 

your GDC, a useful approach is to first rearrange the equation so that the right 

hand side is equal to zero. Then graph the expression (after setting it equal to y) 

and observe where the graph intersects the x-axis (i.e. y = 0).   

SeIn(2)n(2:53) 2 1n(x) 
For Example 4.25: Y 

In(x — 2) + In2x — 3) = 2Inx = In(x — 2) + In@x — 3) = 2Inx = 0 ' e 
  
    

Graph the equation y = In(x — 2) + In(2x — 3) — 2 Inx on your GDC and find 

the x-intercepts.         

Figure 4.4 Graphical solution 

The graph only intersects the x-axis at x = 6 and not at x = 1. Hence, x = 6 is for Example 4.25 

the only valid solution and x = 1 is an extraneous solution. 
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For question 2(a), 
write 4 as 22 D 

Exponential and logarithmic functions 

i Solve each equation for x. Give x accurate to three significant figures. 

(a) 10°=5 (b) 4+ =32 (c) 86=160 

(d) 2+ = 100 (e) (é) -2 (® er=15 

(g) 10°=e (h) 3%°1=35 (i) 2x+1=3%1 

) pelox — 3 5i-x 005\ 8 () 2e1*=19 (k) 62=5 1) 1+ =3 

. Solve each equation for x. Give exact answers. 
(a) 4% — 251 =48 (b) 221 — 2%+l 4 ] = 2% 

. $5000 is invested in an account that pays 7.5% interest per year, 

compounded quarterly. 

(a) Find the amount in the account after 3 years. 

(b) Find how long it will take for the money in the account to double. 

Give your answer to the nearest quarter of a year. 

. Find how long it will take for an investment of €500 to triple in value 

when the interest is 8.5% per year, compounded: 

(a) monthly (b) continuously. 

Give your answers in number of years accurate to four significant figures. 

. A single bacterium begins a colony in a laboratory dish. If the colony 

doubles every hour, find how many hours it takes for the colony to first 

contain more than one million bacteria. 

. Find the least number of years for an investment to double if interest is 

compounded annually with the following interest rates. 

(a) 3% (b) 6% (c) 9% 

. A new car purchased in 2005 decreases in value by 11% per year. Find 

the first year that the car is worth less than half of its original value. 

. Uranium-234 is a radioactive substance that has a half-life of 

2,46 X 10° years. 
(a) Find the amount remaining from a one-gram sample after a 

thousand years. 

(b) Find how long it will take a one-gram sample to decompose until its 

mass is 700 milligrams (i.e. 0.7 grams). Give your answer in years 

accurate to three significant figures. 

. The stray dog population in a town is growing exponentially, with about 

18% more stray dogs each year. In 2008, there are 16 stray dogs. 

(a) Find the projected population of stray dogs after 5 years. 

(b) Find the first year that the number of stray dogs is greater than 70.



10. A water tank initially contains one thousand litres of water. At time 

t = 0 (in minutes) a tap is opened and water flows out of the tank. 

The volume, V litres, remaining in the tank after f minutes is given 

by the exponential function V(#) = 1000(0.925)". 

(a) Find the value of V after ten minutes. 

(b) Find how long, to the nearest second, it takes for half of the initial 

amount of water to flow out of the tank. 

(c) The tank is considered empty when only 5% of the water remains. 

From when the tap is first opened, find how many whole minutes 

have passed before the tank can first be considered empty. 

11. The mass, m kilograms, of a radioactive substance at time t days is given 

by m = 5e-01%, 

(a) Find the initial mass. 

(b) Find how long it takes for the substance to decay to 0.5 kilograms. 

Give your answer in days accurate to three significant figures. 

12. Solve for x in the logarithmic equation. Give exact answers and be sure 

to check for extraneous solutions. 

(a) log,3x — 4) =4 (b) loglx —4) =2 

(flnx==3 (d) logyex = % 

(&) log/x T2 =1 () In(x2) = 16 
(g) log,(x> + 8) =log,x +log,6  (h) logs(x — 8) + logsx =2 

(i) log7 — log(4x + 5) + log(2x — 3) =0 

(j) logsx + logs(x —2) =1 

13. Solve each inequality. 

(a) 5logx +2>0 

(b) 2logx? — 3logx < log8x — log4x 

(c)i ez =2)(ex—=13) < Je* 

(d)F3E R =tes 

Chapter 4 practice questions 

1. Solve for x in each equation. 

(a) log 16 = 4 (b) log,27 = x 

(© logsx = —% (d) logg(x — 1) + loggx = 1 

2. Solve for x in each equation. 

(a) 4* =36 (b) 5% 3*=18 
e e (© 8= (Z) (d) 6+ =025 
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3. Write each expression as the logarithm of a single quantity. 

(a) log,x2 — log, x + 2log,3 (b) In3 + %mu —4)— Inx 

4. Iflog, M = 5.42 and log, N> = 3.78, find the following: 
Nt 

a) log,N b) log,|— (@ log, ® log, 17 

5. Pablo invested €2000 at an annual rate of 6.75%, compounded annually. 

(a) Find the value of Pablo’s investment after four years. Give your 

answer to the nearest whole euro. 

(b) Find how many years it will take for Pablo’s investment to double 

in value. 

(c) Determine what the interest rate should be for Pablo’s initial 

investment to double in value in ten years? 

6. $1000 is deposited into a bank account that earns interest at an annual 

rate of 4% compounded annually. After three years, the annual interest 

rate is increased to 7% for a further four years. 

(a) Find how much money is in the account after the seven years. 

(b) Find what constant rate of annual interest compounded annually 

would have given the same amount of money in the seven years. 

Give your answer as a percentage to one decimal place. 

7. Express each of the following expressions as simply as possible. 

(a) log,5 X logs2 (b) log,8 (c) 4loe 

8. At the start of the year 2000 there were 500 elephants in a game reserve. 

After t years, the number of elephants E is given by 500(1.032)". 

(a) Find the number of elephants at the start of 2006. 

(b) Determine how many full years it will take for the number of 

elephants to first become greater than 750. 

9. A certain car, when purchased new, had an initial value of $25,000. 

After one year the car had decreased in value to $22,000. 

(a) Find the value of the car after one year as a percentage of the 

initial value. 

(b) If the car continues to decrease in value at the same annual rate, find 

the car’s value after six years. Give your answer to the nearest dollar. 

(c) If the car was purchased in 2002, determine in what year the car is 

first worth less than $8000. 
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10. 

11. 

12. 

130 

14. 

Consider the function fix — e*2 

(a) Write down the domain and range of f. 

(b) Write down the coordinates of any y-intercept, and the equation of 

any asymptotes for the graph of f. 

(c) Find f1. 

(d) Write down the domain and range of f~!. 

An insect population grows at a rate of 6% per month. Initially there are 

500 insects. 

(a) Find the size of the population after four months. 

(b) Find the size of the population after a further year. 

(c) Let the size of the population after  months be given by the 

function fit) = Ayb". Write down: 

(i) the value A, (ii) the value of b. 

An alternative way of modelling the size of the insect population is given 

by the function g(t) = 500e*. 

(d) By equating fit) and g(®), find the value of k. Give your answer correct 

to five decimal places. 

(a) State the domain for each of the following two functions. 

@) fo= 1og( X 2) (ii) g = logx — log(x — 2) 

(b) Solve each of the following equations. 

(i) log(x X 2) =-2 (i) logx — logx —2) = —2 

  
o 

  

An experiment is designed to study a certain type of bacteria. The 

number of bacteria after t minutes is given by an exponential function 

of the form A(f) = Ce* where C and k are constants. At the start of the 

experiment (when ¢ = 0) there are 5000 bacteria. After 22 minutes the 

number of bacteria has increased to 17 000. 

(a) Find the exact value of C and an approximate value of k (to three 

significant figures). 

(b) Find how many bacteria the exponential function predicts there will 

be after one hour. 

Part of the graph y = 2 — log,(x + 1) is shown. It intersects the x-axis at 

point P, the y-axis at point Q, and the line y = 3 at point R. 

Find : % 

(a) the x-coordinate of point P &l 0000000000 y-3 

(b) the y-coordinate of point Q Q! 

(c) the coordinates of point R. *U;‘QP >   
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16. 

17 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

Solve for x in the equation log,(5x% — x — 2) = 2 + 2log, x. 

Iflog,4V2 = x,log.y = 4,and y = 4x> — 2x — 6 + z, find y. 

Find the exact value of x for each equation. 

(a) log;x — 4log,3+3=0 (b) log,(x — 5) + log,(x +2) =3 

Express each expression as a single logarithm. 

(a) 2loga + 3logh — logc (b) 3Inx— %lny +1 

A piece of wood is recovered from an ancient building during an 

archaeological excavation. The formula A(t) = Age~ 0121 js used to 

determine the age of the wood, where A, is the activity of carbon-14 

in any living tree, A(#) is the activity of carbon in the wood being dated 

and ¢ is the age of the wood in years. For the ancient piece of wood, it 

is found that A(#) is 79% of the activity of the carbon in a living tree. 

Determine how old the piece of wood is, to the nearest 100 years. 

The graph of the equation y = logs(2x — 3) — 4 intersects the x-axis at 

the point (c, 0). Without using your GDC, find the exact value of c. 

Solve 2(Inx)? = 3 Inx — 1 for x. Give your answers in exact form. 

A sum of $100 is invested. 

(a) If the interest is compounded annually at a rate of 5% per year, find 

the total value V of the investment after 20 years. 

(b) If the interest is compounded monthly at a rate of %% per month, 

find the minimum number of months for the value of the 

investment to exceed V. 

Solve the equation 9logsx = 25log, 5, expressing your answer in the 

form 55, where p, g € Z. 

An experiment is carried out in which the number, 1, of bacteria in a 

liquid is given by the formula n = 650e*, where ¢ is the time in minutes 

after the beginning of the experiment and k is a constant. The number of 

bacteria doubles every 20 minutes. Find the exact value of k.



Trigonometric functions 

and equations 
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Trigonometric functions and equations 

Learning objectives 

By the end of this chapter, you should be familiar with... 

« the radian measure of angles 

« finding the length of an arc and area of a sector 

o the unit circle and definitions of sin , cos#, and tan 6 
T o the exact values of trigonometric ratios of 0, ’ET s 3 and their multiples 

o the Pythagorean identity sin?6 + cos?6 = 1 

« double angle identities for sine and cosine 

« the graphs of sinf, cos6, and tan 

« the amplitude and period for the graphs of sin6, cos6, and tan 6 

« composite functions of the form asin(b(x + ¢)) + d and acos(b(x + ¢)) + d 

and their graphs 

« transformations of the graphs of trigonometric functions and their 

applications 

« applying trigonometric functions to real-life problems 

» solving trigonometric equations in a finite interval. 

The word trigonometry comes from two Greek words, trigonon and metron, 

meaning ‘triangle measurement’. Trigonometry developed out of the use and 

study of triangles in surveying, navigation, architecture, and astronomy to 

find relationships between lengths of sides of triangles and measurement of 

angles. As a result, trigonometric functions were initially defined as functions 

of angles - that is, functions with angle measurements as their domains. With 

the development of calculus in the 17th century and the growth of knowledge 

in the sciences, the application of trigonometric functions grew to include a 

wide variety of periodic (repetitive) phenomena such as wave motion, vibrating 

strings, oscillating pendulums, alternating electrical current, and biological 

cycles. These applications of trigonometric functions require their domains 

to be sets of real numbers without reference to angles or triangles. Hence, 

trigonometry can be approached from two different perspectives: functions of 

angles or functions of real numbers. This chapter focuses on the latter; that is, 

viewing trigonometric functions as defined in terms of a real number that is 

the length of an arc along the unit circle. Although this chapter will not refer 

much to triangles (this is covered in Chapter 6), it is appropriate to begin by 

looking at angles and arc lengths - geometric objects that are essential to the 

two different ways of approaching trigonometry.



Angles, circles, arcs, and sectors 

An angle in a plane is made by rotating a ray about its endpoint, called the 

vertex of the angle. The starting position of the ray is called the initial side 

and the position of the ray after rotation is called the terminal side of the 

angle (Figure 5.1). An angle with its vertex at the origin and its initial side on 

the positive x-axis is in standard position (Figure 5.2). A positive angle is 

produced when a ray is rotated in an anti-clockwise direction, and a negative 

angle when a ray is rotated in a clockwise direction. Two angles in standard 

position that have the same terminal sides, regardless of the direction or 

number of rotations, are called coterminal angles. Greek letters are often used 

to represent angles, and the direction of rotation is indicated by an arc with an 

arrow at its endpoint. 

The x- and y-axes divide the coordinate plane into four quadrants (numbered 

with Roman numerals). Figure 5.3 shows a positive angle @ and a negative 

angle f3 that are coterminal in quadrant ITI. 

  

adian measure 
  

Instead of dividing a full revolution into 360 degrees, consider an angle that has 

its vertex at the centre of a circle (a central angle) and subtends (or intercepts) 

an arc of the circle. Figure 5.4 shows three circles with radii of different lengths 

(r; <1, <r;)and the same central angle 0 (theta) subtending the arc lengths s, 

s, and s;. Regardless of the size of the circle, the ratio of arc length, s, to radius, r, 
S5 s 

for a given circle will be constant. For the angle 6 in Figure 5.4, r—; = r—z . r—i 

Because this ratio is an arc length divided by another length (radius), it is just 

an ordinary real number and has no units. 

} @ 
Figure 5.4 Different circles with the same central angle 6 subtending different arcs, but the ratio of arc 
length to radius remains constant 

  

Figure 5.1 Components of an 
angle 

terminal 

side 

initial X 

side 

Figure 5.2 Standard position 
of anangle 

1   
Figure 5.3 Coterminal angles 
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(—1,0) 

0,-1)   
Figure 5.5 The unit circle 

Conversion between 

degrees and radians 
Because 

180° = wrradians, 

then 1° = —radians, 
180° S 

An angle with a radian 
measure of 1 has a degree 
‘measure of approximately 
57.3° (to three significant 

figures). 

and 1 radian =   
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Major and minor arcs 
Ifa central angle is less than 180°, then the subtended arc is y 
referred to as a minor arc. If a central angle is greater than 
180°, then the subtended arc i referred to as a major arc. 

6 = 1 radian 

‘The ratio § indicates how many radius lengths, 7 fit into the 
length of the arc s. For example, if = 2, then the length of 

sis equal to two radius lengths. This accounts for the name 

radian and leads to the following definition. 

One radian is the measure of a central angle 6 of a circle that 

subtends an arc s of the circle that is exactly the same length 
as the radius r of the circle. That is, when 6 = 1 radian, 

arc length = radius. 

The unit circle 

‘When an angle is measured in radians it makes sense to draw it so that it is 

in standard position. It follows that the angle will be a central angle of a circle 

whose centre is at the origin. As Figure 5.4 illustrated, it makes no difference 

what size circle is used. The most practical circle to use is the circle with a 

radius of one unit so the radian measure of an angle will simply be equal to the 

length of the subtended arc. 

  

= : 

Ifr:1,then():%:s 

radian measure: § = 

The circle with a radius of one unit and centre at the origin (0, 0) is called the 

unit circle (Figure 5.5). The equation for the unit circle is x> + y> = 1. Because 

the circumference of a circle with radius r is 27, then a central angle of one 

full anti-clockwise revolution (360°) subtends an arc on the unit circle equal 

to 277 units. Hence, if an angle has a degree measure of 360°, then its radian 

measure is exactly 2. It follows that an angle of 180° has a radian measure of 

exactly . This fact can be used to convert between degree measure and radian 

measure and vice versa. 

(a) Convert 30° and 45° to radian measure and sketch the corresponding arc 

on the unit circle. 

(b) Use these results to convert 60° and 90° to radian measure. 

_—_—eeeeeeeeeeeeee————————— 

Solution 

(a) Note that the ‘degree’ units cancel. 

30 = 30°( ) = = 
180° 6 

pmggel T A A5 o @ 
=4 (180") 180°7 4



) P o=@ P= [ = (b) Since 60° = 2(30°) and 30° = 7, then 60 2(6) z 

o o o P oIt (LT3 Similarly, 90 2(45°) and 45 7 then 90 2( 4) 2 

(a) Convert the following radian measures to degrees. Express exactly, if 

possible. Otherwise express accurate to three significant figures. 

O @7 Gi)s w138 
3 2 

(b) Convert the following degree measures to radians. Express exactly. 

@) 135° (i) —150° (i) 175°  (iv) 10° 
I ———————"_—i—_—_M_—h—h——_————_—_——$———n—n—Sn<nnnnnNnn—nnNS<$<n$$S$S$mS—_—— 

Solution 

@ G = 

i) =37 = 3 = —3180°) = —270° (ii) > () 2(180 ) 270 

= 4(60°) = 240° 

  (iii) 5(28%°) ~ 286.479° ~ 286° 

(@) 138(28%) ~ 79.068° ~ 79.1° 

() (@) 135 =350 = 3(7) = Eii 

    

1)1 
@) —150°= —5(30) = —5(Z) = 2T 

wslE) =B w ) -5 
Because 277 is 6.28 (to three significant figures), there are a little more than six 

radius lengths in one revolution, as shown in Figure 5.6. 

Figure 5.7 shows all of the angles between 0° and 360°, inclusive, that are 

multiples of 30° or 45° and their equivalent radian measure. You will benefit 

by being able to quickly convert between degree measure and radian measure 

for these common angles. 

7y 

         

   

2 radians 
r- 1 radian 
\%\ 

3 radians 

X 

6 radians N 

  
5 radians 

Figure 5.6 Arcs with lengths equal to the radius 

placed along the circumference of a circle 

Figure 5.7 Degree measure and radian 
measure for common angles 

‘The results given in 
Example 5.1 are very 
useful and often appear 
in problems and 
applications. Knowing 
these four facts can help 
‘you to quickly convert 
mentally between degrees 
and radians for many 
common angles. 
For example, to convert 

225° to radians, apply the 
fact that 
225° = 5(45°). Since 

45°= ll, then 

225° = 5(45°) 

5m 

z (D e 
“This is also helpful 
for conversions in the 

opposite direction. For 

example, to convert 

%m degrees: 

it 
= 11(30°) = 330°. 

  

AllGDCs will have a 

degree mode anda 
radian mode. Before 

doing any calculations 
with angles on your 
GDC, be certain that the 
mode setting for angle 
measurement s set 
correctly. Although you 
may be more familiar 
with degree measure, 
as you progress further 
in mathematics, and 
especially in calculus, 
radian measure is far 

more useful. 
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‘The units of the product 
rfare equal to the units 
of rbecause 6 has no 

units in radian measure. 

154 

Trigonometric functions and equations 

Arc length 

For any angle 6, its radian measure is given by 6 = ; Simple rearrangement of 

this formula leads to another formula for computing arc length. 

For a circle of radius r, a central angle § subtends an arc of the circle of length s given by 
S=ri0) 

‘where 6is measured in radians. 

  

A circle has a radius of 10 centimetres. Find the length of the arc of the circle 

subtended by a central angle of 150°. 

  

Solution 

To use the formula s = r6, we must first convert 150° to radian measure. 

  150° = 150‘,( T ) _ 1507 _ 57 

180°) 180 6 3 
Substituting r = 10 cm into the formula: 

=0 o= 10(37) = BT 2610904 w0 
The length of the arc is 26.18 cm 
(4 significant figures). 

  
Example 5.4 

The diagram shows a circle of centre O with radius r = 6 cm. Angle AOB 

subtends the minor arc AB such that the length of the arc is 10 cm. Find the 

size of angle AOB in degrees to three significant figures. 

  

Solution 

Rearrange the arc length formula s = r6, to make 6 the subject: 

_— 

b 10 
Remember that 6 will be in radians. Therefore, e \ 

angle AOB = % = % or 1.6 radians. 

Now, we convert to degrees: % (i:u) ~95.49297°. 

The degree measure of angle AOB is approximately 95.5°.



  
Geometry of a circle 

inscribed circle of a 

polygon - the radius is 
perpendicular to the side 

circumscribed circle of the polygon at the point 
of a polygon of tangency 

  

C 
      

  

Figure 5.8 Circle terminology 

Sector of a circle 
  

A sector of a circle is the region bounded by an arc of the circle and the two 
sides of a central angle (Figure 5.8). The ratio of the area of a sector to the area 

of the circle, 772, is equal to the ratio of the length of the subtended arc to the 
circumference of the circle, 27r. If s is the arc length and A is the area of the 

sector, then we can write A5 
ar? 2 

2, 

Solving for A gives A = % = %rs 

We already know that for arc length, s = r6, where 6 is the central angle in 

radians. 

Substituting r6 for s, gives the area of a sector to be 

  

1. 1 Area of a sector 
A=Jrs=2rrf) Inacircle of adius r, 

. . . thearea of asector with 
If the sector is the entire circle then § = 277, and the area is u:a‘; m;:;;;:,,: 

in radians is 
A= lrzfl = lr1(211) = 7r?, 1 

2 2 A= 5126 

which is the formula for the area of a circle. 

  

A circle of radius 9 cm has a sector whose central 

angle is 2717 Find the exact values of: % 

(a) the length of the arc subtended by the 

central angle 

(b) the area of the sector. 
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‘The formula for 
arclength s = rf, and the 

formula forarea of 
asector A =126, are 

true only when fis 
in radians. 
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S 

Solution 

(a) s:r9:>s:9(2Tfl) =6m 

The length of the arc is exactly 677 cm. 

=1 — Ligp(2m) () A=1ro=a 2(9)(3) 27 
The area of the sector is exactly 2777 cm? 

1. Convert each angle into radians. Give your answers in exact form. 

(a) 60° (b) 150° () —270° 
(d) 36° (e) 135° (£) 50° 
(g) —45° (h) 400° (i) —480° 

2. Convert each angle to degrees. If possible, express exactly, otherwise 

express accurate to three significant figures. 

@ & ® -2 © 2 
@7z © —25 ® 32 

©® 2 ®) 157 @ & 

3. The size of an angle in standard position is given. Find two angles, one 

positive and one negative, that are coterminal with each given angle. If 

no units are given, assume the angle is in radian measure. 

(a) 30° (b) 32_" (0) 175° 
T i 

(d) % (e) = (£)F3.25 

4. Find the length of the arc s in each diagram. 

(a) s (b) 

N 

  

5. Find the angle 6 in both 

radians and degrees. 12



6. 

7 

8. 

gF 

10. 

TS 

12. 

158 

14. 

Find the radius, 7, of the circle in the diagram. 15 

Find the area of the sector in each diagram. A % 

An arc of length 60 cm subtends a central angle « in a circle of radius 

20 cm. Find the size of & in both degrees and radians. Give your answer 

to three significant figures. 

Find the length of an arc that subtends a central angle of 2 radians in a 

circle of radius 16 cm. 

The area of a sector of a circle with a central angle of 60° is 24 cm?. Find 

the radius of the circle. 

A bicycle with tyres 70 cm in diameter is travelling such that its tyres 

complete one and a half revolutions every second. That is, the angular 

velocity of the wheel is 1.5 revolutions per second. 

(a) What is the angular velocity of a wheel in radians per second? 

(b) Atwhat speed (in km per hour) is the bicycle travelling along the 

ground? (This is the linear velocity of any point on the tyre that 

touches the ground.) 

A bicycle with tyres 70 cm in diameter is travelling along a road at 

25km h~!. What is the angular velocity of a wheel of the bicycle in 

radians per second? 

Given that w is the angular velocity, in radians per second, of a point on 

a circle with radius 7 cm, express the linear velocity, v, in cms ™!, of the 

point as a function in terms of @ and r. 

A chord of 26 cm is in a circle of radius 20 cm. Find the length of the arc 

that the chord subtends. 
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Figure 5.9 The wrapping 
function 

158 

Trigonometric functions and equations 

15. A circular irrigation system consists of a 400 m pipe that is rotated 

around a central pivot point. If the irrigation pipe makes one full 

revolution around the pivot point in a day, what area, in m? does it 

irrigate each hour? 

16. (a) Find the radius of a circle circumscribed about a regular polygon of 

64 sides if one side is 3 cm. 

(b) Find the difference between the circumference of the circle and the 

perimeter of the polygon. 

17. Find the area of an equilateral triangle that has an inscribed circle with 

an area of 5077cm?, and a circumscribed circle with an area of 

2007 cm?. 

18. In the diagram, the sector of a circle is 

subtended by two perpendicular radii. 

The area of the shaded segment is A square 

units. Find an expression for the area of the 

circle in terms of A. 

The unit circle and trigonometric 
functions 

Several important functions can be described by mapping the coordinates 
of points on the real number line onto points on the unit circle. Recall from 
Section 5.1 that the unit circle has its centre at (0, 0), a radius of one unit, and 

equation x> + y2 = 1. 

Suppose that the real number line is tangent to the unit circle at the point (1, 0), 
and that zero on the number line matches with (1, 0) on the circle (Figure 5.9). 

Because of the properties of circles, the real number line in this position will be 
perpendicular to the x-axis. The scales on the number line, the x-axis, and the 

y-axis need to be the same. Imagine that the real number line is flexible like a 
string and can wrap around the circle, with zero on the number line remaining 
fixed to the point (1, 0) on the unit circle. When the top portion of the string 

moves along the circle, the wrapping is anti-clockwise (t > 0), and when the 
bottom portion of the string moves along the circle, the wrapping is clockwise 
(t<0).



As the string wraps around the unit circle, each real number  on the string is 
mapped onto a point (x, y) on the circle. Hence the real number line from 0 to ¢ 
makes an arc of length f starting on the circle at (1, 0) and ending at the point 
(x, y) on the circle. For example, since the circumference of the unit circle is 
277 the number t = 277 will be wrapped anti-clockwise around the circle to the 
point (1, 0). Similarly, the number ¢ = 7 will be wrapped anti-clockwise halfway 

around the circle to the point (—1, 0) on the circle. And the number t = 7%7 

will be wrapped clockwise one-quarter of the way around the circle to the point 
(0, —1) on the circle. Note that each number  on the real number line is mapped 
(corresponds) to exactly one point on the unit circle, thereby satisfying the 

definition of a function. Consequently, this mapping is called a wrapping function. 

Before we leave our mental picture of the string (representing the real number 
line) wrapping around the unit circle, consider any pair of points on the string 
that are exactly 277 units from each other. Let these two points represent the 

real numbers t; and #; + 277. Because the circumference of the unit circle is 
27, these two numbers will be mapped to the same point on the unit circle. 
Furthermore, consider the infinite number of points whose distance from ¢, 
is any integer multiple of 277 - that s, t, + k- 27, k € Z. Again, all of these 
numbers will be mapped to the same point on the unit circle. Consequently, 
the wrapping function is not a one-to-one function. Output for the function 
(points on the unit circle) are unchanged by the addition of any integer 
multiple of 277 to any input value (a real number). Functions that behave in 

such a repetitive (or cyclic) manner are called periodic. 

Trigonometric functio 

The x- and y-coordinates of the points on the unit circle can be used to define 

the trigonometric functions sine, cosine, and tangent. The names of these 

functions are usually abbreviated as sin, cos, and tan, respectively. 

When the real number ¢ is wrapped to a point (x, y) on the unit circle, the value 

of the y-coordinate is assigned to the sine function; the x-coordinate is assigned 

to the cosine function; and the ratio of the two coordinates, ;V—C, is assigned to the 

tangent function. Sine, cosine, and tangent are defined by means of the length 

of an arc on the unit circle as follows. 

    

     
   

1 1 

Let t be any real number and (x, y) a point on sine+ sine+ 
the unit circle to which ¢ is mapped. Then the cosine— cosine+ 
definitions of the trigonometric functions are: tangent— tangent+ 

o _ _y sinf=y cost=x tant=%,x%0 
(1,0)x 

      

  

sine— sine— 
cosine— cosine+ 

tangent+ tangent— 
1 v 

On the unit circle: x = cos f, y = sin . 
Figure 5.10 Signs of the trigonometric 
functions depend on the quadrant where 

the arc ¢ terminates 

A function fsuch that 
foo=flx + p)isa 
periodic function. 
1f p is the least positive 
constant for which 

fo = flx + p)is true, 
then pis called the 
period of the function. 

We are surrounded by 
periodic functions. A few 
examples include: the 
average daily temperature 
during the year, sunrise 
and the day of the year, 
animal populations 

over many years, the 
height of tides and the 
position of the Moon, 

and electrocardiograms, 
which give a visual image 
of the hearts electrical 
activity. 

When trigonometric 
functions are defined as 

circular functions based 

on the unit circle, radian 

measure is used. The 

values for the domain 

of the sine and cosine 

functions are real 
numbers that are arc 
lengths on the unit circle. 
As we know from the 

previous section, the arc 

length on the unit circle 
subtends an angle in 
standard position whose 

radian measure 

is equivalent to the arc 

length (see Figure 5.10). 
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Evaluating the 
trigonometric functions 

for any value of ¢involves 
finding the coordinates 
of the point on the unit 

circle where the arc of 

length £ will ‘wrap to’ (or 

terminate) starting at the 

point (1, 0). It s useful to 
remember that an arc of 

length 7ris equal to one- 
half of the circumference 

of the unit circle. All 

of the values for tin 
Example 5.6 are positive, 

s0 the arc length will 
wrap along the unit circle 

in an anti-clockwise 

direction. 
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‘We can use the definitions for the three trigonometric, or circular, functions to 

evaluate them for some ‘easy’ values of . 

Example 5.6 

Evaluate the three trigonometric functions for each value of t. 

@ t=0 ®i=T  ©t=7 (d)t:%’r () t=2m 

1 

Solution 

(a) Anarc of length # = 0 has no length so it terminates at the point (1, 0). 

By definition: 

sin0'==H0 cos0i= 

  

(b An arc oflength t = %T is equivalent to 

one-quarter of the circumference of the 

unit circle, so it terminates at the point (0, 1).    By definition: 

S 
SN VeI 5 

T o 
o2 Arclength of 3 or one-quarter 
an 771 =Y = % ioahdfned of an anti-clockwise revolution 

5 

(c) Anarc of length t = 77 is equivalent to 

one-half of the circumference of the unit 

circle, so it terminates at the point (—1, 0). 

By definition: 

singr =1y =10 

Cosmse =l 

  

P O Arc length of 7 or one-half of an 
= anti-clockwise revolution 

3w 
2l 

three-quarters of the circumference of the 

unit circle, so it terminates at the point 

(0, —1). By definition: 

(d) Anarc of length t = =~ is equivalent to 

s S sin y 

  

Arclength of%" or three-quarters 
of an anti-clockwise revolution 

  

is undefined



  

(e) An arc of length t = 277 terminates at the same e % 

point as an arc of length t = 0, so the values 

of the trigonometric function are the same as (1,0 
those found in part (a): > 

2m 

sin0 =y =0 cosOi=x =1t 

0 tan0 = };’ S Arclength of 277 or one full 
anti-clockwise revolution 

Domains of the three trigonometric functions 

fio=sint and fi) =cost  domain: {t:t€ R} 

fit = tant domzm:{:::eR,r:’lemkez} 

From our previous discussion of periodic functions, we can conclude that all 
of the trigonometric functions are periodic. Given that the sine and cosine 

functions are generated directly from the wrapping function, the period of each 
of these functions is 2. That is, 

sint = sin(t + k-2m), k € Z and cost = cos(t + k-2m, k€ Z 

Initial evidence from Example 5.6 indicates that the period of the tangent 

function is 7. That is, tant = tan(t + k-7, k € Z. 

  

Evaluati 

  

trigonometric functi 
  

               
(=2,-4 % -3 

V3 5 
(3 

0, —1) - 

Figure 5,11 Arc lengths that are multiples of 7 divide Figure 5,12 Arc lengths that are multiples of 7 divide 
the unit circle into eight equally spaced points the unit circle into twelve equally spaced points 

You will find it very helpful to know the exact values of sine and cosine for 

numbers that are multiples of %T and 17: from memory. Use the unit circle 

diagrams shown in Figures 5.11 and 5.12 as a guide to help you do this and to 

visualise the location of the terminal points of different arc lengths. With the 

symmetry of the unit circle and a point’s location in the coordinate plane telling 

us the sign of x and y (see Figure 5.10), we need to remember only the sine and 

cosine of common values of # in the first quadrant and on the positive x- and 

y-axes. These are organised in Table 5.1. 
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t sinf cost tant 

0 0 1 0 

- L 3 3 
6 2 2 3 

- 2 vz 1 
4 2 2 

T V3 1 = b 2 . 3 3 2 ¢ 

g 1 0 | undefined             
Table 5.1 The sine, cosine, and tangent functions evaluated for special values of ¢ 

TaT T T : 
13" then the approximate values of the 

trigonometric functions can be found using your GDC. 

If t is not a multiple of 

If s and t are coterminal arcs (i.e. terminate at the same point) then the 

trigonometric functions of s are equal to those of ¢. That is, sins = sint,     
  

coss = cost, and so on. For example, the arcs s = 37" andt = *%T are 

coterminal (Figure 5.13). Thus, sin 37" = sin( *%), tan 32—7 = tan( = 727), and 

s0 on. 
Figure5.13 Coterminal 

arcs 2T and 7 
P 2 

1. By knowing the ratios of sides in any triangle b 

with angles measuring 30°, 60° and 90° (see 60° 2x 

diagram), find the coordinates of the points 

on the unit circle where an arc of length ¢ = g N 

andt = %T terminate in the first quadrant. V3x 

2. The diagram of quadrant I of 

the unit circle shown indicates 

angles in intervals of 10 degrees 

and also indicates angles in 

radian measure of 0.5, 1, and 

1.5. Use the diagram and the 

definitions of the sine and 

cosine functions to approximate 

each function value to one 

decimal place. Check your 

answers with your GDC (be 

sure to be in the correct angle 

measure mode). 

(a) cos50° (b) sin80° (c) cosl 
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(d) sin0.5 (e) tan70° (f) cosl.5 

(g) sin20° (h) tanl 

. tis the length of an arc on the unit circle starting from (1, 0). For each 

value of t: 

(i) State the quadrant in which the terminal point of the arc lies. 

(ii) Find the coordinates of the terminal point (x, y) on the unit circle. 

Give exact values for x and y if possible. Otherwise approximate to 

three significant figures. 

@ =2 ® t=27 ©=I1 

(d)t:3777 (e) t=2 (f)t:—% 

(g t=—1 ) t= —5{ ©) =25 

. State the exact value (if possible) of the sine, cosine, and tangent of each 

real number. 

s 57 37 
(a) 3 (b) G (o) O 

@7 @ 22 ® 37 

® 3 ®) 2% @ t=125m 

. Use the periodic properties of the sine and cosine functions to find the 

exact value of sinx and cosx. 

@ x=27 ®) =127 
_Is _17m () x= s (d) x 5 

. Find the exact function values, if possible. Do not use your GDC. 

(@) cosSS—" (b) sin315° © m%” 

. Find the exact function values, if possible. Otherwise, find the 

approximate value accurate to three significant figures. 

(a) sin2.5 (b) cossTTr (c) tan 

. Specify in which quadrant(s) an angle 6 in standard position could be 

for each set of conditions. 

(a) sinf >0 (b) sinf > 0 and cosf <0 

(c) sinf < 0and tanf >0 (d) cosf < 0and tanf < 0 

(e) cosh >0 
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sin(2.53) 

.5741721484 
sin(2.53+2m) 

.5741721484 
sin(2.53+4m) 

.5741721484 

Figure 5.14 The period of 
y = sinxis 27 

      

    
(cost, sint) 

Figure 5.15 The coordinates of 
the terminal point of arc ¢ give 
the values of cost and sint 

Trigonometric functions and equations 

Graphs of trigonometric functions 

From the previous section, we know that trigonometric functions are periodic; 

that is, their values repeat in a regular manner. The graphs of the trigonometric 

functions should provide a picture of this periodic behaviour. In this section, 

we will graph the sine, cosine, and tangent functions and transformations of the 

sine and cosine functions. 

Graphs of the sine cosine functiol 

Since the period of the sine function is 277, we know that two values of ¢ (domain) 

that differ by 27 will produce the same value for y (range). This means that any 

portion of the graph of y = sint with a t-interval of length 27 (called one period 

or cycle of the graph) will repeat. Remember that the domain of the sine function 

is all real numbers, so one period of the graph of y = sint will repeat indefinitely 

in the positive and negative direction. Therefore, in order to construct a complete 

graph of y = sint, we need to graph just one period of the function; for example, 

from t = 0 to t = 277, and then repeat the pattern in both directions. 

‘We know from the previous section that sint is the y-coordinate of the terminal 

point on the unit circle corresponding to the real number ¢ (Figure 5.10). 

In order to generate one period of the graph of y = sint, we need to record the 

y-coordinates of a point on the unit circle and the corresponding value of t as the 

point travels anti-clockwise one revolution starting from the point (1, 0). These 

values are then plotted on a graph with ¢ on the horizontal axis and y (sint) on the 

vertical axis. Figure 5.16 illustrates this process in a sequence of diagrams. 

  

A
N
 

  

  

¥y 

T ™ 3 o t T ) 31 o t 
2 2 L 2N 2 

y 7 

™ T 3 o t T S 3 o t 
2 2 anst e seenni 2 

y y 

T ™ S o t T S 3 w t 
2 2 2 2     

Figure 5.16 Graph of the sine function for 0 < t < 27 generated from a point travelling along the unit circle 
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As the point (cost, sint) travels along the unit circle, the 

x-coordinate (cost) goes through the same cycle of values 

as the y-coordinate (sinf) does. The only difference is that 

the x-coordinate begins at a different place in the cycle; 

when ¢ = 0, y = 0, but x = 1. The result is that the graph 

of y = cost is the exact same shape as y = sint but 

has been shifted to the left by 177 units. The graph 

  

of y = cost for 0 < t = 27ris shown in Figure 5.17. 

denote the variable in the domain of the 

function. Hence, from here on we will —ar = _ o _}\4 NS N AT 

use the letter x rather than t and write 

the trigonometric functions as y = sinx, 

y = cosx,and y = tanx. /q‘ 

Figure 5.18 shows the graphs of y = sinx T NG NGz _1{ - o - % 

The convention is to use the letter x to y { 
1 

  

and y = cosx for —47 < x < 4m ! 

Aside from their periodic behaviour, these  Figure5.18 Graphs of y = sinxand y = cosx for —dm = t < 4 
graphs reveal further properties of the graphs 

of y = sinx and y = cosx. Note that the sine function has a maximum value 

ofy=1forallx = g + k- 2w,k € Z, and has a minimum value of y = —1 

forall x = k- 2, k € Z. The cosine function has a maximum value of y = 1 

forall x = k- 2@, k € Z, and has a minimum value of y = —1 for all 

x =+ k-2 k € Z. This also confirms that both functions have a domain 

of all real numbers and arange of —1 < y < 1. 

Graphs of transformations of the sine an 

cosine functions 

  

In Section 1.5, we learned how to transform the graph of a function by 

horizontal and vertical translations, by reflections in the coordinate axes, and 

by stretching and shrinking, both horizontally and vertically. 

Review of transformations of graphs of functions 
Assume that a, b, ¢, and d are real numbers. 
  

To obtain the graph of From the graph of y = fix) 
  

Translate d units up for d > 0, d units down for d < 0 

‘Translate ¢ units left for ¢ > 0, ¢ units right for ¢ < 0 
-flx) Reflect in the x-axis 

y=af® Vertical stretch (a > 1) or shrink (0 < a < 1) of factor a 
Reflect in the y-axis 1 
Horizontal stretch (0 < b < 1) or shrink (b > 1) of faclor; 

     

      

  

  

In this section we will look at the composition of sine and cosine functions of 

the form fix) = asin[b(x + ¢)] + d and fix) = acos[b(x + ¢)] + d. 
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Example 5.7 

Sketch the graph of each function on the interval —7 < x < 3. 

  

(a) floo = 2cosx (b) gx) = cosx +3 

(c) h(x)=2cosx + 3 (d) px) = %sinx & 

Solution 

(a) Since a = 2, the graph of y = 2 cosx is obtained by stretching the graph 
of y = cosx vertically by a factor of 2. 

- 9 T 21 3 * 
-1 y = cosx 

2 y=2cosx 

(b) Since d = 3, the graph of y = cosx + 3 is obtained by translating the 

graph of y = cosx up by 3 units. 

    

=3 

    

   

%, 

y=cosx+3 

- 0 T 27 3m x 
-1 y = cosx   

(c) We can obtain the graph of y = 2 cosx + 3 by combining both of the 

transformations to the graph of y = cosx performed in parts (a) and (b), 
namely, a vertical stretch of factor 2 and a translation 3 units up. 

y=3 

y=2cosx+3 

  

T 2r 3 X 
y =cosx  



(d) The graph of y = —smx — 2can be obtained by shrinking the graph of 

y = sinx Vertlcally by a factor of and then translating it down 2 units. 

o 

1 y=sinx 

  

In Example 5.7 (a), the graph of y = 2 cosx has many of the same properties as 

the graph of y = cosx: it has the same period, and the maximum and minimum 

values occur at the same x values. However, the graph ranges between —2 and 2 

instead of -1 and 1. This difference is best described by referring to the graph’s 

amplitude. The amplitude of y = cosx is 1 and the amplitude of y = 2 cosx 

is 2. The amplitude (always positive) is not always equal to the maximum 

value. In (b), the amplitude of y = cosx + 3 is 1, in (c) the amplimde of 

y = 2cosx + 3is 2, and in (d) the amplitude of y = —smx —21 is 5. L Forall 

three of these, the graphs oscillate about the horlzontal midline y d. To find 

the graph’s amplitude, we look at how high and low it oscillates with respect to 

the midline. With respect to the general form y = afx), changing the amplitude 

is equivalent to a vertical stretching or shrinking. Thus, we can give a more 

precise definition of amplitude in terms of the parameter a. 

Amplitude of the graph of sine and cosine functions 
‘The graphs of flv) = asin[bx + ] + dand fix) = acos[bix + ¢)] + d have an amplitude 
equal to |a]. 

Example 5.8 

‘Waves are produced in a long tank of water. The depth of the water, d metres, 

at t seconds at a fixed location in the tank is modelled by the function 

dity=M cos(%r t) + K, where M and K are positive constants. The diagram 

on the next page shows the graph of d(#) for 0 < ¢ < 12 indicating that the 

point (2, 5.1) is a minimum and the point (8, 9.7) is a maximum. 

(a) Find the value of K and the value of M. 

(b) After t = 0, find the first time when the depth of the water is 9.7 metres. 
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Solution 

(a) The constant K is equivalent to the constant d in the general form 

fix) = acos[b(x + ¢)] + d. To find the value of K and the equation of 

the horizontal midline, y = K, find the average of the function’s 

O\78t= SNl 
maximum and minimum values: K = = = 7.4 

The constant M is equivalent to the constant a in the general form - its 

absolute value is the amplitude. The amplitude is the difference between 

the function’s maximum value and the midline: 

|M|=9.7-74=23.90,M=230rM=—-23 

Try M = 2.3 by evaluating the function at one of the known values. 

d2) =23 cos(l;(Z)) +74=23cosm+ 7.4 =23(—1) + 7.4 =51 

This agrees with the point (2, 5.1) on the graph. Therefore, M = 2.3 

(b) Maximum values of the function (d = 9.7) occur at values of t that differ 

by a value equal to the period. The graph shows that the difference in 

t-values from the minimum (2, 5.1) to the maximum (8, 9.7) is equivalent 

to one and a half periods. Therefore, the period is 4 and the first time 

after t = 0 at whichd = 9.7ist = 4 

All four of the functions in Example 5.7 had the same period of 277, but the 

function in Example 5.8 had a period of 4. Because y = sinx completes one 

period from x = 0 to x = 27, it follows that y = sinbx completes one period 

from bx = 0 to bx = 2. This implies that y = sinbx completes one period 

fromx=0tox = 2777 This agrees with the period for the function 

din =23 cos(gt) + 7.4 in Example 5.8: period = 2777 = 2?77 = ZT"T . %_ =4 

2 
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Note that the change in amplitude and vertical translation had no effect on the 

period. We should also expect that a horizontal translation of a sine or cosine 

curve should not affect the period. Example 5.9 looks at a function that is 

horizontally translated (shifted) and has a period different from 2. 

Example 5.9 

Sketch the function fix) = sin(Zx o 2?‘”) 

| 

Solution 

To determine how to transform the graph of y = sinx to the graph of 

Y= sin(Zx o ZT"T) so that we can sketch the function, we need to make sure 

the function is written in the form fix) = a sin[b(x + o] + d. Clearly,a = 1 

and d = 0, but we need to take out a common factor of 2 from 2x + ZTTr to 

getfix) = sin[Z(x e %T)] From the transformations studied in Chapter 1, 

the graph of fis obtained by first translating the graph of y = sinx to the left 

by g units and then applying a horizontal shrink of factor % The following 

graphs show the two steps of transforming y = sinx to y = sin[Z(x aF g)l 

5 
1 . 

y = sinx 

= 0, 1\/'" 3 X 
21 

  

/\ % e N =i 

9 \/r \/fi \f A horizontal translation 
e 1 of a sine or cosine curve 

= sin(2x) is often referred to 
b asa phase shift. The y:m(z ) pi o 

/\\ /\ /~ y i sfn(x + g)fl.md 

\/ \/ zn\// Br Y’S‘“[z(’”?)] 
= sin(2x) both underwent a 

phase shift of —g. 
  

  

Period and horizontal translation (phase shift) of sine and cosine functions 
Given that b is a positive real number, y = asin[bx + ] + dand y = acos(blx + o] +d 

havea period nf%’r and a horizontal translation (phase shift) of —c. 
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Example 5.10 

The graph of a function in the form y = acosbx is given below. 

(a) Write down the value of a. 

(b) Calculate the value of b. 

16 

  

Solution 

(a) The amplitude of the graph is 14. Therefore, a = 14. 

(b) From inspecting the graph, we can see that the period is %’ 

4 

Graph of the tangent function 

From work done earlier in this chapter, we expect that the behaviour of the 

tangent function will be different from that of the sine and cosine functions. 

In the previous section, we concluded that the function f(x) = tanx has a 

Period:%”:fl#b'rrZSTrfihZS 

domain of all real numbers such that x # %T + km, k € Z, and that its range 

is all real numbers. Also, the results for Example 5.6 led us to speculate that 

the period of the tangent function is 7. This make sense since the identity 

sinx 
o5k informs us that tanx will be zero whenever sinx = 0, which tanx =   

occurs at values of x that differ by 7. The values of x for which cosx = 0, 

causing tanx to be undefined (gaps in the domain), also differ by 7.



As x approaches the values where cosx = 0, the value of tanx will become very 

large - either very large negative or very large positive. Thus, the graph of 

y = tanx has vertical asymptotes at x = 171 + km, k € Z. Consequently, the 

graphical behaviour of the tangent function will not be a wave pattern such as 

those produced by the sine and cosine functions, but rather a series of separate 

curves that repeat every 7 units (Figure 5.19). 

y=tanx 

  

S 

w
i
s
T
U
 

2 

- 
E ) 5 = 

  

| ~ 

—6-   
Figure 5.19 Graph of y = tanx for —277 < x < 27 

The graph gives clear confirmation that the period of the tangent function is 7. 

Although the graph of y = tanx can undergo a vertical stretch or shrink, it 

does not have an amplitude since the tangent function has no maximum or 

minimum values. However, other transformations can affect the period of the 

tangent function. 

Sketch each function. 

(a) fi) = tan2x (b) g = tan[z(x _ ZI_T)] 

] 

Solution 

(a) An equation in the form y = f(bx) indicates a horizontal shrink of fix) 
T 

by a factor of % Hence, the period of y = tan2x is% s 

17
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iy =tan2x 

  

  

(b) The graph of y = tan[Z(x = %’)] is obtained by first translating the 

graph of y = tanx to the right by 77: units, and then applying a horizontal 

shrink by a factor of % As for fix) = tan2x in part (), the period of 

W 
s
 

  

wl
n O 
e
 

3'
1-
 

» y 

4 y=tarfafe )] 

1. Without using your GDC, sketch a graph of each equation on the 

interval —7 < x < 3m. 

(a) y = 2sinx (b) y = cosx — 2 © y= %cosx 

@ y= sin(x = g) (e) y = cos(2x) (f) y=1+ tanx 

(g) y= sin(%) (h) y= tan(x = g) G y= cos(Zx - %)



2. For each function: 

(i) Sketch the function for the interval — 7 < x < 57. Write down its 

amplitude and period. 

(ii) Determine the domain and range. 

@) fio = %cosx -3 (b) g = 3 sin(3x) — % 

(0) gy =12 sin(%) +43 

3. Each graph shows a trigonometric equation on the interval 0 < x < 12 

that can be written in the form y = A sin(%x) + B. Two points - one 

aminimum and the other a maximum - are indicated on each graph. 

Find the values of A and of B for each function. 

(2,10) 

(6,4) 

(2,8.6) 
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4. The graph of a function in the form y = p cosqx is given in the diagram. 

(a) Write down the value of p. 

(b) Calculate the value of g. 

  

  

  

  

  

MR AT 

TV 
                  

5. The diagram shows part of the graph of a function whose equation is in 

the form y = asin(bx) + c. 

(a) Write down the values of a, b, and c. 

(b) Find the exact value of the x-coordinate 

of the point P, the point where the 

graph crosses the x-axis as shown in 

the diagram. 

  

6. The graph represents 

y=asin(x +b) +¢ 

where a, b, and c are 

constants. Find values 

fora, b,and c. 
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Trigonometric equations and 

identities 

The primary focus of this section is to examine methods for solving equations 

that contain the sine, cosine, and tangent functions. For example, the following 

are trigonometric equations: 

sinx = ) 3cosx = 5sinx tanx = b cosx 

1 + sinx = 3cos?x sin?x + cos’x = 1 

The equations tanx = S and sin2x + cosx = 1 are examples of special 

equations called identities. As we learned in Section 1.1, an identity is an 

equation that is true for all possible values of the variable. The other equations 

are true for only certain values of x. Identities can be helpful in solving 

trigonometric equations by allowing us to simplify some trigonometric 

expressions. Equations that contain trigonometric functions can often be solved 

using the same graphical and algebraic methods used to solve other equations. 

The unit circle and exact solutions to 

trigonometric equations 

  

When we are asked to solve a trigonometric equation, there are two important 

questions we need to consider: 

1. Isit possible, or required, to express any solution(s) exactly? 

2. For what interval of the variable (usually x) are all solutions to be found? 

With regard to the first question, exact solutions are only attainable, in most 

cases, if they are an integer multiple of % or % The variable for which we 

are trying to solve in trigonometric equations is a real number that can be 

interpreted as the length of an arc on the unit circle. As explained in Section 5.2, 

arc lengths that are multiples of %7 or % commonly occur and it is important to 

be familiar with the sine, cosine, and tangent of these numbers. 

Concerning the second question, for most trigonometric equations there are 

infinitely many values of the variable that satisfy the equation. In order to 

restrict the number of solutions, we are asked for the solutions to be contained 

within a suitable interval. For example, we may search for all the values of x 

that solve an equation such that 0 < x < 277. Although it is certainly possible 

to write a general expression using a parameter that specifies the infinite values 

that solve a trigonometric equation (this is called the general solution), it is 

not required for this course. A solution interval will always be given, as in the 

next example. 
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Find the exact solution(s) to the equation sinx = % for0=x<2m 

  

Solution 

Recalling the definition of D 

the sine function, this equation 

can be interpreted as asking 

for the length, x, of arcs along 

the unit circle that have a 

terminal point with a 

y= 

     

y-coordinate equal to 7 

We know from Section 5.2 

that arc lengths of %T and 5?71' 
‘unit circle 

  have terminal points with 

y-coordinates of % (see diagram). 

There are clearly an infinite number of arcs, both positive and negative, that 

will terminate at the same points. 

Thiscanbew‘rittenasx:%+k-27Tande%+k-21T,k€Z. 

However, we are asked for solutions in the interval 0 < x < 277 

Thus,x:%cvrx:%fli 

Another way to see that the equation sinx = % has infinitely many solutions 

is to graph the equations y = sinxand y = %, as in Figure 5.20, and search for 

intersection points, i.e. points where the two equations are equal. 

  

Figure 5.20 Graphs of y = sinxand y = 1 
2 

The graphs of the two equations will intersect repeatedly as they extend 

indefinitely in both directions.



Your GDC can be a very effective tool to search for solutions graphically. 

However, it can be limited when exact solutions are required. The graph in 

Figure 5.21 shows a graphical solution for the equation in Example 5.12. 

  7 
i awl 

as0n 17 
fomnos 

TS g 

£1x=singe) 

Figure 5.21 Finding intersection points of y = sinxand y = %in theinterval 0 < x < 277 

  

  

        

The GDC gives the two solutions in the interval 0 =< x < 27as x = 0.524 and 

X = 2.62. These are approximations (to 3 significant figures) of g and %’T 

Therefore, if exact solutions are required, you will need to remember the 

trigonometric function values for the multiples of %T and %T (see Table 5.1 in 

Section 5.2). 

Find the exact solution(s) to the equation 1 + tanx = 0 for —m <= x < 7. 

I  ———— 

Solution 

It is important to note that the solution 

interval is different from Example 5.12. 
With respect to the unit circle, the solutions (— 58 

will correspond to points in any of the four 

quadrants (as in Example 5.12) but points 

   
    

  
in quadrants ITT and IV will correspond to ) 

arcs rotating clockwise (negative direction). 2 - 

Solutions to this equation are values of x uaitelde 

such that tanx = —1. Since 

tanx = % = %, any solutions will be in quadrants IT and IV, where the 

x- and y-coordinates have opposite signs. The arcs terminating midway in 

the quadrants will terminate at points having opposite values for x and y. 

Therefore, as shown in the diagram, the 

. __m _ 3w 
solutions are exactly x = e 

It is possible to arrive at exact answers that are not multiples of %T or %, as the 

next example illustrates. 
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When writing the square 
of a trigonometric 

function, the square 
symbol is often 

written next to the 

function name. 
sin(x) is the same 

as [sin(]? 
cos2(x) is the same 

as [cos(]2 
tan?(x) is the same 

as [tan(]? 
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Example 5.14 

Find the exact solution(s) to the equation cosz(x = g) = % for0<x=<2m 

| 

Solution 

3 

The first step is to take the square root of both sides, remembering that every 

positive number has two square roots, which gives 

/ 1 

2 

The expression COSZ(X = E) can also be written as [cos(x = %T)] 

cos(x = 737) =4/ 

All of the odd integer multiples of%r ( o *%fl, — a3
 

,0,%, ,) have a 

ol
y 

=
¥
 

= 
cosine equal to either%or *g. That is, x — %T S %T +k- 

Now, solve for x. 

7m 7—+— 09 iy G 
4 A 12 

The last step is to substitute in different integer values for k to generate all 

the possible values for x so that 0 < x < 2. 

When k = 0:x = 27 
12 

ZATIQIRG (i | i == L0 DI 0T Whenk = 1: x 22 2 

e L2a_ 197 Whenk = 2:x = 12+ 2 o 

_ _ 187 _ 257 &< - , 5 
Whenk =3 x = 2% 4 287 _ = ==-, which is outside the required interval 

12 12 12 
257 L as = 27 

SR 7 LG 7 Whenk = —1:x 212 12 

There are four exact solutions in the interval 0 < x < 2. They are: 
7 77w 137 197 

B DR D) 

Check the solutions to trigonometric equations with your GDC. The GDC 

images below verify the four exact solutions to the equation. 

-5 1 . 18326 
2001 

«l2f2,0.5) (3.4,0.5) 
S 3.40339 

(1.83)0.5) (4.9%,0.5) - 

x a.9m19 

  
0261759 

Kl
 1(9=[cos| 

  

s 

  

§ 
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Graphical solutions to trigonometric equations 

If exact solutions are not required, then a graphical solution using your GDC is 

a very effective way to find approximate solutions to trigonometric equations. 

Unless instructed to do otherwise, you should give approximate solutions to an 

accuracy of three significant figures. 

Let’s solve the equation in Example 5.13 again. If the instructions do not 

explicitly ask for exact solutions, then approximate solutions are acceptable. 

Find the solution(s) to the equation 1 + tanx = 0 for —m<x < 

  

Solution 

Graph the equation y = 1 + tanx and find all of its zeros (x-intercepts) in 

the interval —m<x <. 

Plotl Plot2 Plot3 x 
\Y1gl+tan(X) / -.7853981634, 
\Y2= [Ans+i m 

2.35619449 

  

  

  

Zero, 
X=-.7853982 [Y=0               

This GDC images above indicate an approximate solution of x ~ —0.785 
between —7rand 0. Since we know that the period of y = 1 + tanx is 7 

(same as y = tanx), we can simply add 7 to this first solution to find the 

one between 0 and 7, as shown in the final GDC image. Therefore, the two 

solutions for x in the interval —7 < x < 7are: 

x~ —0.785 and x ~ 2.36 (three significant figures). 

Of course, a graphical approach is most effective when it is not possible, or very 

difficult, to find exact solutions. 
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Example 5.16 
  

The peak height, h metres, of ocean waves during a storm is given by the 

equationh =9 + 451'11(%), where # is the number of hours after midnight. 

A tsunami alarm is triggered when the peak height goes above 12.5 metres. 

Find the value of t when the alarm first sounds. 

  

Solution 

Graph the equations y = 9 + 4sm( ) and y = 12.5 and find the first point 

of intersection for x > 0. 

5 
144 

134 y=125 

124 

114 

104 

94 

8 

7| 
6 

5d 
y =9+ 4sinf}) 

  

2]  intersection: 
x=21308716 y=125     

0 1 23456 7 8 9101112131415 1617 18 19 20 21 22 23 24 % 

Analysing the graphs on a GDC shows that the first point of intersection has 

an x-coordinate of approximately 2.13. Therefore, the alarm will first sound 

when ¢ ~ 2.13 hours. 

Analytic soluti 

  

to trigonometric equations 
  

Now we will see how combining algebraic techniques with trigonometric 

identities can be used to solve trigonometric equations. An analytical approach 

requires us to devise a solution strategy using algebraic methods that we 

have applied to other types of equations, such as quadratic equations. Often 

trigonometric equations that demand an analytic approach will result in exact 

solutions, but not always. Although our approach for equations in this section 

focuses on algebraic techniques, it is important to use graphical methods to 

support or confirm our analytic solutions.



Example 5.17 Although exact answers 
were not required in 

Solve 2sinx — sinx = 0for —m<x<m Eramples 17 arenon 
knowledge of the unit 

| circle and familiarity 
e with the sine of common 

Solution (e, 
: @ m 

We can factorise and apply the rule that if a - b = 0 then eithera = 0 or b = el e it 

  

‘we are able to give 

2sin?x — sinx = 0 = sinx(2sinx — 1) = 0 = sinx = 0 or sinx = i exact answers without 
2 any difficulty. It would 

R e have been acceptable 
to give approximate 

. 1 T 5T solutions, but it is worth 
HOrilgy = 2= GG recognising that this 

5 swould have required 
Therefore, x = —, 0, 2, 27, considerably more effort 

6" 6 than providing exact 
solutions. Entering and 

The next example illustrates how the application of a trigonometric identity can ilipl;‘s‘:fizu:_ez::i: 

help us to rewrite an equation in a way that allows us to solve it algebraically. your GDC would not 

be the most efficient or 

appropriate solution 
method, but if enough 
time is available, it is an 

Solve 3sinx + tanx = 0 for 0 < x < 27 effective way to confirm 
‘your exact solutions. 

  

Example 5. 

| 

Solution 

Since the structure of this equation is such that an expression is set equal to 

zero, it would be nice to be able to use the same algebraic technique as the 

previous example - that is, factorise and solve for when each factor is zero. 

However, it is not possible to factorise the expression 3sinx + tanx, and 

rewriting the equation as 3sinx = —tanx does not help. 

Are there any expressions in the equation for which we can substitute an 

equivalent expression that will make the equation accessible to an algebraic 

solution? We do not have any equivalent expressions for sinx, but we do have 

an identity for tanx. From the definition of tanx we know that 
sinx 

tanx = . 
cosx 

> . sinx 
Let’s see what happens when we substitute -/ for tanx. 

sinx _ 
3sinx + tanx = 0 = 3sinx + Cosc   

Now, multiply both sides by cosx while recognising that 

cosx#O(x#%T+k~‘n',kEZ) 

3sinx + % = 0= 3sinx cosx + sinx = 0 = sinx(3cosx + 1) = 0 

= sinx = 0 or cosx = *% 

Forsinx = 0:x = 0, 7, 27 
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A strategy that often 
proves fruitful is to try to 

rewrite a trigonometric 
equation in terms of 

just one trigonometric 
function. If that is 

not possible, then try 
to rewrite it in terms 
of only the sine and 

cosine functions. This 

strategy was used in 

182 

Example 5.18. 

Trigonometric functions and equations 

We know that (1, 0) and (—1, 0) are the points on the unit circle that 

correspond to sinx = 0, giving the three exact solutions above. Although we 

know that the points on the unit circle that correspond to cosx = *% are in 

quadrants IT and III, we do not know their exact coordinates. So, we 

need a GDC to find approximate solutions to cosx = *% for0=x=<2m 

¥ = cosx 1 2 

  

i ks z 2t _ s 7=   

(1.9106332, —0.3333333) (43725521, —0.3333333)   
Thus, for cosx = —%: X~ 191 or x &~ 4.37 (three significant figures). 

Therefore, the full solution set for the equation is 

x=0,m2mx~ 191,437 

Trigo etric identities 

As Example 5.18 illustrated, sometimes an analytical method for solving a 

trigonometric equation relies on a trigonometric identity providing a useful 
sinx 
cosx 

required for this course. They can be used to help simplify trigonometric 

expressions and solve equations. 

substitution. There are a few trigonometric identities other than tanx =   

At the start of this section, it was stated that the equation sin?x + cos?x = 1 is 

an identity; that is, it is true for all possible values of x. Let’s prove that this is 

the case. 

Recall from Section 5.1 that the equation y 

for the unit circle is x> + y2 = 1. That is, the 

coordinates (x, y) of any point on the circle 

will satisfy the equation x? + y? = 1. Also, 

in Section 5.2, we learned that the sine and 

cosine functions are defined in terms of the 

coordinates of the terminal point of an arc 

on the unit circle starting at (1, 0), as shown ~ unit circle 

in Figure 5.22. 

    

   

(cos t,sin 1) 

(1,0)* 

  
If t is any real number that is the length of an 

arc on the unit circle thaft termma_tes :‘“ 5> Figure5.22 sine and cosine functions 
then x = cost and y = sint. Substituting defined in terms of the coordinates 
directly into the equation for the circle gives of the terminal point of an arc on the unit 

in2 2 = circle sin’t + cos*t = 1. 

x=costy=sint



As mentioned in the previous section, the convention is to use x to denote the 

domain variable rather than t. Therefore, the equation sin®x + cos?x = 1is 

true for any real number x. 

‘The Pythagorean identities for sine and cosine 
‘The following equations are true for all real numbers x: 
sin?x + cos?x = 1 sinx =1 — cos2x cos?. sinx    

Another useful set of trigonometric identities is referred to as the double angle 

identities because they are equations involving sin2x and cos2x. As discussed 

back in Section 5.1, the argument of a trigonometric function 

(xin sinx, € in cosf) can be interpreted as an angle (in degrees or radians), 

or as just a real number. Even though these identities are called double angle 

identities, they apply for either interpretation. 

Double angle identities for sine and cosine 
‘The following equations are true for all real numbers x: 
sin2x = 2sinxcosx 

cos?x — sin?x 
cos2x = { 2cos?x — 1 

1—2sin2x 

It is quite easy to verify the double angle identities by means of graphical 

analysis on your GDC. The GDC screen images shown in Figure 5.23 illustrate 

that sin2x is equivalent to 2 sinx cosx. Use your GDC to verify that cos2x 

is equivalent to cos?x — sin2x. Once the identity cos2x = cos?x — sin?x 

is established, we can use one of the Pythagorean identities to rewrite it in 

terms of only sine or only cosine, thus establishing the other two double angle 

identities for cosine. 

€os2x = cos?x — sin?x 

c0os2x = cos’x — (1 — cos?x) ~ Substitute 1 — cos?x for sin’x 

cos2x = 2cos’x — 1 

Similar steps can be performed to show that cos2x = 1 — 2sin’x 
  

Plotl Plot2 Plot3 
\Yi1Esin(2X) 
\Y2 
\Y3 
\Y4 
\Y5 
\Ye 
\Y7= 

  

  
  

  

Plotl Plot2 Plot3 
\Y1E2sin(X)cos (X 

). 
\Y2 

  

            
  

Figure 5.23: GDC screens showing that sin 2x is equivalent to 2 sin x cos x 

‘The identity 

sinx + cos2x = lis 

often referred to as a 

Pythagorean identity 
because, as we will see 

in the next chapter, sinx 

and cosx can represent 

the legs of a right triangle 
with a hypotenuse equal 

to one. Substituting into 
the Pythagorean theorem 
gives sin?x + cosx = 1. 

183



184 

Trigonometric functions and equations 

Now let’s see how these identities can help us with algebraic solutions of 

trigonometric equations. 

Solve the equation cos2x + cosx = 0 for 0 < x < 27 

  

Solution 

g 
. ¥ = cos2x + cosx 

  

e 

Taking an initial look at the graph of y = cos2x + cosx suggests that there are 

possibly three solutions in the interval x € [0, 277]. Although the expression 

c0s2x + cosx contains terms with only the cosine function, it is not possible 

to perform any algebraic operations on them because they have different 

arguments. In order to solve algebraically, we need both cosine functions 

to have arguments of x (rather than 2x). There are three different double 

angle identities for cos2x. It is best to have the equation in terms of one 

trigonometric function, so we choose to substitute 2 cos?x — 1 for cos2x. 

  

€0s2x + cosx = 0 = 2cos’x — 1 + cosx = 0 = 2cos?x + cosx — 0 

(2cosx — 1)(cosx + 1) = 0 = cosx = 1 orcosx = —1 
2 

i T 57 
HrEuse = i == == B 
[Borcosx==15x =45 

Therefore, the solutions in the interval 0 < x < 2 are: x = g, T, 57‘” 

Example 5.20 

(a) Express 2cos’x + sinx in terms of sinx only. 

(b) Solve the equation 2cos 2x + sinx = —1 for x in the interval 0 < x < 2, 

expressing your answer(s) exactly.



L] 

Solution 

(a) 2cos?x + sinx = 2(1 — sin®x) + sinx  Use the Pythagorean identity 
cos2xi= = sin2x 

2cos?x + sinx = 2 — 2sin’x + sinx 

(b) 2cosx + sinx = —1 

2 — 2sin?x + sinx = —1 Substitute result from (a) 

2sin?x — sinx —3 =10 

(2sinx — 3)(sinx + 1) = 0 

si.nx:%Orsinx: = 

For sinx = i, 1o solution because % is not in the range of the sine 

function. 

For sinx = *l,x:%’r 

Therefore, there is only one solution in 0 < x < 277, which is x = 377" 

Use your GDC to check this result by rewriting 2 cos?x + sinx = —1 

as 2cos?x + sinx + 1 = 0 and then graph y = 2cos?x + sinx + I, 

confirming a single zero at x = ST’” in the interval x € [0, 2] 

  
Plotl Plotz Plot3 X 
\Y1Z2(cos(X))%+s 4.712388457 

(X)+1 3m/2 
& 4.71238898 

zZero, 
\Ye= X=4.7123885 Y=0               

Solve the equation 2sin2x = 3 cosx for 0 < x < 77 

| 

Solution 

2sin2x = 3cosx 

2(2sinxcosx) = 3cosx Use double angle identity for sine 

4sinxcosx = 3 cosx Do not divide by cosx; solution(s) 
may be eliminated 
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4sinxcosx — 3cosx = 0 Set equal to zero to prepare for solving 
by factorisation 

cosx(4sinx — 3) =0 Factorise 

3 
cosx = 0 or sinx = 

4 

For cosx = 0: x = 171 

For sinx = % X~ 0.848 or 2.29 

Approximate solutions can be found using on a GDC. All solutions in 

interval 0 < x < 7 are: x = 5 x ~ 0.848, 2.29 

  

  

2 
. (0.84806208, 0.75) (2.2935306, 0.75) 

1 

Vi 

y=sinx 

. i £ ¥ ¥   
The final example illustrates how trigonometric identities can be applied to find 

exact values for trigonometric expressions. 

Given that cosx = iand that0 <x < g, find the exact values of: 

(a) sinx (b) sin2x 

  

Solution 

(a) Given0 s x < g, it follows that sinx > 0, because the arc with length x 

will terminate in the first quadrant. The Pythagorean identity is useful 

when relating sinx and cosx. 

sin2x = 1 — cos2x = sinx = V1 — cos’x 

= sinx = /1 — —5—— 

- (b) sin2x = 2sinxcosx = 2| 1 3



Summary of trigonometric identities 
o ; _ sinx 

Definition of tangent function: ~tanx = -7 

Co-function identities: sin(%r —x) = cosx 

cos(fl —x) =sinx 2 
Pythagorean identities: sin2x + cos?x = 1 

sin2x = 1 — cos?x 
cos?x =1~ sin’x 

Double angle identities: sin2x = 2sinxcosx 
cos2x = cos?x — sin?x 
cos2x = 2cos?x — 1 
cos2x =1 — 2sin’x 

1. Find the exact solution(s) for each equation for 0 < x < 2. 

Verify your solution(s) with your GDC. 

  

(a) cosx= % (b) 2sinz £ 1=0 

() 1 —tanx=10 (d) V3 = 2sinx 

(e) 2sin?x =1 (f) 4cos’x =3 

(g) tan’x —1=10 (h) 4cos’x =1 

(i) tanx(tanx +1) =0 (j) sinxcosx =0 

2. Use your GDC to find approximate solution(s) for 0 < x < 27 for each 
equation. Express solutions accurate to three significant figures. 

(a) sinx=0.4 (b) 3cosx +1=0 

(c) tanx =2 (d) sin2x = 0.85 

(e) cos(x — 1) = —0.38 (f) 3tanx = 10 

3. Given that k is any integer, list all of the possible values for x that are in 

the specified interval for each expression. 

(a)g+k-m—3n5xs3w (b)%+k-2n,—z7rsxszn 

20 tonlene K e © G +k-m0<x<2m @ F+k-J.0<x<dn 

4. Find the exact solutions for 0 < x < 2 for each equation. 

(a) cos(x o %) = *% (b) tan(x + m) =1 

(c) sin2x = g (d) si.nz(x e g) = % 
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5. The number, N, of empty birds’ nests in a park is approximated by the 

function N = 74 + 42 sin(% t), where t is the number of hours after 

midnight. Find the value of t when the number of empty nests first 

equals 90. Approximate the answer to one decimal place. 

. In Edinburgh, the number of hours of daylight on day D is modelled by 

the function 
. [27 

H =12 + 7.26sin| ——(D — 80) sm[365( )] 

where D is the number of days after December 31 (e.g. January 1 is 

D = 1, January 2 is D = 2, and so on). Do not use your GDC on part (a). 

(a) Determine which days of the year have 12 hours of daylight. 

(b) Determine which days of the year have about 15 hours of daylight. 

(c) Find how many days of the year have more than 17 hours of daylight. 

. Solve each equation for the stated solution interval. Find exact solutions 

when possible, otherwise give solutions to three significant figures. 

Verify solutions with your GDC. 

(a) 2cos’x + cosx = 0; 0 < x <27 

(b) 2sin2x — sinx — 1 = 0;0 < x < 27 
(c) 2cosx + sin2x = 0; —w<x <1 
(d) 2sinx = cos2x; —T=x=m 

(e) tan’x — tanx = 2; —g <x< g 

(f) sin2x=cos’x0<x<m 

(g) 2sin’x + 3cosx — 3= 0;0<x <27 
(h) 2sinx = 3cosx; 0 < x < 277 

. Given that sinx = % and that 0 < x < %T, find the exact values of 

(a) cosx (b) cos2x (c) sin2x 

. Given that cosx = *% and that %T < x < 1, find the exact values of 

(a) sinx (b) sin2x (c) cos2x 

Chapter 5 practice questions 

1. A toy on an elastic string is attached to the top of a doorway. It is pulled 

down and released, allowing it to bounce up and down. The length of the 

elastic string, L cm, is modelled by the function L = 110 + 25 cos(27t), 

where t is time in seconds after release. 

(a) Find the length of the elastic string after 2 seconds.



(b) Find the minimum length of the string. 

(c) Find the first time after release that the string is 85 cm. 

(d) What is the period of the motion? 

. Find the exact solution(s) to the equation 2sin?x — cosx — 1 =0 

. The diagram shows a circle of radius 6 cm. 

The perimeter of the shaded sector is 36 cm. 

Find the radian measure of the angle 6. 

. Consider the two functions fix) = cos4x and g(x) = cos(%). 

(a) Write down: 

(i) the minimum value of the function f 

(ii) the period of g. 

(b) For the equation fix) = g(x), find the number of solutions in the 

interval 0 < x < 7. 

. A reflector is attached to the spoke of a bicycle wheel. As the wheel 

rolls along the ground, the distance, d cm, that the reflector is above the 

ground after ¢ seconds is modelled by the function 

d=p + qsinl2T) 
where p, g, and m are constants 

The distance d is at a maximum of 64 cm at t = 0 seconds and at 

t = 0.5 seconds, and is at a minimum of 6 cm at t = 0.25 seconds and 

at t = 0.75 seconds. Write down the value of: 

@ p ®) q () m 

. Find all solutions to 1 + sin3x = cos(0.25x) such that x € [0, 7]. 

. Find all solutions to each trigonometric equation in the interval 

x € [0, 277]. Express the solutions exactly. 

(a) 2cos’x + 5cosx +2 =0 (b) sin2x — cosx = 0 

. The value of xisin the interval 7 < x < 7rand cos®x = %- 

Without using your GDG, find the exact values for the following: 

(a) sinx (b) cos2x (c) sin2x 
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Trigonometric functions and equations 

9. The depth, d m, of water in a harbour varies with the tides during each 

day. The first high (maximum) tide after midnight occurs at 5:00 a.m. 

with a depth of 5.8 metres. The first low (minimum) tide occurs at 

10:30 a.m. with a depth of 2.6 metres. 

(a) Find a trigonometric function that models the depth, d, of the water 

t hours after midnight. 

(b) Find the depth of the water at 12 noon. 

(c) Alarge boat needs at least 3.5 metres of water to dock in the 

harbour. Determine the time interval after 12 noon during which 

the boat can dock safely? 

10. Solve the equation tan®x + 2tanx —3 =0 for 0 <x<m. 

Give solutions exactly if possible, otherwise give to three significant 

figures. 

5 g A B 
11. The diagram shows a circle of centre O 

and radius 10 cm. The arc ABC 

subtends an angle of % radians at c 

the centre O. w 
10cm 

(a) Find the length of the arc ABC. 2 

(b) Find the area of the shaded region. 

12. Consider the function fix) = %cos(Zx = %T) Find the values of k for 

which the equation fix) = k will have no solutions. 

¥ 

13. The diagram shows a 3 ) 

portion of the graph of 

y =k + asinx. The graph 

passes through the points 

(0,1)and (37" 3)A Find the 

value of k and the value of a. 

  

14. The obtuse angle B is such that tanB = 71—52. Find the exact values of 

(a) sinB (b) cosB (c) sin2B (d) cos2B 
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Geometry and trigonometry 

Learning objectives 

By the end of this chapter, you should be familiar with... 

« finding the distance between two points in 3-dimensional space 

« finding the midpoint of a line segment in 3-dimensional space 

« computing the volume and surface area of a solid such as a pyramid, cone, 

sphere, hemisphere or a solid made from a combination of these 

o determining the size of an angle between two lines 

« finding the sides and angles of a right-angled triangle using the sine, 

cosine and tangent ratios 

+ applying the sine rule and the cosine rule to find an unknown length or 

an angle 

« computing the area of a triangle using the formula %ab sinC 

 solving problems involving 2-dimensional or 3-dimensional figures by 

means of right-angled and non-right-angled trigonometry 

« solving problems involving compass bearings. 

In this chapter, we cover some basic 3-dimensional geometry and trigonometry 

using right-angled triangles. This chapter may contain topics that you have 

studied before. Trigonometric functions will be defined in terms of the ratios 

of the sides of a right-angled triangle rather than in terms of an arc on the unit 

circle. 

Measurements in three dimensions 

Given the coordinates of two points A(x,, y;) and B(x,, y,) in a 2-dimensional 

plane, recall that the length AB of the segment [AB] is the hypotenuse of a 

right-angled triangle where the length of one side of the right-angled triangle 

is the difference in the x-coordinates and the length of the other perpendicular 

side is the difference in the y-coordinates (Figure 6.1). 

Alx ) 

=l 

  

B(x, 7)) lx,= x| 

Figure 6.1 Distance between two points in a plane derived from the Pythagorean theorem 

Thus, from the Pythagorean theorem, the distance, d, between the points with 

coordinates (x,, y,) and (x,, y,) is d = \/(x, — x,)* + (y; — y,)%



The midpoint M of [AB] is the point whose coordinates are the average of the 

x-coordinates and the average of the y-coordinates, respectively (Figure 6.2). 

Thus, the midpoint, M, of the line segment with endpoints (x;, y;) and (x5, y,) 

xtx nty 

o) has coordinates M| 

thumb points in +z 
direction of +2z 

   
   

fingers curl 
from +x to +y! 

Figure 6.3 The orientation of the +x, +y 

and +z axes must follow the right-hand rule 

Figure 6.4 3D coordinate system showing axes 
and the x-y plane, x-z plane and y-z plane 

It is straightforward to extend the formulas for the distance between two points 

and the midpoint of a line segment from points in a 2-dimensional coordinate 

system to points in a 3-dimensional coordinate system (Figure 6.4). Consider a 

right rectangular prism (all six faces are rectangles: a cuboid) with a width of 

a units, a depth of b units, and a height of ¢ units (Figure 6.5). Consider a 

diagonal [PQ] of the right rectangular prism. Applying the Pythagorean theorem 

twice - first to find the length of the diagonal of the bottom face and then to 

find the length, PQ, of the diagonal of the prism - gives PQ = Va2 + b* + ¢2 

A line segment in space with endpoints P(x;, y;, z;) and Q(x», y», 2,) is the 

diagonal of a right rectangular prism as shown in Figure 6.6 and we can use 

Pythagoras’ theorem, as we did for the prism in Figure 6.5, to find PQ. 

PQ=Vlx =)+ (- pf + (- 2) 
Q7 2) 

lz- =l 
  

    

  

  

P(x,y,2) — x| 

Figure 6.6 The distance between two points in space 

    

Blxyy,) 

  

tH nty 
Alxpy) Z 

Figure 6.2 Midpoint of a line 
segment in a plane 

“The rule for drawing 
the %, y, and z axes ofa 
3D coordinate system 
is that the direction of 

the positive z axis points 
in the direction of the 
thumb on a right hand 
when the fingers curl 
in the direction from 
the positive x axis to 
the positive y axis, as 
illustrated in Figure 6.3. 
‘The three axes in Figure 
6.4 also conform to the 

right-hand rule. 

  
Figure 6.5 Pythagoras 
theorem for three-dimensional 
space 
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It is standard practice 
to label the vertices of a 

polygon in alphabetical 
order either clockwise or 

A 
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anti-clockwise. 

B 

Geometry and trigonometry 

‘The distance, d, between the points (xy, 1, z1) and (x2, y2, 2) is 

d=y@w -2+ g1 =y + e - 2P 
‘The midpoint M of the line segment with endpoints (x1, y1, z1) and (x, 2, 22) has coordinates 

r1+rz}'1+)'zzl+22) 
M( 2 

Example 6.1 

Use the distance formula to show that the three points F(1, —1, 3), 

G(2, —4, 5), and H(5, —13, 11) are collinear. 

  

  

Solution 

Find the exact distance between each of the three pairs of points. The three 

points are collinear (lie on the same line) if the sum of any two distances is 

equal to the third distance. 

FG=|1—-27+(-1— (4P +(B -5 =yIF9+4 =14 

FH={01—-52+(-1—(—13)2+ (3 — 11)2 = V16 + 144 + 64 = 414 

GH=/2—52+(—4—(—13)2+ (G- 11)> = /9 + 81 + 36 = 3V14 

It is true that FG + GH = FH. Therefore, points F, G, and H are collinear. 

Example 6.2 

Given that three of the vertices of parallelogram ABCD are A(3, —1, 2), 

B(1,2, —4),and C(—1, 1, 2), determine the coordinates of vertex D. 

  

  

Solution 

The diagonals of a parallelogram bisect each other. Thus, the diagonals AC 

and BD must have the same midpoint M. 

S 1t 1§ 2R 50 
20 ). 

Let (x, , 2) be the coordinates of vertex D. 

  M( ) = M(1,0,2) 

  finenE e SRS =0 en 2 2 

Therefore, the coordinates of D are (1, —2, 8). 

3-dimensional solids: volumes and surface areas 

Table 6.1 lists the solids and their respective formulae that you need to know 

for this course.



cuboid |V =1l-w-h |S=2(-w+1I-h+w-h) |I=length;w = width; h = height 

  

  

sphere | V=dart | §=am? r = radius 
  

prisin | V= Ak | S= 2+ A + S A | A = a0 of polygonal base 
£ 

D Ateratfuce = sum of the n 
T 
lateral faces, each of which is a 

  

  

  

  

    

rectangle 

pyramid = Ape + S Aot | Auue = area of polygonal base & 
S Aige = sum of the n 
& 
lateral faces, each of which is a 
triangle 

cylinder |V=arth | S=2mr2+ 2arhor = radius; = height 
= 2ar(r + h) 

cone %fl'r’-h S=mr2+ mrl = radius; h = height 
wherel =2 + 2 I = lateral height (or slant height)             

Table 6.1 Volume and surface area formulae for different solids 

   
   

vertex 

lateral height / 
height i (or slant height) 

height of pyramid 

w height of triangular face 

Figure 6.7 Features of a cone Figure 6.8 Features of a pyramid 

Example 6.3 

A triangular pyramid sits on top of a triangular right prism. The prism has 

a height of h. Find the height of the pyramid - in terms of & - so that the 
prism and the pyramid have the same volume. 

    

Solution Figure 6.9 Diagram for 
e o Example 6.3 

The volume of the prism is V = A, - h and the volume of the pyramid is 

V= ! Ajpgse - h. The two solids have the same base. Therefore, for the two 

solids to have the same volume, the height of the pyramid needs to be 3h. 
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Example 6.4 
  
Compare a sphere and a cone. The radius of the sphere and the radius of 

cone are both r. The height of the cone is 2r. Find the exact value of each 

v ratio: 

(a) The ratio of the volume of the sphere to the volume of the cone. 

(b) The ratio of the surface area of the cone to the surface area of the sphere. 

1 

k=2 Solution 

(a) The volume of the sphere is V = %‘n‘r3 

‘The volume of the cone is V = %mz h. Since h = 2r, then 

Figure 6.10 Diagrams for 1 2 
Example 6.4 V= 5 ar?on) = 3 ) 

3 (VA 
Thus == 3 -9 

chne 3 ‘n-’-3 

3 

  

(b) The surface area of the cone is S = 712 + vl = 2 + mrl/s? + h2) 

Substituting h = 2r, gives S = 7r? + alr?+ 202) = w2 + w52 

= a1 + /5) 

The surface area of the sphere is § = 472 

2 Thus, Sone _ mHLA5) 1405 

For three line segments 1. For each set of three points, determine whether they are the vertices of a 
to form a triangle, their scalene, isosceles, or equilateral triangle. 

lengths must satisfy . C L 
Ty s @) (3,-1,5),(-4,0,2),(2,2, 1) 
theorem which states (D) (52545 =8ihles =55 =L (E8h =254)) 

that the sum of the i © (45.0,0,62,2.3 1) 
of a triangle must be (d) (a, b, 0), (b, ¢, a), (c, a, b) 

greater than the length of 

the third side. 2. Find the point on the y-axis that is a distance of vI0 from the point (1, 2, 3) 

& ' = 3. For each set of three points, determine whether or not they could be the 

N vertices of a triangle. 

atc>b (@) A(—1,2,3),B(1,4,5),C(5,4,0) 

breza (b) P2, 3,3, Q(1,2,4, R(3, ~8,2) 
4. Show that the points (0, 7, 10), (—1, 6, 6), and (—4, 9, 6) are the vertices of 

a right-angled isosceles triangle. 
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10. 

il 

12. 

13. 

14. 

. For each set of three points, determine whether they are collinear. 

(E9) {0 =1, =704 1L, =BIL (G5 = 113)) 

(b) (—2,0,4),(5, —1,1), (4, —6, 3) 

(@) (L8, =5 (=845 =1k(05,7,2) 

(d)F (233 ) (15233 (A NI 0) 

. Find the distance of each of these points from: 

(i) theorigin (i) thex-axis  (iii) the y-axis  (iv) the z-axis. 

(@) (2,6, -3) 

() 2,-v3,3) 

. PQRS is a parallelogram. Given that three of the vertices are P(6, —2, 4), 

Q(2, 4, —8), and R(—2, 2, 4), determine the coordinates of vertex S. 

. Consider the triangle with vertices X(2, 2, 3), Y(3, 7, 5), and Z(1, 4, —2). 

(a) Show that triangle XYZ is isosceles. 

(b) Find the exact area of triangle XYZ. 

. A line segment connecting two antipodal (diametrically opposite) points 

on a sphere will pass through the centre of the sphere. 

Points A(2, —7, —4) and B(6, 1, 2) are a pair of antipodal points on a 

sphere. Find the exact surface area and exact volume of this sphere. 

A rectangular wooden box has dimensions: 62 cm X 44 cm X 20 cm. 

Find the length (to the nearest whole cm) of the longest piece of straight 

wire that can be placed completely inside the box. 

A solid consists of a cone, cylinder and hemisphere joined together as 

shown in the diagram. Given the dimensions indicated in the diagram, 

find the volume and surface area of the solid, accurate to 3 significant 

figures. 

The midpoints of the sides of a triangle are (1, 5, —1), (0, 4, —2), and 

(2, 3, 4). Find the coordinates of the three vertices of the triangle. 

A sphere with radius r is inscribed in a cylinder such 

that the sphere is tangent to the bases of the cylinder 

and touches the inside of the cylinder along a circle. 

Find: 

(a) the ratio of the sphere’s volume to the cylinder’s 

volume. (@)
 

(b) the ratio of the sphere’s surface area to the cylinder’s surface area. 

A large building for storing grain consists of a cylinder with a cone on 

top (Figure 6.13). Given the dimensions indicated in the diagram, find 

the surface area and the volume of the building accurate to 3 significant 

figures. (The circular base is not included in the building’s surface.) 

Figure 6.11 Diagram 
for question 9 

16cm 7 

. - > 
5cm 

Figure 6.12 Diagram for 
question 11 

. 

50m 

12m 

Figure 6.13 Diagram for 
question 14 
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InIB notation, the 
symbol ABC denotes the 

angle with its vertex at 
point B, with one side 

of the angle containing 
point A and the other 

side containing point C. 

B b 

Figure 6.14 Conventional 
triangle notation 

sing__opposite 
1 hypotenuse 

cosf _ adjacent 

"1 hypotenuse 

tanf _ sinf _ opposite 
T cosf  adjacent 

  

Geometry and trigonometry 

15. A metal spike is made from a cube 18cm 

with a pyramid attached to one of 

the cube’s faces, as shown in the 

diagram. Given the dimensions 

indicated in the diagram, find the 18cm| 

exact volume and exact surface area 

of the spike. 

15cm 
  

         

Right-angled triangles and 
trigonometric functions of acute 
angles 

     Right-angled triang| 

The conventional notation for triangles is to label the three vertices with 

capital letters, for example A, B, and C. The same capital letters can be used 

to represent the angles at these vertices, but we will often use a Greek letter, 

such as « (alpha), B (beta), or 6 (theta) instead — as we did in Chapter 5. 

The corresponding lower-case letters, a, b, and c represent the lengths of the 

sides opposite the vertices. For example, b represents the length of the side 

opposite angle B - that is, the line segment AC (Figure 6.14). 

    Trigonometric functions of an acute angle 

‘We can use properties of similar triangles and the definitions of the sine, 

cosine, and tangent functions from Chapter 5 to define these functions in terms 

of the sides of a right-angled triangle. 

y 

(cos 6, sin )    
. 

& 
{f side opposite § 

& 

  

side adjacent   
Figure 6.15 Trigonometric functions defined in terms of the sides of a right-angled triangle 

The right-angled triangles shown in Figure 6.15 are similar triangles because 

corresponding angles are the same size: each has a right angle and an acute 

angle of 6. It follows that the ratios of corresponding sides are equal, allowing 

us to write these three proportions involving the sine, cosine, and tangent of 

the acute angle 6.



The definitions of the trigonometric functions in terms of the sides of a 

right-angled triangle follow directly from these three equations. 

Let fbe an acute angle of a right-angled triangle. Then the sine, cosine and tangent functions of 
the angle fare defined as: 

side opposite angle 6 
sinf = 

hypotenuse 
ide adjacent s Sdeadiacentangle 0 

hypotenuse 
_ side opposite angle 0 

side adjacent angle 6 
1t follows that the trigonometric functions of an acute angle are positive. 

It is important to understand that properties of similar triangles are the 

foundation of right-angled triangle trigonometry. Regardless of the size 

(i.e. lengths of the sides) of a right-angled triangle, so long as the angles don’t 

change, the ratio of any two sides in the right-angled triangle will remain 

constant. All the right-angled triangles in Figure 6.16 have an acute angle with 

ameasure of 30°. For each triangle, the ratio of the side opposite the 30° angle 

to the hypotenuse is exactly % 

In other words, the sine of 30° is always L This agrees with results from the 

previous chapter that an angle of 30° is eq\nvalent to T in radian measure. 

/@Aflfl 
Figure 6.16 Corresponding ratios of a pair of sides for similar triangles are equal 

Values of sine, cosine and tangent for common acute angles: 

sin30° = sin T =1 c0s30° = cos T= 13 tan30° = tan T = 3 
6 2 6 2 6 3 

inds® = sin T = V2 o — cos T =12 o tan T = sin 45 sm4 2 cos 45° co&4 3 tan 45 Oan4 1 

in60° = sin T = 3 o~ cosT— 1 o — T =3 sin 60" sin 3 2 cos 60" cos 3 2 tan 60" tan 3 V3 

Finding unknowns of right-angled triangles 

We can use Pythagoras” theorem and trigonometric functions to find the size 

of any unknown side or angle. We will use trigonometric functions in two 

different ways - to find the length of a side, and to find the measure of an 

angle. Finding unknowns in right-angled triangles using the sine, cosine and 

tangent functions is essential to finding solutions to problems in fields such as 

astronomy, navigation, engineering, and architecture. In Section 6.4, we will see 

how trigonometry can also be used to find missing parts in triangles that are 

not right-angled triangles. 

It is important that 
you are able to recall - 
withouta GDC - the 

exact trigonometric 
values for these common 

angles. 

Observe that 
sin 30° = cos 60° = 

sin 60° = cos 30° = 
and 

sin 45° = cos 45° = sl
 

wf
or
 

Complementary angles 
(sum of 90°) have equal 
function values for sine 

and cosine. That is, for 

all angles x measured in 
degrees: 
sinx = cos (90° — x) or 
sin(90° — x) = cosx. 

As noted in Chapter 5, 

itis for this reason that 
sine and cosine are called 

co-functions. 
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Figure 6.18 Solution to Example 
65 

200   

Angles of depression and elevation 

An imaginary line segment from an observation point O to a point P 

(representing the location of an object) is called the line of sight of P. If P 

is above O, the acute angle between the line of sight of P and a horizontal 

line passing through O is called the angle of elevation of P. If P is below O, 

the angle between the line of sight and the horizontal is called the angle of 

depression of P. This is illustrated in Figure 6.17. 

     angle of 

angle of 
clevation 

Figure 6.17 An angle of clevation or depression is always measured from the horizontal. Also, note that 
the angle of elevation from O to Pis equal to the angle of depression from Pto O 

Example 6.5 

Determine the lengths of the missing sides in triangle ABC given ¢ = 8.76 cm, 

angle A = 30° and the right angle is at C. Give exact answers when possible, 

otherwise give to an accuracy of 3 significant figures. 

e ———— ] 

  

Solution 

Sketch triangle ABC indicating the known measurements. 

From the definition of sine and cosine functions, we have: 

0sit 
AP = NS O ey 

hypotenuse ~ 8.76 

a= &75(%) =438 

adjacent b 
R B — B 

hypotenuse 8.7 

b = 8.76 cos 30° 

b= &76(%) ~ 7.586382537 ~ 7.59 

Therefore a = 4.38 cm, b ~ 7.59 cm and, it’s clear that angle B = 60°. 

‘We can use Pythagoras’ theorem to check our results for @ and b. 

a?+ b2 =c? = Va® + b2 =876



Be aware that the result for a is exactly 4.38 cm (assuming measurements given 

for angle A and side ¢ are exact), but the result for b can only be approximated. 

To reduce error when performing the check, we should use the most accurate 

value (i.e. most significant figures) for b possible. The most effective way to do 

this on your GDC is to use results that are stored to several significant figures. 

Example 6.6 

A man who is 183 cm tall casts a shadow 72 cm long on horizontal ground. 

What is the angle of elevation of the sun to the nearest tenth of a degree? 

e " . ' ' ]| 

Solution 

In Figure 6.20, the angle of elevation of the sun is labelled 6. 

GDC computation in degree mode. 

_ 183 
{imae) = —= 

72! 

= ! @) 0= tan (72 

0~ 68.5° 
The angle of elevation of the sun is approximately 68.5° 

Example 6.7 

During a training exercise, an Air Force pilot is flying his jet at a constant 

altitude of 1200 metres. His task is to fire a missile at a target on the ground. 

At the moment he fires his missile, he is able to see the target at an angle of 

depression of 18.5°. If the missile travels in a straight line, what distance will 

the missile cover (to the nearest metre) from the jet to the target? 

  

Solution 

Draw a diagram to 

represent the information 

and let x be the distance 

that the missile travels 

from the jet to the target. 

A right-angled triangle 

can be ‘extracted’ from s = 

the diagram with one side 

1200 metres, the angle 

opposite that side is 18.5°, and the hypotenuse is x. 

  

  

Applying the sine ratio, we can write the equation sin18.5°= @ 

_ 1200 
{lhen' = A 3781.85 

Hence, the missile travels approximately 3782 metres. 

  

8.76(v(3)/2) 
7.586382537 

S 

443g.586382537 
.382+B2 Ve ) g.76       

Figure 6.19 Using stored 
results on your GDC 

s 
< 

Ky 

  

> 
72cm 

Figure 6.20 Diagram for 
Example 6.6 

  
tan-1(183/72) 

68.52320902       

Figure 6.21 GDC screen for 
the solution to Example 6.6 

‘The notation for 

indicating the inverse of a 
function is a superscript 
of negative one. For 
example, the inverse of 
the tangent function 
is denoted as tan ! on 
your GDC. The negative 
one is not an exponent, 
50 it does not denote a 
reciprocal. 
tantxx tanx 
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Example 6.8 

A boat is sailing directly towards a cliff. The angle of elevation of a point on 

the top of the cliff and straight ahead of the boat increases from 10° to 15° as 

the ship sails a distance of 50 metres. Find the height of the cliff. 

] 

Solution 

  

Draw a diagram that accurately represents the information, with the height 

of the cliff labelled / and the distance from the base of the cliff to the later 
position of the boat labelled x. There are two right-angled triangles that can 

be extracted from the diagram. From the smaller triangle, we have: 

tan 15° :% = h = xtan15° 

From the larger triangle, we have: 

h 10° = 
ROy 

  = h = (x + 50) tan 10° 

We can solve for x by setting the two 

expressions for h equal to each other. 
Then we can solve for h by substitution. 

xtan 15° = (x + 50) tan 10° ) 

xtan 15° = xtan 10° + 50 tan 10° 

x(tan 15° — tan 10°) = 50 tan 10° 

__ 50tan10° 
T an15 —tan10° e 10| 

Substituting this value for x into 

h = xtan 15°, gives: 

h ~96.225 tan 15° ~ 25.783 

  
x+ 50 

Therefore, the height of the cliff is approximately 25.8 metres. 

Example 6.9 

Using a suitable right-angled triangle, find the exact minimum distance from 

the point (8, 3) to the line with the equation 2x — y + 2 = 0.



] 

Solution 

Graph the line with equation 2x — y + 2 = 0. The minimum distance from 

the point (8, 3) to the line is the length of the line segment drawn from the 

point perpendicular to the line. This minimum distance is labelled d in the 

diagram. d is also the height of the large yellow triangle formed by drawing 

vertical and horizontal line segments from (8, 3) to the line. 

The area of the right-angled triangle is A = —(—)(15) = 22—5 

The area of the triangle can also be found by using the 

hypotenuse as the base and the distance d as the height. 

By Pythagoras’ theorem, we have 

hypotenuse = (125) +152 = 1125 _ L‘/» = fl 
1 7z P 

d. We can solve for d 57 Thus, the area can also be expressed as A = 3 

  

by equating the two results for the area of the triangle. 
Figure 6.22 Solution to 

1545 225 Example 6.9 

2( 2 )d’T 
15/5 ,_ 225 

4 4 

225 4 = —s2ue= = 
4 15/5 

15 _15 V5 _15/5 =2=22.2=-222 =35 
V5 55 5 

Therefore, the minimum distance from the point (8, 3) to the line with 

equation 2x — y + 2 = 0is 3 /5 units. 

1. For each (a) to (f) 

(i) sketch a right-angled triangle corresponding to the acute angle 

(i) find the exact value of the other five trigonometric functions 

associated with the angle 

(iii) use your GDC to find the degree measure of § and the other acute 

angle (approximate to 3 significant figures). 

(b) cosh = B 
P 5 

(a) sinf = 3 3 (c) tanf =2 

203



204 

Geometry and trigonometry 

2. Find the exact value of 0 in degrees (0 < < 90°) and in radians 

(0 == g) without using your GDC. 

(a) cosf = % (b) sinf = % (© tanb=3 

. Find the values of x and y in each triangle. If possible, give an exact 

answer; otherwise, give the answer correct to 3 significant figures. X 

‘ 
*LA ?
 

l&
 

A
 

. Find the size of the angles & and 3 in degrees. If possible, give an exact 

answer; otherwise, give your answer correct to 3 significant figures. 

(c) 121 o (d) 
44 

© 
V28 

v7 

\7 

A > 

\ 

. The tallest tree in the world is reputed to be a giant redwood named 

Hyperion located in Redwood National Park in California, USA. Ata 

point 41.5 metres from the centre of its base and on the same elevation, 

the angle of elevation of the top of the tree is 70°. How tall is the tree? 

Give your answer to 3 significant figures. 

. The Eiffel Tower in Paris is 300 metres high (not including the antenna 

on top). What is the angle of elevation of the top of the tower from a 

point on the ground (assumed level) that is 125 metres from the centre 

of the tower’s base?



7 

10. 

10 

12. 

13, 

14. 

A 1.62m tall woman, standing 3 metres from a streetlight, casts a 2 m 

shadow. What is the height of the streetlight? 

. A pilot measures the angles of depression to two ships to be 40° and 52°. 

The pilot is flying at an elevation of 10 000 metres. Find the distance 

between the two ships. 

* 
N 

    

10 000m 

   
L ke ki 

pm—— 

. Find the size of all three angles in a triangle with sides of length 

8cm, 8 cm, and 6 cm. 

A boat is sighted from a 50-metre observation tower on the shoreline 

at an angle of depression of 4° moving directly towards the shore ata 

constant speed. Five minutes later the angle of depression of the boat is 

12°. What is the speed of the boat in kilometres per hour? 

  

Find the length of x indicated in Figure 6.23. Give your answer to 

3 significant figures. 

A support wire for a tower is connected from an anchor point on level 

ground to the top of the tower. The straight wire makes a 65° angle with 

the ground at the anchor point. At a point 25 metres farther from the 

tower than the wire’s anchor point and on the same side of the tower, the 

angle of elevation to the top of the tower is 35°. Find the wire length to 

the nearest tenth of a metre. 

A 30-metre high building sits on top of a hill. The angles of elevation of 

the top and bottom of the building from the same spot at the base of the 

hill are measured to be 55° and 50° respectively. How high is the hill to 

the nearest metre? 

The angle of elevation of the top of a vertical pole as seen from a point 

10 metres away from the pole is double its angle of elevation as seen 

from a point 70 metres from the pole. Find the height (to the nearest 

tenth of a metre) of the pole above the level of the observer’s eyes. 

x 

D 
«—67m—»> 

Figure 6.23 Diagram for 
question 11 
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Geometry and trigonometry 

15. Angle ABC of a right-angled triangle is bisected by segment BD. The 

lengths of sides AB and BC are given in Figure 6.24. Find the exact 

length of BD, expressing your answer in its simplest form. 

  

10 
D 

16. In ’Ehe diag/{am, C B A 

DEC = CEB = x° and 

A G % CDE = BEA = 90°, 1 
Figure 6.24 Diagram CD = 1 unit, DE = 3 units. 

for question 15 By writing DEA in terms D g Y 

of x, find the exact value of 

cos(DEA). 

17. For any point with coordinates (p, g) and any 

line with equation ax + by + ¢ = 0, find a 

formula in terms of g, b, ¢, p, and q that gives 

the minimum (perpendicular) distance, d, 

from the point to the line. 

d . — 
cota — cotf3 

(b9 

     ax+by+c=0 

18. A spacecraft is travelling in a circular orbit 200 km above the surface 

of the Earth. Find the angle of depression (to the nearest degree) from 

the spacecraft to the horizon. Assume that the radius of the Earth is 

6400 km. The ‘horizontal’ line through the spacecraft from which the 

angle of depression is measured will be parallel to a line tangent to the 

surface of the Earth directly below the spacecraft. 

orbit 

  206



Trigonometric functions of any angle 

In this section we will extend the trigonometric ratios to all angles, allowing us 

to solve problems involving any size angle. 

Defining trigonometric functions for any angle in 

standard position 

  

Consider the point P(x, y) on the terminal side of an angle § in standard 

position (Figure 6.25) such that r is the distance from the origin O to P. If 6 is 

an acute angle, then we can construct a right-angled triangle POQ (Figure 6.26) 

by dropping a perpendicular from P to a point Q on the x-axis. It follows that: 

  

  

—— oo o 4 
sinf == cosf = tana—;(x:o) 

¥ ¥ 

P(x, y) P(x, y) 

r r 
34 

9 9 

0| x o0 x Q x 

Figure 6.25 Angle 6 in standard position Figure 6.26 6 is an acute angle in APOQ Figure 6.27 Similar right- 

angled triangles POQ and 
Extending this to angles other than acute angles allows us to define the POQ’ 

trigonometric functions for any angle - positive or negative. It is important to 

note that the values of the trigonometric ratios do not depend on the choice of 

the point P(x, y). If P'(x',y') is any other point on the terminal side of angle 6, as 

in Figure 6.27, then triangles POQ and P'OQ" are similar and the trigonometric 

ratios for corresponding angles are equal. 

  
Example 6.10 

Find the sine, cosine and tangent of an angle « that contains the point 

(=3, 4) on its terminal side when in standard position. 

  

Solution 

r=xty =3+ 8 =y25=5 

Then, sina 

a o 2 ] Il 
R
N
 
2
R
 

NI
 

  
tana 

  

W
l
 

Gl
w 
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Figure 6.28 Reference triangle for computing trigonometric 
values for angle @ 

  

Figure 6.30 Solution to 
Example 6.11 
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Note that for the angle « in Example 6.10, we can form a 

right-angled triangle by constructing a line segment from 

the point (—3, 4) perpendicular to the x-axis, as shown 

5 in Figure 6.28. Clearly, § = 180° — . Furthermore, the 

values of the sine, cosine, and tangent of the angle 6 are 

1 /6\ the same as those for the angle a, except that the sign 

  

3 may be different. 
y 

11 1 

(x,y) 
. . . i sine + sine + 

Since all trigonometric functions are cosine — connert 

associated with either the x-coordinate tangent — tangent + 

(cosine), the y-coordinate (sine), or both St Gine — 

x- and y-coordinates (tangent) of a point on cosine — cosine + 

the terminal side of the angle, then the sign mngen;l;' t[a‘l;gent - 

of a trigonometric function will be positive 

or negative according to which quadrant it Figure 6.29 Sigas of trigonometric 

lies in, as shown in Figure 6.29. function values in each quadrant 

Example 6.11 

Find the sine, cosine and tangent of the obtuse angle that measures 150°. 

S 

Solution 

The terminal side of the angle forms a 30° angle with the x-axis. The sine 

values for 150° and 30° will be exactly the same, and the cosine and tangent 

values will be the same but of opposite sign. 

We know that sin 30° = l, CosiS08 = E 
7 2 

3 
tan 30° = — and tan 3 3 

‘Therefore, sin 150° = %, cos 150° = 7§and tan 150° = 7@ 

Example 6.11 illustrates three trigonometric identities for angles whose sum is 

180° (i.e. a pair of supplementary angles). The following identities are true for 

any acute angle 6: 

sin (180° — 0) =sin@®  cos(180° — ) = —cos#  tan(180° — #) = —tan 6 

These identities are equivalent to ones in radian measure (180° = 7). 

Example 6.12 

Given sinf = 1—53, 90° < 6 < 180°, find the exact values of cosf and tan 6.



  

Solution 

0 1is an angle in the 2nd quadrant. 

It follows from the definition 

sinf = }—rlthat with 6 in standard 

  

position, there must a be a point 

on the terminal side of the angle that is 13 units from the origin (r = 13) and 

has a y-coordinate of 5, as shown in the diagram. 

Thus, x = V132 — 52 = /144 = 12. Because 6 s in the 2nd quadrant, the 

x-coordinate of the point is negative; thus, x = —12. 

_-n2__1n 5 __5 Therefore, cosf = 3 3 and tan 6 =5 2 

Example 6.13 

(a) Find the acute angle with the same sine ratio as (i) 135° and (ii) 117° 

(b) Find the acute angle with the same cosine ratio as (i) 300° and (ii) 342° 

  

Solution 

(a) (i) Angles in the 1st and 2nd 

quadrants have the same 

sine ratio. Hence, the identity 

sin (180° — 6) = sinf. 

Since 180° — 135° = 45°, 

then sin 135° = sin 45° 

(ii) Since 180° — 117° = 63°, then sin 117° = sin 63° 

  

(b) (i) Angles in the 1st and 4th quadrants 

have the same cosine ratio. Hence, 

the identity cos (360° — 6) = cos 6. 

Since 360° — 300° = 60°, then 

€05 300° = cos 60° 

(ii) Since 360° — 342° = 18°, then 

€0s 342° = cos 18° 

Areas of triangles 

We are familiar with the standard formula for the area of a triangle, 

area = % X base X height ( - %bh), where the base, b, is a side of the 

  

triangle and the height, &, (or altitude) is a line segment perpendicular to the 

base (or the line containing it) and drawn to the vertex opposite the base, as 

shown in Figure 6.31. 
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—r— 

Figure 6.31 Area of a triangle 

A=t 
2 

c A — 
Figure 6.32 An acute triangle 

For a triangle with sides 
of lengths aand band 

included angle C: 
areaof A = %absinc. 

For any triangle labelled 
in the manner of the 

triangles in Figures 6.32 
and 6.3, its area is given 
by any of the expressions. 

2 = 

D> 

cm 

4 

Figure 6.34 Diagram for 
Example 6.14 p 

A 

5 Y 

¥ 

Figure 6.35 Solution for 
Example 6.14 
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If the lengths of two sides of a triangle and the measure of the angle between 

these sides (often called the included angle) are known, then the triangle is 

unique and has a fixed area. Hence, we should be able to calculate the area from 

just these measurements - two sides and the included angle. This calculation is 

quite straightforward when the triangle is a right-angled triangle and we know 

the lengths of the two legs on either side of the right angle. 

Let’s develop a general area formula that will apply to any triangle — right- 

angled, acute, or obtuse. For triangle ABC shown in Figure 6.32, suppose we 

know the lengths of the two sides a and b and the included angle C. If the 

height is h, then the area of ABC is % bh. From trigonometry, we know that 

sinC = %, or h = asinC. Substituting a sinC for h 

! L1y 1 
gives area =5 bh 3 blasinC) 3 absinC. 

If the angle C is obtuse, then from 

Figure 6.33 we see that sin(180° — C) = %. 

So, the height is b = asin (180° — C). 

However, sin (180° — C) = sinC. Thus, 

  

h = asinC and, again, area= % absinC. 

Figure 6.33 An obtuse triangle 

Lo sincimL g = Lcsi areaofA—zabsmC 2ucsmB 2bcsmA 

These three equivalent expressions will prove to be helpful for developing an 

important formula (the sine rule) for solving non-right-angled triangles in the 

next section. 

Example 6.14 

The circle shown has a radius of 1 ¢cm and the central angle 6 subtends an arc 

of length 2?‘” cm. Find the area of the shaded region (a segment of the circle). 

— - 

Solution 

The formula for the area of a sector is A = % r2f where 6 is the central 

angle in radians. Since the radius of the circle is 1, the length of 

the arc subtended by 6 is the same as the size of 6. Thus, area of sector 

=1 (1)2(2—7T) = T cm?. The area of the triangle formed by the two radii and 
2 3 

; 1 . (2m\ _1(V3 ) V3 
the chord is equal to 2(1)(1)51[1( 3 ) S 2( > 2 

We find the area of the shaded region (segment) by subtracting the area 
—33 

of the triangle from the area of the sector. Area= %T - g or % 

or approximately 0.614 cm? (3 s.f.)



Example 6.15 

Show that it is possible to construct two different triangles with an area of 

35 cm? that have sides measuring 8 cm and 13 cm. For each triangle, find 

the size of the (included) angle between the sides of 8 cm and 13 cm to the 

nearest tenth of a degree. 

- 

Solution 

We can visualise the two different triangles with equal areas: one with an 

acute included angle (@) and the other with an obtuse included angle (). 

area = % (side)(side)(sine of included angle) = 35 cm? 
Your GDC will give only 

= Lg)13)sing) = 35 the acute angle value for 
2 the sin”! function. 

52sina = 35 

sina = 5] 
52 13 

a= si.n"(fi) 
52, 

= 42.3° (to the nearest tenth of a degree) s 

Knowing that sin(180° — @) = sina, the obtuse angle 3 is equal to 

180554238 —8137:78 13 

Therefore, there are two different triangles with sides 8 cm and 13 cm and 

an area of 35 cm?, one with an included angle of 42.3° and the other with an . i 8 

included angle of 137.7° Flgure .36 Solution for Example 6.15 

uations of li and angles between two lines 

Recall that the gradient m of a non-vertical line is defined as 

_h vertical change 
m   

% =% horizontal change 

The equation of the line shown in Figure 6.37 has a gradient m = % anda 

y-intercept of (0, —1). So, the equation of the line is y = %x — 1. We can find 

the size of the acute angle 6 between the line and the x-axis by using the 

tangent function (Figure 6.38). 

fixF1 

   2 
=k 

Figure 6.37 Theline y = %x -1 Figure 6,38 Angle between y = %x — 1 and x-axis 
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Figure 6.39 Theline y = —%x +1 

212 

0= tan'om) = tan"(%) ~266° 

Clearly, the gradient, m, of this line is equal to tan 6. If we know 

the angle between the line and the x-axis, and the y-intercept (0, ¢, 

we can write the equation of the line in gradient-intercept form as 

y = (tanfx + ¢ 

Before we can generalise for any non-horizontal line, let’s look at 

a line with a negative gradient. 

The gradient of the line is 7%. In order for tan 6 to be equal to the gradient of 

the line, the angle § must be the angle that the line makes with the x-axis 

in the positive direction, as shown in Figure 6.39. In this example, 

6= tan"'(m) = tan"( *%) A2 —26. 6°. Remember, a negative angle indicates 

a clockwise rotation from the initial side to the terminal side of the angle. 

Ifaline has a y-intercept of (0, ¢) and makes an angle of 6 with the positive direction of the x-axis, 
such that —90° < 6 < 907, then the gradient of the line is n = tanf and the equation of the line 
isy = (tanblx + c. 

‘The angle this line makes with any horizontal ine will be 6. 

‘We will now use triangle trigonometry to find the angle between any two 

intersecting lines - not just for a line intersecting the x-axis. Any pair of 

intersecting lines that are not perpendicular will have both an acute angle and 

an obtuse angle between them. When asked for an angle between two lines, 

the convention is to give the acute angle. 

Example 6. 

Find the acute angle between the lines y = 3xand y =   X 

| 

Solution 

The angle between the line y = 3x 

and the positive x-axis is a, and the 

angle between the line y = —xand 

the positive x-axis is 8. 

a = tan"13) ~ 71.565° 

B=tan (=1 = —45° 

The obtuse angle between the two lines 

isa — B~ 71.565° — (—45°) &~ 116.565° 

  
Therefore, the acute angle 6 between 

the two lines is § ~ 180° — 116.565 ~ 63.4°



Example 6.17 

Find the acute angle between the lines y = 5x — 2and y = Ll 

| 

Solution 

A horizontal line is drawn through 

the point of intersection. 

The angle between y = 5x — 2 and this 

horizontal line is a, and the angle between 

V= %x — 1 and this horizontal line is 3. 

a = tan~!(5) & 78.690° and 

= tan (1) ~ 18435 B =tan ( 3) 8.435 

  

The acute angle 0 between the two lines 
is 0 = a — B~ 78.690° — 18.435° ~ 60.3° 

We can generalise the procedure for finding the angle between two lines as follows. 

Given two non-vertical lines with equations of y; = mx + ¢; and 

¥2 = myx + ¢y, the angle between the two lines is |tan~}(m,) — tan~!(m;)|. 

This angle may be acute or obtuse. 

Example 6.18 

(a) Find the exact equation of line L, that passes through the origin and 

makes an angle of —60° (or 120°) with the positive direction of the x-axis. 

(b) The equation of line L, is 7x + y + 1 = 0. Find the acute angle between 
Lyand L,. 

Solution 

(a) The equation of the line is given by 

  

  

y = (tanfO)x 

= [tan(— 60°)]x = sl (2605) 
cos (—60°) 

3 
ol < (=v3)x 

2 

Therefore, the equation of L, is 

y=(=V3lxory = —x/3 

Remember: tan(—60°) = tan 120° = —/3 
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H 3 G 

Figure 6.40 Diagram for 
Example 6.19 

  

G ‘M 
1 

Figure 6.41 Solution to 
Example 6.19 

214 

() L:7x+y+1=0=y=—7x—1 

01is the acute angle between L, and L,. 

0= |tan~'(m,) — tan~}(m,)| 

= |tan~(—v3) — tan~1(=7)| 

= O~ —60° — (—81.870°) ~ —21.87° 

Therefore, the acute angle between 

the lines is 21.9° (3 s.f.) 

  

In many problems, it is necessary to calculate lengths and angles in three- 

dimensional structures. It is very important to analyse the three-dimensional 

diagram carefully and to extract any relevant triangles to find the missing 

angle(s) or length(s). 

Example 6.19 

The diagram shows a pyramid with a square base. It is a right pyramid, so 

the line segment (the height) drawn from the top vertex A perpendicular to 

the base will intersect the square base at its centre C. Each side of the square 

base has a length of 2 cm and the height of the pyramid is also 2 cm. Find: 

(a) the size of AGF 

(b) the total surface area of the pyramid. 

1 

Solution 

(a) Label the midpoint of [GF| as point M and draw two line segments, [CM] 
and [AM]. Since C is the centre of the square base, then CM = 1 cm. 

Extract right-angled triangle ACM to find the length of [AM]. 

AM =12+ 2> = /5 [AM]is perpendicular to [GF] 

Extract right-angled triangle AMG and use the tangent ratio to find AGM. 

tan(AGM) = g 

AGM = AGF = tan"!(//5) ~ 65.905° 

‘Therefore, AGF ~ 65.9° 

(b) The total surface area comprises the square base plus four identical 

lateral faces that are all equilateral triangles. Triangle AGM is one-half 

the area of one of these triangular faces. 

Area of triangle AGM = %(l)(\/g) B g e 

Area of triangle = AGF = 2(%) =5 

Surface area = area of square base + area of 4 lateral faces= 22 + 4 /5 

=4+4/5~1294cm?



1. In each diagram, find the exact value of the three trigonometric 

functions of the angle 6. Simplify your answers. 

  

(a) z (b) y 

(12,9) (~35,12) 

i [ 
0 X 0 X 

(©) b/ (d) b 

  

/3] 
N : 0 : 

{=n (—V75,-3)     
2. Without using your GDC, determine the exact values of all three 

trigonometric functions for each angle. 

(a) 120° (b) 135° (c) 330° (d) 270° (e) 240° 

5 T 7 SN N 3w ®F @I wZ @ -w G- 
) 5?" O 210 -7 @ (0) 4257 

3. Given that cosf = %, 0° < 6 < 90°, find the exact values of the 

other two trigonometric functions. 

4. Given that tanf = 7%, sinf < 0, find the exact values of sin 6 and cos 6. 

5. Given that sinf = 0, cosf < 0, find the exact values of the other two 

trigonometric functions. 

6. (a) Find the acute angle with the same sine ratio as 

(i) 150°, and (ii) 95° 

(b) Find the acute angle with the same cosine ratio as 

(i) 315°, and (ii) 353° 

(c) Find the acute angle with the same tangent ratio as 

(i) 240°, and (ii) 200° 
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Geometry and trigonometry 

10. 

il 

23 

5% 

14. 

. Find the area of each triangle. Express the area exactly, or, if not possible, 

express it correct to 3 significant figures. 

(a) . ' (b) () -' 

A 90 

6 

. Triangle ABC has an area of 43 cm?. The length of side AB is 12 cm and 

the length of side AC'is 15 cm. Find the degree measure of angle A. 

. A chord AB subtends an angle of 120° at O, the centre of a circle with 

radius 15 centimetres. Find the area of (a) the sector AOB, and (b) the 

triangle AOB. 

Find the area of the shaded region in each circle. 

(a) (b) 

‘ 

Two adjacent sides of a parallelogram have lengths a and b and the angle 

between these two sides is 6. Express the area of the parallelogram in 

terms of a, b, and 6. 

For the triangle shown, express y 

in terms of x. 

—x——>————x—> 

G]J bisects FGH such that G 

FGJ] = HGJ = 6. 
Express x in terms of &, h db f 

f,and cos#. 

P T H 

s is the length of each side of a regular polygon with # sides and r is the 

  radius of the circumscribed circle. Show that s = 2r sin( ISnO )



15. A triangle has two sides of lengths 6 cm and 8 cm and an included angle x. 

(a) Express the area of the triangle as a function of x. 

(b) State the domain and range of the function and sketch its graph for a 

suitable interval of x. 

(c) Find the exact coordinates of the maximum point of the function. 

What type of triangle corresponds to this maximum? Explain why 

this triangle gives a maximum area. 

16. Find the angle that the line through the given pair of points makes with 

the positive direction of the x-axis. 

(a) (1,4)and (—1,2) (b) (=3, 1)and (6, —5) 

(©) (z, %) and (—4, —10) 

17 Find the acute angle between the two given lines. 

(@) y= —2xandy =x () y= —3x+5andy =2x 

The sine rule and the cosine rule 

So far, we have used trigonometry to find an unknown angle or side of a right- 

angled triangle. We will now study methods for finding unknown lengths and 

angles in triangles that are not right-angled triangles. These general methods 

are effective for solving problems involving any kind of triangle - right-angled, 

acute or obtuse. 

Possible triangles constructed from three given parts 

We need to know at least three parts of a triangle to solve for other unknown parts. 

Different arrangements of the three known parts can be given. Before solving for 

unknown parts, it is helpful to know whether the three known parts determine a 

unique triangle, or more than one possible triangle. Table 6.2 summarises the five 

different arrangements of three parts and the number of possible triangles for each. 
  

  

  

  

  

        

Known parts Number of possible triangles 
Three angles (AAA) Infinite triangles (not possible to solve) 

Three sides (SSS) | One unique triangle 
(sum of any two must be greater than the third) 

Two sides and their included angle (SAS) One unique triangle 

Two angles and any side (ASA or AAS) One unique triangle 
Two sides and a non-included angle (SSA) No triangle, one triangle or two triangles 
  

Table 6.2 Possible triangles formed with three known parts 

Arrangements ASA, AAS, and SSA can be solved using the sine rule, whereas 

arrangements SSS and SAS can be solved using the cosine rule. 
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Geometry and trigonometry 

The sine rule 

In Section 6.3, we showed that we can write three equivalent expressions for the 

area of any triangle for which we know two sides and the included angle. 

Areaof A = %absi.nc = %acsinB = %bcsinA 

Divide each expression by % abc: 

%ubsinC _ %acsinB _ %bcsinA 

1 1 1 
3 abc 3 abc 3 abc 

‘We obtain the following three equivalent ratios — each containing the sine of an 

angle divided by the length of the side opposite the angle. 

If A, B, and Care the angle measures of any triangle and a, b, and ¢ are, respectively, the lengths of 
the sides opposite these angles, then, according to the sine rule: 

sinA _ sinB _ sinC 
e b a0 B o 

Alternatively, the sine rule can also be written as —- = — = —— 
sinA  sinB  sinC 

   

Finding unknowns given two angles and any side 

(ASA or AAS) 

  

‘When we know two angles and any side of a triangle, we can use the sine rule 

to find any of the other angles or sides of the triangle. 

Example 6.20 

Find all the unknown angles and sides of triangle DEF shown in the 

diagram. Give all measurements correct to 1 decimal place. 

Figure 6.42 Diagram for | 

Example 6.20 Solution 

The third angle of the triangle is 

D= 808 B E =802 28103145522 38154138 

‘We can write an equation using the sine rule to solve for e 

sin22.3° _ sin103.4° 

  

  

L) i 

_ 11.9sin103.4° _ 
‘When using your GDC to T 

find angles and lengths ) g’ ) ) ) 
with the sine rule (or the ‘We can write another equation using the sine rule to solve for d 

cosine rule),remember §in22.3° _ sin54.3° 
to store intermediate 19 d 

answers on the GDC for ‘11 e 
greater accuracy. i Lfl ~ 25.467 cm 

By not rounding until the sin22.3 

e Therefore, the other parts of the triangle are: the amount of rounding 
e D = 54.3° e~ 30.5cm and d ~ 25.5cm 
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Example 6.21 

A tree on a sloping hill casts a shadow 45 metres down the slope of the hill. 

The gradient of the hill is % and the angle of elevation of the sun is 35°. 

How tall is the tree, to the nearest tenth of a metre? 

  

Solution 

ais the angle that the hill makes with the horizontal. We can work out its 

size using the inverse tangent of % = é 

a= tan"(é) ~ 11.3099° 

  

  

The height of the tree is h. The angle of elevation of the sun is the angle 

between the sun’s rays and the horizontal. In the diagram, this angle of 

elevation is the sum of @ and B. Thus, B~ 35° — 11.3099° ~ 23.6901° 

If a line segment is dropped from the base of the tree perpendicular to the 

length of 60 m, then we can sketch a right-angled triangle with a + 8 = 35° 

as one of its acute angles; the other acute angle — and the angle in the obtuse 

triangle opposite the side of 45 metres — must be 55°. We can apply the sine 

rule for the obtuse triangle to solve for h. 

sin237° _ sin55°_ , _ 455in23.7° 
R 45 " s 

Therefore, the tree is approximately 22.1 metres tall. 

= 22.0809 

Two sides and a non-included angle 

(SSA) — the ambiguous case 

  

The SSA arrangement - two sides of a triangle and the size of an angle not 

between these two sides — can produce three different results: no triangle, 

one unique triangle, or two different triangles. 
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Example 6.22 

Find all of the unknown angles and sides of triangle ABC where 

a=35cm, b =50cm,and A = 30°. Give all measurements correct 

to 1 decimal place. 

  

Solution 

Here are the three parts we have in our attempt to construct triangle ABC: 

B = 35cm C 

  

A b= 50cm C A 30   

We attempt to construct the triangle, as shown. First draw angle A with its 

initial and terminal sides extended. Then measure off the known side 

b = AC = 50 on the terminal side. To construct side a (opposite angle A), 

we take point C as the centre and with radius @ = 35 we draw an arc of a 

circle. The points on this arc are all possible positions for vertex B. Point 

B must be on the base line, so B can be located at any point of intersection 

of the circular arc and the base line. In this instance, with these particular 

measurements for the two sides and non-included angle, there are two points 

of intersection, which we label B, and B,. 

base line 

  

Therefore, we can construct two different triangles, triangle AB,C and 

triangle AB,C. Angle B, is acute and angle B, is obtuse. To complete the 

solution of this problem, we need to solve each of these triangles. 

Solve triangle AB,C: 

We can solve for acute angle B, using the sine rule. 

 



sin 30° _ sin B   
35 50 

sin B, — 50sin 30° _ 5000.5) 
! 35 35 

e sin"(%) ~ 45.5847° 

Then, C ~ 180° — 30° — 45.5847° ~ 104.4153° 

‘With another application of the sine rule, we can solve for side c;. 

sin30° _ sin104.4153° 
35 C} 

¢ 35510104, 4153° _ 35(0.96852) 
. sin 30° 0.5 

Therefore, for triangle AB,C: B, ~ 45.6°, C ~ 104.4° and ¢, ~ 67.8 cm 

~ 67.7964 cm 

Solve triangle AB,C: 

Solving for obtuse angle B, using the sine rule gives the same result as above, 

except we know that 90° < B, < 180°. We also know that sin(180° — ) = 

sinf. 

Thus, B, = 180° — B, ~ 180° — 45.5847° ~ 134.4153° 

Then, C ~ 180° — 30° — 134.4153° ~ 15.5847° 

Applying the sine rule again, we can 

solve for side c,. 

5in30° _ sin 15.5847° 
35 o 

o~ 355in15.5847°  35(0.26866) 
T sin30° 05 

~ 18.8062 cm 

Therefore, for triangle AB,C: B, ~ 134.4°, C ~ 15. 6° and ¢, ~ 18.8 cm 

  

We will now take a more general look and examine C four different cases 

all the possible conditions and outcomes for the SSA 

arrangement. In general, we are given the lengths of 

two sides - call them a and b - and a non-included 

angle; for example, angle A that is opposite side a. 

From these measurements, we can determine the 

number of different triangles. Figure 6.43 shows the 

four different possibilities (or cases) when angle A 

is acute. The number of triangles depends on the 
lenglh of side a. Figure 6.43 Four distinct cases for SSA when angle A is acute 

  
In case 2, side a is perpendicular to the base line resulting in a single right- 

angled triangle, shown in Figure 6.44. In this case, sin A = %and a=bsinA. 
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A 

Figure 6.44 Case 2 for SSA: 

a = bsin A, one right angle 

Given the length of 
sides aand band the 

non-included angle A is 
acute, the four cases and 
resulting triangles shown 

in Table 6.3 can occur. 

  

a<b— notriangle 

Figure 6.45 Angle A is obtuse 

C 

50cm 

e AN 
Figure 6.46 Diagram for 
solution to Example 6.23 

25cm 

A B 
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In case 1, a is shorter than it is in case 2, i.e. bsin A. In case 3, which occurred 

in Example 6.22, a is longer than bsin A, but less than b. And, in case 4, a is 

longer than b. These results are summarised in Table 6.3. Because the number 

of triangles may be none, one, or two, depending on the length of a (the side 

opposite the given angle), the SSA arrangement is called the ambiguous case. 

     

  

  

  

a<bsinaA No triangle 1 
a=bsinA One right-angled triangle 2 
bsinA<a<b Two triangles 3 
a>b One triangle 4           

Table 6.3 Possible triangles formed with two known sides and an acute non-included angle 

The situation is considerably simpler if angle A is obtuse rather than acute. 

Figure 6.46 shows that if a > b then there is only one possible triangle, and if 

a < b then no triangle is possible that contains angle A. 

Example 6.23 uses the same SSA information given in Example 6.22 with the 

exception that side a is not fixed at 35 cm, but is allowed to vary. 

Example 6.23 

For triangle ABC, side b = 50 cm and angle A = 30°. Find the values for the 

length of side a that will produce: (i) no triangle, (ii) one triangle, (iii) two 

triangles. 

1 

Solution 

Because this is an SSA arrangement (ambiguous case) and given A is an 

acute angle, then the number of different triangles that can be constructed 

depends on the length of a. 

First calculate the value of bsin A: bsin A = 50sin 30° = 50(0.5) = 25cm 

Thus, if a is exactly 25 cm, triangle ABC is a right-angled triangle. 

(i) When a < 25 cm, there is no triangle. 

(ii) When a = 25 cm, or a > 50 cm, there is one unique triangle. 

(iii) When 25cm < a < 50 cm, there are two different possible triangles. 

  
Example 6.24 

The diagrams show two different Triangle 1 Triangle 2 

triangles both satisfying the conditions: K K 

HK = 18cm, JK = 15cm, JAK = 53° 

(a) Calculate the size of HfK in 

triangle 2. 

(b) Calculate the area of triangle 1. " 7 " i



] 

Solution 

18 sin 53° = sin(HTK) = =   H] K) Saiit 3y ~ 095836 From the sine rule, sin (T 15 

= sin~'(0.95836) ~ 73.408° 

However, Hf K > 90° = HTK ~ 180° — 73.408° ~ 106.592° 

Therefore in triangle 2, HJK ~107° (3 s.£) 

In triangle 1, HTK < 90° = HJK ~ 73.408° 

= HRJ ~ 180° — (73.408° + 53°) ~ 53.592° 

Area = %(18)(15)5@53592“) ~108.649 cm? 

Therefore, the area of triangle 1 is approximately 109 cm? (3 s.f.) 

The cosine rule 

  

Two arrangements remain in our list (Table 6.2) of different ways to arrange 

three known parts of a triangle. If three sides of a triangle are known (SSS 

arrangement), or two sides of a triangle and the angle between them are known 

(SAS arrangement), then a unique triangle is determined. However, in both of 

these cases the sine rule cannot be used to work out the unknowns in the triangle. 

For example, it is not possible to set up an equation using the sine rule to solve 

triangle PQR or triangle STU in Figure 6.47 

Trying to solve APQR: 

% = % = two unknowns; cannot solve for angle P or angle R 

Trying to solve ASTU: 

sin 80° _ sinU 

t 13 
    = two unknowns; cannot solve for angle U or side ¢ 

We will need the cosine rule to solve triangles with SSS and SAS arrangements. 

To derive this law, we need to place a general triangle ABC in the coordinate 

plane so that one of the vertices is at the origin and one of the sides is on the 

positive x-axis. Figure 6.48 (top of next page) shows both an acute triangle ABC 

and an obtuse triangle ABC. In both cases, the coordinates of vertex A are 

x = bcos Cand y = bsin C. Because c is the distance from A to B, we can use 

the distance formula to write the following: 
  

distance between =(bcosC — a)* + (bsinC — 0) 

(bcosC, bsinC) and (a, 0) 

squaring both sides c2=(bcosC — a)* + (bsinC — 0)? 

expand brackets c2=b?cos’C — 2abcosC + a® + b?sin>C 

take out common factor of b? ¢ = b*cos?C + sin?C) — 2abcos C + a? 

from two terms 

Q 
6m 

B 4m 

sm 
R 

U 

17cm t 

50° 
T em S 

Figure 6.47 Two triangles that 
cannot be solved with the sine 
rule 
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¥ 

b, 

oo a 

y 
A(b cos C, bsin C) 

¢ 

(0,0) a 

  

  
Figure 6.48 Deriving the cosine rule 

17cm ¢ 

80° 
T S 

13cm 

Figure 6.50 Diagram for 
Example 6.25 
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A(bcos C, bsin C) 

Geometry and trigonometry 

apply trigonometric identity c2=b?—2abcosC + a? 

cos? 0+ sin2 0 =1 

rearrange terms c2=a*+ b*—2abcosC 

This equation gives one form of the cosine rule. Two other forms 

are obtained in a similar manner by having either vertex A or 

Bla.0)% vertex B, rather than C, located at the origin. 

It is helpful to understand the underlying pattern of the cosine 

rule when applying it to solve for parts of triangles. The pattern 

relies on choosing one particular angle of the triangle and then 

identifying the two sides that are adjacent to the angle and the 

one side that is opposite to it (Figure 6.49). The cosine rule can 

be used to solve for the chosen angle or the side opposite the 

B(@0) X chosen angle. 

B side opposite the 
chosen angle chosen angle 

¢ =a'+ b —2abcosC 

one side other side 
adjacent to the adjacent to the 
chosenangle  chosen angle 

Figure 6.49 Applying the cosine rule 

Finding unknowns given two sides and the included 

angle (SAS) 

  

If we know two sides and the included angle, we can use the cosine rule to solve 

for the side opposite the given angle. Then it is best to solve for one of the two 

remaining angles using the sine rule. 

Example 6.25 
  

Find all of the unknown angles and sides of triangle STU. Give all 

measurements to 1 decimal place. 

e 

Solution 

‘We first solve for side ¢ opposite known angle stu using the cosine rule. 

2 =132 + 172 — 2(13)(17)cos 80° 

t = /137 + 172 = 2(13)(17)cos 80° 

t~19.5256 

Now use the sine rule to solve for one of the other angles, say TSU



sinTSU _ sin80°     
17 195256 

N 7 sin 80 

sinTSU = 0 5256 
S l7sin80") 
i ( 19.5256 

TSU ~ 59.0288° 

Then, SUT ~ 180° — (80° + 59.0288°) ~ 40.9712 

Therefore, the other parts of the triangle are t ~ 19.5 cm, TSU ~ 59.0° and 

SUT ~ 41.0° 

You may have noticed that the cosine rule looks similar to Pythagoras’ theorem. In fact, 
Pythagoras’ theorem can be considered a special case of the cosine rule. When the chosen angle in 
the cosine rule is 90°, then since cos 90° = 0, the cosine rule becomes Pythagoras theorem. 
Tfangle C = 90°,then 2 = a2 + b2 — 2abcos C = 2 = a2 + b2 — 2abcos 90° e el S AC corresponding sides , 
= 2= a2+ b2 — 2ab(0) = ¢2 = a2 + blora? + b2 = 2 b, and ¢, the cosine rule 

states: 

2= a2 + b2 — 2abcosC 
b? = a? + 2 — 2accosB 

Example 6.26 a? = b?+ ¢ — 2bccosA 

A sailboat travels 50 kilometres due west, then changes its course 18° northward, 

as shown in the diagram. After travelling 75 kilometres in that direction, 

how far is the sailboat from its point of departure? Give your answer to the 

nearest tenth of a kilometre. 

  

Solution 

Let d be the distance from the departure point to the position of the sailboat. 

A large obtuse triangle is formed by the three distances of 50 km, 75 km, and 

dkm. The angle opposite side d is 180° — 18° = 162°. Using the cosine rule, 

we can write this equation to solve for d: 

d? = 502 + 752 — 2(50)(75)cos 162° 

502 + 752 — 2(50)(75)cos 162° A~ 123.523 

Therefore, the sailboat is approximately 123.5 km from its departure point. 
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Figure 6.51 Diagram for 
Example 6.27 
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Geometry and trigonometry 

  

Finding unknowns given e sides (SSS) 

The triangle formed by three line segments where the sum of the lengths of any 

two is greater than the length of the third will be unique. Therefore, if we know 

three sides of a triangle we can solve for the three angle measures. 

To use the cosine rule to solve for an unknown angle, it is best to first rearrange 

the formula so that the chosen angle is the subject of the formula. 

Solve for angle C in: 

c2=a*+ b*—2abcosC=2abcosC = a’ + b> — c? = cosC = 

a’+ b2 — cz) 

2ab 

Find all of the unknown angles of triangle PQR. Give all measurements to 

1 decimal place. 

_ 3 

Solution 

a’+ b2 —¢? 

2ab 

Then, C = cos"( 

Note that the smallest angle will be opposite the shortest side. First find the 

smallest angle; writing the cosine rule with chosen angle P: 

52+ 62 — 42 
2(5)(6) 

Now that we know the size of angle P, we have two sides and a non-included 

angle (SSA) and the sine rule can be used to find the other non-included 

angle. Consider the sides QR = 4, RP = 5 and the angle P ~ 41.4096°. 

Substituting into the sine rule, we can solve for angle Q that is opposite RP. 

SinQ _ sin41.4096° 

P = cos’l( ) =~ 41.4096° 

S 4 

SinQI= 5sin 4:4096 

o sin"(w) ~55.7711° 

Then, R ~ 180° — (41.4096° + 55.7711°) ~ 82.8192° 

Therefore, the three angles of are P ~ 41.4°, Q ~ 55.8° and R ~ 82.8° 

Example 6.28 

A ladder that is 8 metres long is leaning against a non-vertical wall that 

slopes away from the ladder. The foot of the ladder is 3.5 metres from the 

base of the wall, and the distance from the top of the ladder down the wall 

to the ground is 5.75 metres. To the nearest tenth of a degree, work out the 

acute angle at which the ladder is inclined to the horizontal.



1 

Solution 

Start by drawing a diagram that represents 

the given information accurately. 

6 marks the acute angle of inclination 

of the ladder. Its supplement is FBT. 

From the cosine rule: 

  

A 2 ) cosbfr 35575 8 
26.5(6.75) 

o (3,52 + 5752 — 82) FBT = cos=i 3525752 — 8%) 117 6640 
<2 ( 203.5/5.75) 5 

0~ 180° — 117.664° ~ 62.336° 

Therefore, the angle of inclination of the ladder is approximately 62.3° 

  
Example 6.29 fimfimfi“ 

from north. For example, 
The diagram shows a point P that is the diagram shows a 
10 kilometres due south of a point D. peacins of225 o % . point A to point B. 
A straight road PQ is such that the 

(compass) bearing of Q from P is 45°. Dorth 

A and B are two points on this road that 

are both 8 km from D. Find the bearing A 

of B from D, to 3 significant figures. 

  

  

  

Solution 

The angle 6 is the bearing of B from D. D, 5 

First extract triangle PDB and use the sine B 

rule to solve for DBP 
10 117.89° 

sinDBP _ sin45° 
10 8 

sinDBP = 10 si: 45° ? 

> 

DEP = sin (1080 8F) ~ g 110 
B 

Triangle ADB is isosceles (two sides equal), so DAB = DBP, and since the 

sum of angles in triangle ADB is 180°, we can solve for ADB. 

DAB = DBP~ 62.11° 
ADB ~ 180° — 2(62.11°) ~ 55.78° Figure 6.52 Solution to 

Example 6.29   227
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A‘i 8 

Figure 6.53 Diagram for 
question 6 
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Solve for DAP because it is supplementary to st 

DAB. Then we can find the third angle in 

triangle APD. Since 6 + ADB + ADP = 180°, . n 
we can solve for 6. w 

Py 17.11°, B 
PAD =~ 180° — 62.11° ~ 117.89° k 

ADP~ 180° — (45° + 117.89°) ~ 17.11° 

0~ 180° — (17.11° + 55.78°) ~ 107.11° 

Therefore, the bearing of B from D is 107° (3 s.f.) 

Exercise 6.4 

1. State the number of distinct triangles (none, one, two, or infinite) that 

can be constructed with the given measurements. If the answer is one 

or two triangles, provide a sketch of each triangle. 

(a) ACB = 30°, ABC = 50°, and BAC = 100° 

(b) ACB = 30°, AC = 12cm, and BC = 17cm 

(c) ACB = 30°, AB = 7cm, and AC = 14cm 

(d) ACB = 47°, BC = 20 cm, and ABC = 55° 

(e) BAC = 25°, AB = 12cm, and BC = 7cm 

(f) AB=23cm, AC = 19,and BC = 11 cm 

2. Find the measurements of all unknown sides and angles in the 

triangles with the following measurements. If two triangles are 

possible, solve for both. 

(a) BAC = 37°, ABC = 28°,and AC = 14 

(b) ABC = 68°, ACB = 47° and AC = 23 

(c) BC =68, ACB = 71°, and AC = 59 

(d) BC = 42, AC = 37,and AB = 26 

(e) BC = 34, ABC = 43°, and AC = 28 

(f) AC = 0.55, BAC = 62° and BC = 0.51 

3. Find the lengths of the diagonals of a parallelogram whose sides 

measure 14 cm and 18 cm and which has one angle with measure 37°. 

4. Find the measures of the angles of an isosceles triangle whose sides are 

10 cm, 8 cm, and 8 cm. 

5. Given that for triangle DEE, EDF = 43° DF = 24 and FE = 18, find 

the two possible measures of DFE. 

6. Find the measure of the smallest angle in the triangle shown.



7 

8. 

10. 

e 

12. 

IS8 

14. 

15. 

. A 50-metre vertical pole is to be 

Find the area of triangle PQR in Figure 6.54. 

Find a value for the length of AC so that the number of possible 

triangles is: (i) one (ii) two (iii) none. 

(a) BAC = 36%AB =5 (b) BAC = 60° AB = 10 

erected on the side of a sloping 

hill that makes an 8° angle with 

the horizontal (see diagram). 

Find the length of each of the 

two supporting wires (x and y) 

that will be anchored 35 metres 

uphill and downhill from the base 

of the pole. 

The lengths of the sides of a triangle ABC are x — 2, xand x + 2. 

The largest angle is 120°. 

(a) Find the value of x. 

  (b) Show that the area of the triangle is 15f 

(c) Findsin A + sin B + sin C, giving your answer in the form il A 
where p, g, r € Z. 

Find the area of a triangle that has sides of lengths 6, 7, and 8 cm. 

Let a, b, and c be the sides of a triangle where c is the longest side. 

(a) If 2> a? + b2, what is true about triangle ABC? 

(b) If c2 < a? + b2, what is true about triangle ABC? 

(c) Use the cosine rule to prove each of your conclusions for 

(a) and (b). 

Consider triangle DEF with EDF = 43.6°, DE = 19.3, and EF = 15.1 

Find DF. 

In the diagram, WX = xcm, XY = 3xcm, YZ = 20cm, 

sing = and WRY = 120°. 

(a) If the area of triangle WZY is 112 cm?, find the length of [WZ]. 

(b) Given that 0 is an acute angle, state the value of cosf and hence 

find the length of [WY]. 

(c) Find the exact value of x. 

(d) Find the degree measure of X¥Z to 3 significant figures. 

In triangle FGH, FG = 12 cm, FH = 15 cm, and G is twice the size of H. 

Find the approximate degree measure of H to 3 significant figures.   

DN 
15cm 

Figure 6.54 Diagram for 
question 7 

  

Figure 6.55 Diagram for 
question 14 
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Figure 6.56 Diagram for 
question 1 

  

Figure 6.57 Diagram for 
question 5 

C 

32km 

o 
48km B 

Figure 6.58 Diagram for 
question 6 

5cm i i 7cm 

8cm 

Figure 6.59 Diagram for 
question 7 

‘Triangle 1 
A 

B C B C 

Figure 6.60 Diagram for 
question 8 

Triangle 2 
A 

Geometry and trigonometry 

Chapter 6 practice questions 

i 

. A is an obtuse angle in a triangle and sin A = 2 

. The diagrams show two different triangles both satis 

The shortest distance from a chord [AB] to the centre O of a circle is 

3 units. The radius of the circle is 5 units. Find the exact value of 

sin AOB. 

. In a right-angled triangle, tan = % Find the exact value of sin 26 and 

€05 26. 

. A triangle has sides of length 4, 5 and 7 units. Find, to the nearest tenth 

of a degree, the size of the largest angle. 

Calculate the exact value of sin 2A. L 

. The diagram shows a vertical pole PQ, which is supported by two wires 

fixed to the horizontal ground at A and B. 

BQ = 40m, PBQ = 36°, BAQ = 70°, ABQ = 30° 

Find: 

(a) the height of the pole, PQ 

(b) the distance between A and B. 

. Town A is 48 km from town B and 32 km from town C as shown in the 

diagram. 

Given that town B is 56 km from town C, find the size of the angle CAB 

to the nearest tenth of a degree. 

. The diagram shows a triangle with sides 5cm, 7 cm, and 8 cm. 

Find: 

(a) the size of the smallest angle, in degrees 

(b) the area of the triangle. 

  

ng the conditions 

AB = 20cm, AC = 17 cm, ABC = 50° 
(a) Calculate the size of ACBin Triangle 2. 

(b) Calculate the area of Triangle 1. 

. Two boats, A and B, start moving from the same point P. Boat A moves 

in a straight line at 20 km per hour and boat B moves in a straight line at 

32 km per hour. The angle between their paths is 70°. Find the distance 

between the two boats after 2.5 hours.



10. 

e 

125 

5% 

14. 

1, 

In triangle JKL, JL = 25, KL = 38 and K7\L = 51°, as shown in the 

diagram. 

Find JKL, giving your answer correct to the nearest degree. 

The diagram shows triangle ABC, where 

BC = 5cm, ABC = 60° and ACB = 40° 
(a) Calculate AB. 

(b) Find the area of the triangle. 

Find the size of the acute angle between a pair of diagonals of a cube. 

A farmer owns a triangular field ABC. One side 

of the triangle, [AC, is 104 m, a second side, 

[ABI, is 65 m and the angle between these two 

sides is 60°. 

(a) Use the cosine rule to calculate the length 

of the third side, [BC], of the field. g 
(b) Given that sin 60° = 73 e 

of the field in the form p 3 where p 
is an integer. 

Let D be a point on [BC] such that [AD] bisects the 60° angle. 
The farmer divides the field into two parts, A, and A,, by constructing a 

straight fence [AD] of length x metres, as shown in the diagram. 

(c) (i) Show that the area of A, is 1 

(ii) Find a similar expression for the area of A, 

(iii) Hence, find the value of x in the form g V3, where qeZ 

(d) (i) Explain why sin ADC = sin ADB 

(ii) Use the result of part (i) and the sine rule to show that gc 

The lengths of the sides of a triangle PQR are x — 2, x and x + a, where 

a> 0. Angle Pis 30° and angle Q is 45°, as shown in the diagram. 

(a) Find the exact value of x. 

(b) Find the exact area of triangle PQR. 

In the diagram, the radius of the circle with centre Cis 7 cm and the 

radius of the circle with centre D is 5 cm. If the length of the chord AB 

is 9 cm, find the area of the shaded region enclosed by the two minor 

arcs AB.   

L 

K J 

Figure 6.61 Diagram for 
question 10 

  

  
Figure 6.62 Diagram for 
question 12 

Figure 6.63 Diagram for 
question 14 

Figure 6.64 Diagram for 
question 15 

231



17 17 

A 

Figure 6.65 Diagram for 
question 17 

B 

Figure 6.66 Diagram for 
question 19 
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Geometry and trigonometry 

16. 

173 

18. 

19. 

One corner, K, of a field consists of two stone 

walls, [K]] and [KLI, at an angle of 60° to each 

other. A wooden fence [JL] is to be built to 

create a triangular enclosure JKL, as shown in 

the diagram. 

(a) If KTL is denoted by 6, state the range of 

possible values for 6. 

(b) Show that the area of triangle JKL is 

3003 sin Osin(f + 60°) 

(c) Use your GDC to determine the value of  that gives the maximum 

area for the enclosure. 

  

The diagram shows the triangle ABC with AB = BC = 17 cm and 

AC = 30 cm. The midpoint of AC is M. The circular arc A, is half the 

circle (semicircle) with centre M. Another circular arc A, is drawn with 

centre B. The shaded region R is bounded by the arcs A, and A,. 

Find: 

(a) the area of triangle ABC 

(b) the size of ABC in radians 

(c) the area of the shaded region R. 

(a) In the diagram, radii drawn to endpoints p 

of a chord of the unit circle determine a ‘ 

central angle a. Show that the length of oy 
the chord is 

L= v2i="2/¢6s10; 

(b) By using the substitution § = %in the 

double-angle formula cos 26 = 1 — 2 sin? 6, 

derive a formula for sin %, that is a half-angle 

formula for the sine function. 

(c) Use the result in (a) and your result in (b) to show that the length 

of the chord is L = 2 sin(g) 

In triangle ABC, ABC = 20 and BAC = 6. 
Determine an expression for cos 6 in terms of @ and b.



20. The traditional bicycle frame consists of tubes connected together 

in the shape of a triangle and a quadrilateral (four-sided polygon). 

In the diagram, AB, BC, CD, and AD represent the four tubes of the 

quadrilateral section of the frame. A frame maker has prepared three 

tubes such that AD = 53 ¢cm, AB = 55cm, and BC = 11 cm. 

DAB = 76° and ABC = 97°. What must be the length of tube CD? Figitie 0,07 Disgramifoc question 20 

  

Give your answer to the nearest tenth of a centimetre. 

A 

21. The tetrahedron shown in the figure has the 

following measurements: AB = 12 cm, 

DC = 10cm, ACB = 45°, and ADB = 60°. e 
AB is perpendicular to the triangle BCD. 

Find the area of each of the four triangular 2 s 

faces: ABC, ABD, BCD, and ACD. 10cm’ fi 

  

  22. Find the size of angle DEF in the rectangular box. D 3cm 

Figure 6.68 Diagram for 
23. Ata point A due south of a building, the angle of elevation from the question 22 

ground to the top of a building is 58°. At a point B (on level ground 

with A), 80 metres due west of A, the angle of elevation to the top of the 

building is 27°. Find the height of the building. 

  

    

  

  

589 

275 

  

80m——————> 4 

24. A right pyramid has a square base with sides 

of length 8 cm. The height of the pyramid 

is 10 cm. There are four lateral faces that are 

isosceles triangles, and one square base. 

Two adjacent lateral faces are shaded in the 
diagram. Calculate the angle between s 

two adjacent lateral faces. 
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Geometry and trigonometry 

25. (a) Find the exact equation of line L; that passes through the origin and 

makes an angle of 30° with the positive x-axis. 
(b) The equation of line L, is x + 2y = 6. Find the acute angle between 

Lyand L,. 

26. A helicopter leaves from point P and flies in a straight line on a bearing 

of 125° for 150 km to point Q. It then flies in a straight line for 275 km 
from point Q to point R on a bearing of 230°. From point R, the 

helicopter flies directly back to point P. Calculate the length and bearing 
of the flight from R to P. 
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Learning objectives 

By the end of this chapter, you should be familiar with... 

« concepts of population, sample, random sample, and frequency 

distribution of discrete and continuous data 

« reliability of data sources and bias in sampling 

« sampling techniques and their effectiveness 

« interpretation of outliers 

« presentation of data using frequency tables and diagrams and box-and- 

whisker plots 

« working with grouped data: mid-interval values, interval width, upper 

and lower interval boundaries, and frequency histograms 

« calculating and interpreting the mean, median, mode, quartiles, and 

percentiles 

« calculating and interpreting the range, interquartile range, variance, and 

standard deviation 

« calculating and interpreting cumulative frequency graphs and using them 

to find the median, quartiles, and percentiles 

« understanding and interpreting linear correlation of bivariate data 

« working with linear regression. 

Statistics are a part of everyday life, and you are likely to encounter them in one 
form or another on a daily basis. 

For example, the World Health Organization (WHO) collects and reports data 
about worldwide population health on all 192 UN-member countries. Among the 
indicators reported is the health-adjusted life expectancy (HALE). This is based on 
life expectancy at birth, but includes an adjustment for time spent in poor health. 
It is most easily understood as the equivalent number of years in full health that 
anewborn can expect to live, based on current rates of ill-health and mortality. 
According to WHO rankings, lost years due to disability are substantially higher 
in poorer countries. Several factors contribute to this trend, including injury, 

blindness, paralysis, and the debilitating effects of tropical disease. 

Of the 192 countries ranked by WHO, Japan has the highest healthy life 

expectancy (75 years) and Sierra Leone has the lowest (29 years). 

Reports like this are commonplace in business publications, newspapers, 

magazines, and on the internet. There are some questions that come to mind 

as we read such a report. How did the researchers collect the data? How can we 

be sure that these results are reliable? What conclusions should be drawn from 

this report? The increased frequency with which statistical techniques are used 

in all fields, from business to agriculture to social and natural sciences, leads to 

the need for statistical literacy - familiarity with the goals and methods of these 

techniques - to be a part of any well-rounded educational programme. 

Since statistical methods for summary and analysis provide us with powerful 

tools for making sense out of the data we collect, in this chapter we will first



start by introducing two basic components of most statistical problems - 

population and sample - and then delve into the methods of presenting and 

making sense of data. This will include some basic techniques in descriptive 

statistics - the branch of statistics concerned with describing sets of 

measurements, both samples and populations. 

7_1 Graphical tools 

Once you have collected a set of measurements, how can you display this set 

in a clear, understandable, and readable form? First, you must be able to define 

what is meant by measurement or ‘data’ and to categorise the types of data you 

are likely to encounter. We begin by introducing some definitions of the new 

terms in the statistical language that you need to know. 

In the language of statistics, one of the most basic 

concepts is sampling. In most statistical problems, we 

draw a specified number of measurements or data - a 

sample - from a much larger body of measurements, 

called the population. On the basis of our observation of 

the data in the well-chosen sample, we try to describe or 

predict the behaviour of the population. 

A population is any entire collection of people, animals, 

plants, or things from which we may collect data. It is the 

entire group we are interested in, which we might wish to 

describe or draw conclusions about. 

In order to make generalisations about a population, 

a sample is often studied. The sample should be 

representative of the population. For each population 

there are many possible samples. 

  

For example, a study about the usage of resources in the 

households of an EU country stated that: 

“... in the sample of 1674 households surveyed, the Sample 

amount of water used by each washing cycle is given Figure 7.2 A sample is drawn from a population 

in the following..., The average time for each cycle was 

reported to be 42 minutes... . It was also discovered that 

the amount of laundry done by a household every year is 

related in some way to the household’s income..” 

In this example, the population is households’ usage of water for washing, 

the average time spent on laundry, income, and so on. The sample is the set 

of measurements of 1674 households that took part in the study. Notice that 

the population and sample are the measurements and not the people. The 

households are ‘experimental units” or subjects in this study. 
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Height is a variable that 
changes with time for 

an individual and from 

person to person. If you 
gather the heights of the 
students at your school, 
the set of measurements 

you getis called a 
data set. 

In everyday life, the 
terms ‘reliability’ and 

“validity’ are often used 
interchangeably. In 

statistics, however, these 
terms have specific 

‘meanings relating to 
different properties 

of the statistical or 
experimental method. 
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A variable is a characteristic that might vary over time or for different objects 

under consideration. When a variable is measured, the set of measurements 

obtained is called the data about that variable. 

‘When a large amount of data is collected, it becomes difficult to see what it 

means. The statistician’s job is to summarise the data succinctly, bringing 

out the important characteristics of the numbers so that a clear and accurate 

picture emerges. There are several ways of summarising and describing data, 

including tables, graphs, and numerical measures. 

‘When looking at statistical results, we must be aware of how the data has been 

collected by assessing its reliability and validity. 

Reliability, or reproducibility, is another word for consistency. It refers to the 

capacity of a test or method to produce the same result for two identical states or, 

more operationally, the closeness of the initial estimated values to the subsequent 

estimated values. For example, if one person takes the same personality test 

several times and always receives the same results, the test is reliable. 

A test is valid if it measures what it is supposed to measure. If the results of the 

personality test claimed that a very shy person was in fact outgoing, the test 

would be invalid. 

Reliability and validity are independent of each other. A measurement may be valid but not 
reliable, or reliable but not valid. Suppose your bathroom scale was reset to read 5kg lighter than 
the actual weight, The reading it gave would be reliable, as it would be the same every time, but it 
would not be valid, since it would be lower than your correct weight. 

Classification of variables 
  

Numerical or categorical 

Data can be classified into two main types: numerical (or quantitative) and 

categorical (or qualitative) data. 

Variable/Data 

    

  

    
  

Discrete 
(e.g., number of 
children, houses, 

accidents) 

  
Figure 7.3 Data classifications



Numerical, or quantitative, variables measure a numerical quantity or amount Examples of numerical 

on each experimental unit. This type of data always yields a numerical data include yearly 
response. income of company 

presidents, heights of 

There are two types of numerical data. students at school, time 
taken for students to 

« Discrete data can take only particular values. For example, if you are finish their lunch at 

counting the number of students that take a particular class, the values will school, and total score 

all be integers. It makes no sense to have 0.5 students. received on exams. 

« Continuous data can take any value, subject to the accuracy with which you 

can measure it. For example, the time it takes a student to travel from home 

to school could potentially be measured to the nearest second, although it 

might not be appropriate to measure to this level of accuracy. 

There are two types of continuous variable. 

« Interval variables can be measured along a continuum, and the difference 

between two values on the continuum is meaningful. 

« Ratio variables are interval variables with the additional condition that a 

value of 0 indicates that there is none of that variable. The name ratio reflects 

the fact that you can use the ratio of the measurements. So, for example, a 

distance of 20 m is twice as large as a distance of 10 m. 

‘Temperature measured in degrees Celsius or Fahrenheit is an example of an interval variable. ‘This pie chart shows 

‘The difference between 20°C and 30°C is the same as the difference between 30°C and 40°C, but a how students in a large 

temperature of 40°C is not twice as hot as a temperature of 20°C, because 0°C does not mean there school are categorised 

is no temperature. into the IB Mathematics 

class they are taking. However, temperature measured in kelvin is a ratio variable, because 0 kelvin (often called 

absolute zero) indicates that there is no temperature whatsoever. A temperature of 100 kelvin is 

twice as hot as 50 kelvin. Other examples of ratio variables include height, mass, distance, and 

“This is an example of 
qualitative data. There 

are 230 students in the many more. 
Math AI/SL class, 180 

o o 3 = o students in the Math AA/ 
Categorical, or qualitative, variables measure a quality or characteristic of the e an o0 den 

experimental unit. Categorical data yields a qualitative response, such as in the Math AA/HL class. 
colour. ‘The pie chart shows what 

percentage of students 
take each class. We often use pie charts to summarise categorical data or to display the different 

values of a given variable (for example, percentage distribution). This type of 

chart is a circle divided into a series of segments. Each segment represents a 

particular category. The ratio of the area of each segment to the area of the circle 

is the same as the ratio of the corresponding category to the total data set. 

Pie charts usually show the component parts of a whole. Often you will see a 

segment of the drawing separated from the rest of the pie in order to emphasise 

an important piece of information. 

  

G cy distributions 

  

After collecting data, you should try to organise it so that it can be read easily. 

Methods for organising data include ordered arrays and stem-and-leaf 

diagrams - not required. 
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Consider a frequency 
distribution for the living 

expenses of 80 college 
students. If the frequency 

distribution contained 
the intervals ‘35-40° 

and ‘40-45 to which of 

these two classes would 
aperson spending €40 

belong? More appropriate 
intervals would be ‘35 or 

more but less than 40" 
and ‘40 or more but less 

than 45 

If classes are described 

with discrete limits 
such as 30-34; 35-39; 
then the boundaries are 

‘midway between the 
neighbouring endpoints. 

‘That is, the classes will 
be considered as 29.5 

or more but less than 
34.5,'34.5 or more but 

less than 39.5, Here the 

boundaries are 29.5, 

34.5,39.5, and each class 

width is 5. 
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In its raw form, your data may be listed in the order you collected it: 

24,26, 24,21, 27,27, 30, 41, 32, 38 

Ordering the data in a ordered array, in either ascending or descending order, 

makes it easier to spot patterns and to start to understand the data: 

21, 24, 24, 26, 27, 27, 30, 32, 38,41 

Suppose a consumer organisation is interested in studying weekly food and 

living expenses of college students. A survey of 80 students yielded the data 

shown in Table 7.1. Expenses are given to the nearest euro. 
  

38 (5055|6046 |51 |58 (64|50 |49 |48 |65|58|61|65|53 

39 (51|56 |61 (48|53 |59 (65|54 |54 (54|59 65|66 |47 |49 

40| 51|56 | 62|47 |55|60|63|60|59|59|50|46 45|54 |47 

41(52|57 |64|50|53|58|67|67|66|65|58|54|52|55|52 

44 (52|57 |64 |51 |55|61|68|67|54|55|48 |57 |57 |66 |66 

  

  

  

                                      

Table 7.1 Weekly food and living expenses of college students 

In its raw form, it is difficult to find any patterns or draw conclusions from this 

data. The first step in analysing data is to create a summary. This should show 

the following information: 

« What values of the variable have been measured? 

« How often has each value occurred? 

Such summaries can be done in many ways. The most useful are frequency 

distributions and histograms. There are other methods of presenting data, 

some of which we will discuss later. 

A frequency distribution is a table used to organise data. The left column, 

called classes or groups, includes numerical intervals on the variable 

being studied. The right column is a list of the frequencies, or number of 

observations, for each class. Intervals are normally of equal size. They must 

cover the range of the sample observations and they must not overlap. 

Construction of a frequency distribution 

There are some general rules for preparing frequency distributions that make it 

easier to summarise data and to communicate results. 

Rule 1: Classes must be inclusive and non-overlapping. Each observation 

must belong to one, and only one, class interval. The boundaries, or endpoints, 

of each class must be clearly defined. 

Rule 2: Determine k, the number of classes. Practice and experience are 

the best guidelines for deciding on the number of classes. In general, it is 

reasonable to have between 5 and 10 classes, but this is not an absolute rule. 

Practitioners use their judgement in these issues. If there are too few classes, 

some characteristics of the distribution will be hidden. If there are too many, 

some characteristics will be lost with the detail.



Rule 3: Intervals should be the same width. The width is determined by the 

formula 

. . largest number — smallest number 
interval width= —— —— ————— 

number of intervals 

Both the number of intervals and the interval width should be rounded up, 

possibly to the next integer. The above formula can be used when there are no 

natural ways of grouping the data. If this formula is used, the interval width is 

generally rounded to a convenient integer for easy interpretation. 

Example 7.1 

Organise the data from Table 7.1 into a frequency distribution, using 

appropriate class intervals. 

Solution 

Start by putting the data in ascending order. 
  

38 (39|40 (41 |44 |45 |46 |46 |47 |47 |47 |48 |48 |48 |49 |49 

S0NIIS08 0N S04 51 ES18 1518 ESTH 24 18598 (E5 24 528 15381588 (538 (R4 

54|54 (54 |54|54|55|55(55|55|55|56|56 57|57 |57 |57 

58 58|58 (58 (59|59 |59 |59 |60 (60|60 |61 |61|61 62|63 

64 (64 |64 (65|65 |65 |65 |65 |66 |66 |66 |66 |67 |67 67|68 

  

  

  

                                      

With the data in order, we can immediately see that the smallest value is €38 

and the largest value is €68. A reasonable grouping with nice round numbers Grouping the data in a 
table, as in Example 7.1, 
allows us to see some 

This gives a class width of 5. ofits characteristics. 
For example, we can 
observe that there are 

few students who spend 

3B5=<1<40 2 2.50 aslittle as €35 to €45, 

0=1<45 3 3.75 while the majority of the 
= students spend more 

than €45. Grouping the 

is ‘35 or more but less than 40’ and ‘40 or more but less than 45} and so on. 

  

Living expenses () | Number of students | Percentage of students 
  

  

  

  

            

data also causes some 
ol L 625 Toss of detail, s we 
Total 80 100.00 cannot see from the table 

what the real values in 
Frequency and percentage frequency distributions of weekly expenses o i 

In the table in Example 7.1, the class midpoint, also known as the mid- 

interval value, can be used to represent the data in that interval. For example, 

37.5 can represent the data in the first class, while 42.5 can represent the data in 

the 40 to 45 class. This will be discussed in more detail later in the chapter. The 

values at the ends of each class, such as 35 and 40, are known as the interval 

boundaries. 
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Your GDC allows you 
to draw histograms. 

Different models 

will have different 

procedures. Here is a 
sample. 

  

      

Notice how every 
cumulative frequency is 

added to the frequency in 
the next interval to give 
us the next cumulative 

frequency. The same 
is true for the relative 

frequencies.. 

242 

Statistics 

Histograms 

‘We can visualise a frequency distribution graphically using a histogram. 

A histogram is a graph that consists of vertical bars constructed on a horizontal 

line that is marked off with intervals for the variable being displayed. The 

intervals correspond to the class intervals in a frequency distribution table. 

The height of each bar is proportional to the number of observations in that 

interval. The number of observations can also be displayed above the bars. 
  

  

    
375 425 475 525 575 625 675 

Midpoints 

Figure 7.4 Histogram for the data in Example 7.1 

Figure 7.4 shows a histogram for the data in Example 7.1. By looking at the 

histogram, it becomes visually clear that our previous observation is true. From 

the histogram we can also see that the distribution is not symmetric. You will 

find out more about the shape of frequency distributions later in this chapter. 

Cumulative and relative cumulative frequency distributions 

A cumulative frequency distribution contains the total number of 

observations whose values are less than the upper limit for each interval. It is 

constructed by adding the frequencies of all the intervals up to and including 

the present interval. A relative cumulative frequency distribution converts all 

cumulative frequencies to cumulative percentages. 

Table 7.2 shows a cumulative distribution and a relative cumulative distribution 

for the data in Example 7.1. 
  

  

  

  

  

  

  

  

  

Living No.of | Cumulativenumber | Percentageof | Cumulative 
expenses (I) | students of students students Percentage of 

students 

35<1<40 2 2 250 2.50 
0=<1<45 e —] 3755+ 625 

45 =] <50 11 16 b fricd 20.00 

50 =< 55 21 37 26.25 46.25 

55<1<60 9T »56 23.75%5—1—> 70.00 
60 =< 65 11 67 13.75 83.75 

65<1<70 13 80 16.25 100.00 
Total 80 100.00             
  

Table7.2 Cumulative frequency and cumulative relative frequency distributions of weekly expenses 

As we will see later, cumulative frequencies and their graphs help in analysing 

data given in group form.



Cumulative frequency graphs 

A cumulative frequency graph, sometimes called a cumulative line graph 

or an ogive, is a line that connects points that are the cumulative percentage 

of observations below the upper limit of each class in a cumulative frequency 

distribution. Figure 7.5 shows a cumulative frequency graph for the data in 

Example 7.1. 

80 < 100% 

70 

60 

50 
Cumulative 
frequency 

80% 

60% 

40% 

= 20% 

  

0% 
40 45 50 55 60 65 70 

Expenses (€) 

Figure 7.5 Cumulative frequency graph for the data in Example 7.1 

Notice how the height of each line at the upper boundary represents the 

cumulative frequency for that interval. For example, at 50 the height is 16 and 

at 60 it is 56. 

Example 7.2 

The WHO data discussed in the introduction is given here in raw form. 

(a) Prepare a frequency table, starting with a lower class boundary of 20 and 

a class interval of 5. 

(b) Draw a histogram to represent the data. 

(c) Draw a cumulative frequency graph to represent the data. 
  

29|36|40|44|48|52|54|56|59|60|61|61|62|63|64|66|68|71|72|73|63|64|66|68 

31|36|41|44|49|52|54|57|59|60|61|62|62|64|64|66|68|71|72|75|63|64|66|68 

33|36|41|44|49|52|55|57|59/60(61(62|62|64|6566|69|71|72|35|38|43|47|71 

34|37|41|45|49|53|55/58|59/60(61|62|63|64|6566|69|71|73|36|40|44(48|71 

34|37|42|45|50|53|55|58|59|60|61|62|63|64|65|67|70|71|73|50|54|56|59|72 

35|37|42|45|50|53|55|58|59|60|61|62|63|64|6567|70|71|73|51|54|56|59|72 

35(37(43|46|50| 54| 55| 58| 59|60|61|62|63|64|65|67|70|71|73|60|60|61|62|73 

35(38(43|46|50| 54| 55| 58| 59| 60|61|62|63|64|65|67|70|72|73|60|61|61|62|73 
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] 

Solution 

(a) First sort the data, then count every number in each class. 
  

  

  

  

  

  

  

Life expectancy, | | Numberof | Life expectancy | Number of 
countries countries 

3 25=<1<30 1 55=<1<60 26 
25 = [ << 30 contains all 

observations larger than 30=<I<35 4 60=<1<65 54 
or equal to 25 but less 35 =<[<40 14 65<1<70 22 

than 30. 
40=<1<45 14 70=<1<75 27 

45<1<50 11 75<1<80 I 

50=<I<55 18             

(b) The histogram is shown 
    

  

     

on the right. Since all :g 

classes have equal width, 2‘ - 

the height and the area g = 

give the same impression & 
N S 

about the frequency of 

the class interval. For 

example, the 60-65 class 

contains almost twice as 

many countries the 

55-60 class, and the heights of the bars in the histogram reflect this, as 

do the areas. Similarly, the height of the 65-70 class is double that of the 

45-50 class. 

  
Life expectancy (years) 

(c) In order to construct a cumulative frequency graph, we must first 

construct a cumulative frequency table. 
  

  

  

  

  

  

                  

Life Number of | Cumulative Life Number of | Cumulative 
expectancy | countries | numberof | expectancy | countries | number of 

countries countries 
25<1<30 1 1 55<1<60 26 88 
30=<1<35 4 5 60 =<1<65 54 142 
35<1<40 14 19 65=<1<70 2 164 
0=<1<45 14 33 70<1<75 27 191 
45<1<50 11 44 75 <1< 80 1 192 
50 < <55 18 62 

T 
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Sampling 

Any study concerning populations needs data to be collected. Usually we do 

not collect data from the entire population. For statistical studies, data from 

samples is used. The method used to conduct a study is usually something like 

this: 

. Specify the population of interest. 

. Choose an appropriate sampling method. 

1 

2. 

3. Collect the sample data. 

4. Analyse the pertinent information in the sample. 

5. . Use the results of the sample analysis to make an inference about the 

population. 

6. Provide a measure of the inference’s reliability. 

Reasons for sampling 

Taking a sample instead of conducting a census offers several advantages. d A census is a survey of 
A sample can save money and time. If an eight-minute interview is being e 
undertaken, conducting the interviews with a sample of 100 people rather than 

with a population of 100 000 is obviously less expensive. In addition to the cost 

savings, the significantly smaller number of interviews usually requires less 

total time. 

For given resources, the sample can broaden the scope of the study. With fixed 

resources, more detailed information can be gathered by taking a sample than 

by gathering information from the whole population. By concentrating on 

fewer individuals or items, the study can be broadened in scope to allow for 

more specialised questions. 

Some research processes are destructive to the product or item being studied. 

For example, if light bulbs are being tested to determine how long they burn or 

if candy bars are being taste tested to determine whether the taste is acceptable, 

the product is destroyed. 

If accessing the entire population is impossible, using a sample is the only option. 

If sampling is deemed to be appropriate, it must be decided how to select a A“P:‘ffl“afi"el 

sample. Since the sample will be employed to draw conclusions about the entire ::;?l;;:;::::f‘: 

population, it is crucial that the sample is representative of that population. It characteristics of the 
should reflect the relevant parameter of the population under consideration as population as closely as 

i 
ible. 

closely as possible. 
possible. 

Random and non-random sampling 

The two main types of sampling are random and non-random. In random 

sampling, every unit of the population has the same probability of being 

selected into the sample. Random sampling implies that chance enters into the 

process of selection. 
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Non-random sampling 
‘methods are not 

appropriate techniques 
for gathering data to 

be analysed by most of 
the statistical methods 

presented in this book. 

Sampling error occurs 
when, by chance, 

the sample does not 
represent the population. 

A sampling frame is a 
list of all the elements of 

a population from which 
asample can be taken, 
such as a register of all 

the students in a college. 

‘The screenshot shows 
the first five from a list 
of random numbers 
generated by a GDC. 

Computer programs may 
be more efficient. 
  

  

RanInt#(1,659,20) 
{217,100,191,518,252»     
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In non-random sampling, not every unit of the population has the same 

probability of being selected into the sample. 

Random sampling is also called probability sampling and non-random sampling 

is called non-probability sampling. Because every unit of the population is not 

equally likely to be selected in non-random sampling, assigning a probability of 

occurrence is impossible. The statistical methods presented and discussed in the 

IB syllabus assume that the data comes from random samples. 

However, several non-random sampling techniques are described in this 

section, primarily to alert you to their characteristics and limitations. 

Random sampling 

‘We will discuss three basic random sampling techniques: simple random 

sampling, stratified random sampling, and systematic random sampling. 

Each technique offers advantages and disadvantages. Some techniques are 

simpler to use, some are less costly, and others show greater potential for 

reducing sampling error. 

Generally, all samples selected from the same population will give different results because they 
contain different elements of the population. Additionally, the results obtained from any one 
sample will not be exactly the same as those obtained from a census. The difference between 

asample result and the result we would have obtained by conducting a census is called the 

sampling error, assuming that the sample is random and no non-sampling error has been made. 
‘The sampling error is the difference between the result obtained from a sample survey and the 

result that would have been obtained if the whole population had been included in the survey. 

Non-sampling errors can occur in both a sample survey and a census. Such errors occur because 
of human mistakes and not through chance. 

Simple random sampling 

The most elementary random sampling technique is simple random sampling. 

Simple random sampling can be viewed as the basis for the other random 

sampling techniques. With simple random sampling, each unit of the sampling 

frame is numbered from 1 to N (where N is the size of the population). Next, a 

random number generator (or a table of random numbers) is used to select n 

items into the sample. 

Example 7. 

Suppose it has been decided to interview 20 students from a school of 659 to 

form an understanding of their views of a new block-scheduling the school 

wants to adopt. 

To find a simple random sample, number the students from 001 (or simply 1) 

to 659 and have a random generator choose 20 numbers. The students 

allocated to the chosen numbers form the sample. 

I ——A—AA"—S———M———i—i—_a"—__i—i—_—_M—ii—__—"—_“_——__h___yyyy—_€G€‘———S—S—G—;———., 

Stratified random sampling 

In stratified random sampling, the population is divided into non-overlapping 

subpopulations called strata. The researcher then carries out simple random



sampling on each of the subpopulations. The main reason for using stratified 

random sampling is that it has the potential for reducing sampling error. 

With stratified random sampling, the potential to match the sample closely 

to the population is greater than it is with simple random sampling because 

portions of the total sample are taken from different population subgroups. 

However, stratified random sampling is generally more costly than simple 

random sampling because each unit of the population must be assigned to a 

stratum before the random selection process begins. 

Strata selection is usually based on available information. Such information 

may have been gleaned from previous censuses or surveys. The more different 

the strata are, the greater the benefits of using stratification. Internally, a 

stratum should be relatively homogeneous; externally, strata should contrast 

with each other. The process is demonstrated in Example 7.4. 

Example 7.4 

In FM radio markets, ‘age of listener’ is an important determinant of the type 

of programming used by a station. 

The figure shows a stratification by age with three strata, based on the 

assumption that age makes a difference in preference of programming. This 

stratification assumes that listeners of 20 to 30 years of age tend to prefer 

the same type of programming, which is different from that preferred by 

listeners of 30 to 40 and 40 to 50 years of age. Within each age subgroup 

(stratum), homogeneity or alikeness is present; between each pair of 

subgroups, heterogeneity or difference is present. A simple random sample 

is taken from each stratum. Together, the samples constitute a representative 

sample of the whole population. 
An advantage of stratified 

Representative sample random sampling is that, 
in addition to collecting 
information about the 

——— entire population, we can 
also compare different 
strata. In Example 7.4, 
the information we get 
will also help us compare 

    
  

the different age groups. 

Systematic random sampling 

With systematic random sampling, every kth item is selected to produce a Unlike stratified random 

sample of size n from a population of size N. The value of k, sometimes called gpling ssiemddiy 
- . sampling is not done 

the sampling cycle, can be determined by the formula inan attempt to reduce 
sampling error. Rather, 

k=N itis used because of its 
n convenience and relative 

If k is not an integer value, it should be rounded to the nearest integer. ease of administration. 
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Example 7.5 

Given the data in Example 7.3, suppose we need to take a sample of 20 

students using systematic sampling. First find k. 

659 
k= Tl 32 

From the list of 659 students, we randomly choose a starting number 

between 1 and 32. This might be 11, for example. After that we choose every 

32nd number: 43, 75, 107, ... . 

1 

Systematic sampling has other advantages besides convenience. Because 

systematic sampling is evenly distributed across the population, a knowledgeable 

person can easily determine whether a sampling plan has been followed in a study. 

Non-random sampling 

Sampling techniques used to select elements from the population by any 

mechanism that does not involve a random selection process are called non- 

random sampling techniques. Because chance is not used to select items 

from the samples, these techniques are non-probability techniques and are 

not desirable for use in gathering data to be analysed by standard methods of 

inferential statistics. Sampling error cannot be determined objectively for these 

sampling techniques. Two non-random sampling techniques are presented 

here: convenience sampling and quota sampling. 

Convenience sampling 

In convenience sampling, elements for the sample are selected for the 

convenience of the researcher. The researcher typically chooses elements that 

are readily available, nearby, or willing to participate. The sample tends to be 

less variable than the population because in many environments the extreme 

elements of the population are not readily available. The researcher will select 

more elements from the middle of the population. For example, a convenience 

sample of homes for door-to-door interviews might include houses where 

people are at home, houses with no dogs, houses near the street, first-floor 

apartments, and houses with friendly people. In contrast, a random sample 

would require the researcher to gather data only from houses and apartments 

that have been selected randomly, no matter how inconvenient or unfriendly 

the location. If a research firm is located in a mall, a convenience sample might 

be selected by interviewing only shoppers who pass the shop and look friendly. 

Quota sampling 

Quota sampling appears to be similar to stratified random sampling at first 

glance. However, instead of selecting a simple random sample from each 

stratum, a non-random sampling method is used to gather data from one 

stratum until the desired quota of samples is filled. Quotas are described by 

setting the sizes of the samples to be obtained from the subgroups. Generally, a 

quota is based on the proportions of the subclasses in the population.



For example, a company is test marketing a new soft drink and is interested 

in how age groups react to it. An interviewer goes to a shopping mall and 

interviews shoppers of age group 16-20, for example, until enough responses 

are obtained to fill the quota. In quota sampling, 
. . . i . an interviewer starts 

Quota sampling can be useful if no previous information is available for the by asking a few filter 

population. For example, suppose we want to stratify the population into cars questions. If the 

using different types of winter tyres but we do not have lists of users of the mp“"d?m IpRea _ ! asubclass whose quota 
‘Continental’ brand of tyres. Through quota sampling, we would proceed by has been filled, the 

interviewing all car owners and casting out non-Continental users until the interviewer stops the 

quota of Continental users is filled. interview. 

Quota sampling is less expensive than most random sampling techniques because 

it is a technique of convenience. Another advantage of quota sampling is the speed 

of data gathering. We do not have to call back or send out a second questionnaire 

if we do not receive a response; we just move on to the next element. 

The problem with quota sampling is that it is a non-random sampling 

technique. Some researchers believe that a solution to this issue can be achieved 

if the quota is filled by randomly selecting elements and discarding those not 

from a stratum. This way, quota sampling is essentially a version of stratified 

random sampling. The object is to gain the benefits of stratification without the 

high costs. However, it remains a non-probability sampling method. 

Exercise 7. 

1. Identify the experimental units, sensible population, and sample on 

which each of the following variables is measured. Then indicate 

whether the variable is quantitative or qualitative. 

(a) Gender of a student. 

(b) Number of errors on a final exam for 10th grade students. 

(c) Height of a newborn child. 

(d) Eye colour for children aged less than 14. 

(e) Amount of time it takes to travel to work. 

(f) Rating of a country’s leader: excellent, good, fair, poor. 

(g) Country of origin of students at international schools. 

2. State what you expect the shapes of the distributions of the following 

variables to be: uniform, unimodal, bimodal, symmetric, etc. Explain why. 

(a) Number of goals shot by football players during the last season. 

(b) Weights of newborn babies in a major hospital during the course of 

10 years. 

(c) Number of countries visited by a student at an international school. 

(d) Number of emails received by a high school student at your school 

per week. 
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3. Identify each variable as quantitative or qualitative. 

(a) Amount of time to finish your extended essay. 

(b) Number of students in each section of IB Maths SL. 

(c) Rating of your textbook as excellent, good, satisfactory, terrible. 

(d) Country of origin of each student in Maths SL courses. 

4. Identify each variable as discrete or continuous. 

(a) Population of each country represented by SL students in your 

session of the exam. 

(b) Weight of IB Maths SL exams printed every May since 1976. 

(c) Time it takes to mark an exam paper by an examiner. 

(d) Number of customers served at a bank counter. 

(e) Time it takes to finish a transaction at a bank counter. 

(f) Amount of sugar used in preparing your favourite cake. 

5. Grade point averages (GPA) in several colleges are on a scale of 0-4. 

Here are the GPAs of 45 students at a certain college. 
  

1580 RLEoN RO (220N 2y 2iy 201 12728 (1222 1213) 12131 24g 24 2425 

28|25 || 23 || 28 |25 |26 |26 || 26 || 26 |26 || 2 || 29 || 29 || 27 || 24 

2.8 (28|28 (29(29|29 (30|30 (30|31 |31 |31 |32 32|34 

  

  

                                  

Draw a histogram, a relative frequency histogram, and a cumulative 

frequency graph. Describe the data in two to three sentences. 

6. The following are the grades of an IB course with 40 students on a 

100-point test. Use the graphical methods you have learned so far to 

describe the grades. 
  

61|62 |93]|94|91|92|86]|87]|55]|56 

63|64 | 86|87 |82 |83|76|77|57 |58 

94|95 (89|90 |67 |68|62|63|72|73 

87|88 |68|69|65|66|75|76|84 |85 

  

  

                          

7. The lengths of time (in months) between repeated speeding violations of 

50 young drivers are given in the table below. 
  

7l 13| 99| 03323 | 83| 27| 02| 44| 74 

9 18 16| 24| 39| 24| 66| 1 2 14.1 

147 | 58| 82| 82| 74| 14167 |24 96| 87 

192|267 | 12|18 33114 | 43| 35| 69| 16 

41| 04 |135| 56| 6.1 (231 | 02126184 | 3.7 

  

  

  

                          

(a) Construct a histogram for the data. 

(b) Would you describe the shape as symmetric? 

(c) The law in this country requires that the driving licence be taken 

away if the driver repeats the violation within a period of 10 months. 

Estimate the proportion of drivers who may lose their licence.



8. To decide on the number of counters needed to be open during busy times 

in a supermarket, the management collected data from 60 customers for 

the time they spent waiting to be served. The times in minutes are given in 

the following table. 
  

36(07|52(06|13[03|1.8|22|11|04 

il 152 107 BUSA(R07) (6l 2558 R0i3 78 (R0'3 

013) |52 J0:25 (R0I08 BUoN U2 Joisy 121 p20s ) (Rin 

08|17|18(04|06[02]09|18]|28]|18 

04(05|11(11[/08[45|1.6|05|13|19 

060631 (31|11[11|11]|14]1 14 

  

  

  

  

                          
(a) Construct a relative frequency histogram for the times. 

(b) Construct a cumulative frequency graph and estimate the number of 

customers who have to wait 2 minutes or more. 

9. The histogram below shows the number of days spent in hospital by 

heart patients in a certain country’s hospitals in the 2015-2017 period. 
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0 10 20 30 

Number of days 

(a) Describe the data in a few sentences. 

(b) Draw a cumulative frequency graph for the data. 

(c) What percentage of the patients stayed less than 6 days? 

10. One of the authors 

exercises on almost a 

daily basis. He records 

the length of time of 

his exercise on most of 

the days. Here is what 

he recorded 

for 2017. 

Fr
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18°20 222426 28 30 32 34 36 38 40 
Number of minutes 

(a) What is the longest time he has spent doing his exercises? 

(b) What percentage of the days did he exercise more than 30 minutes? 

(c) Draw a cumulative frequency graph for his exercise time. 
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11. Radar devices are installed at several locations on a main highway. 

Speeds, s, in kmh~" of 400 cars travelling on that highway are measured 

and summarised in the following table. 
  

  

  

60=s | 75=s | 90=s | 105=<s | 120=s 
<75 <90 | <105 | <10 | <135 |01 
20 70 110 150 40 10           

  

    

(a) Construct a frequency table for the data. 

(b) Draw a histogram to illustrate the data. 

(c) Draw a cumulative frequency graph for the data. 

(d) The speed limit in this country is 130 kmh™!. Use your graph in (c) to 

estimate the percentage of the drivers driving faster than this limit? 

12. Electronic components used in the production of computers are 

manufactured in a factory and their measures must be very accurate. 

Here are the lengths of a sample of 400 such components. 
  

  

<500 500<! | 505=<!|510=I|515=! More 

; <5.05 <5.10 =ois <520 |than5.20 

16 100 123 104 48 9               

(a) Construct a cumulative relative frequency graph for the data. 

(b) The components must have a length between 5.01 and 5.18 mm, and 

any component with a length above 5.18 mm has to be scrapped. 

Use your graph to estimate the percentage of components that must 

be scrapped from this production facility. 

13. The time, t, in seconds, that 300 customers wait at a supermarket 

checkout are recorded in the table below. 
  

  

60=t [120=t]180=t|240=¢|300=t 
ol ol ol 2l ool ol s 

12 15 2 105 | 66 45 15                 

(a) Draw a histogram of the data. 

(b) Construct a cumulative frequency graph of the data. 

(c) Use the cumulative frequency graph to estimate the waiting time 

that is exceeded for 25% of the customers. 

F¥A Measures of central tendency 

‘When a data set is large, summary measures can help us to understand it. This 

section presents several ways to summarise quantitative data by calculating a 

measure of central tendency, also called a measure of location (a value that 

is representative of a typical data item), and a measure of spread (a value that 

indicates how well the typical value represents the data). These measures can be 

used in addition to or instead of tables and graphs.



The farthest we can reduce a set of data, and still retain any information at all, 

is to summarise the data with a single value. Measures of location do just that: 

they try to capture with a single number what is typical of the data. What single 

number is most representative of an entire list of numbers? We cannot say 

without defining ‘representative’ more precisely. 

We will study three common measures of location: the mean, the median, and 

the mode. The mean, median, and mode are all ‘most representative, but for 

different, related notions of representativeness. 

« The arithmetic mean is commonly called the average. It is the sum of the 

data, divided by the number of items of data: 

sum of data _ total 
mean= —————=——"——— 

number of data  number of data 

The median of a set of measurements is the value that falls in the middle 

position when the data are sorted in ascending order. In a histogram, the 

median is the value that divides the histogram into two equal areas. 

The mode of a set of data is the most common value among the data. It is 

rare that several data coincide exactly, unless the variable is discrete, or the 

measurements are reported with low precision. 

When these measures are computed for a population they are called 

parameters. When they are computed from a sample they are called statistics. 

A statistic is a descriptive measure computed from a sample of data. 

A parameter is a descriptive measure computed from an entire population of data. 

Measures of central tendency provide information about a typical observation 

in the data or locate the data set. 

Mean, median, mode 

The mean 

The most common measure of central tendency is the arithmetic mean, usually 

referred to simply as the ‘mean’ or the ‘average. 

Example 7.6 

The five closing prices of the NASDAQ Index for the first business week in 

November 2007 are given below. This is a sample of size n = 5 for the closing 

prices from the entire population. 

2794.83 2810.38 2795.18 2825.18 2748.76 

Find the average closing price. 

Solution 

Average — 2794.83 + 2810.38 + 2795&18 + 2825.18 + 2748.76 _ 2794.87 

Because this average was calculated from a sample, it is called the sample mean. 
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A second measure of central tendency is the median, which is the value in 

the middle position when the measurements are ordered from smallest to 

largest. The median of this data can only be calculated if we first sort them in 

ascending order. 

2748.76 2794.83 2795.18 2810.38 2825.18 

‘The arithmetic mean or average of a set of 1 measurements is equal to the sum of the 
measurements divided by . 

M mtmtnt ety 
‘The sample mean: - ", where n is the sample size. 
This is a statistic. 

  

_mtmtmt e tay 
‘The population mean: j2 = 2 , where N s the population size. 

  

‘This is a parameter. 
It is important to observe that you normally do not know the population mean, . It is usually 
estimated using the sample mean, X. 

The median 

The median of a set of n measurements is the value that falls in the middle 

position when the data are sorted in ascending order. 

In Example 7.6, we calculated the sample median by finding the third 

measurement to be in the middle position. If the number of measurements is 

even, the process is slightly different. 

Let us assume that you took six tests last term and that your marks were, in 

ascending order, 

52, 63,74, 78, 80, 89. 

‘When the data are arranged in order, there are two ‘middle’ observations, 74 and 78. 

52 63 @* 80 89 

To find the median, choose a value halfway between the two middle 

observations. This is done by calculating the mean of the two middle vales: 

o 74T T8 
76 

2 

#tl 

2 
  ‘The position of the median can be given by 2= If this number ends with a decimal, you need 

to find the mean of the adjacent values. 

In the NASDAQ Index case, we have five observations. The position of the median is then at 
at1 
=_o=3 

2 

In the marks example, the position of the median mark is at S 1   = 3.5, hence we find the mean 
of the numbers at positions 3 and 4. 

Although both the mean and median are good measures for the centre of a 

distribution, the median is less sensitive to extreme values or outliers. For 

example, the value 52 in the previous example is lower than all the other test 

scores and is the only failing score. The median, 76, would not be affected by



this outlier even if it were much lower than 52. Assume, for example, that the 

lowest score is 12 rather than 52. 

12 6 + 80 89 

The median still gives the same answer of 76. 

If we were to calculate the mean of the original set, we would get 

Clearly, the low outlier ‘pulled’ the mean towards it while leaving the median 

untouched. However, because the mean depends on every observation and uses 

all the information in the data, it is generally, wherever possible, the preferred 

measure of central tendency. 

The mode 

A third way to locate the centre of a distribution is to look for the value that 

occurs with the highest frequency. This measure of the centre is called the 

mode. When the data are given as a frequency distribution, we call the most 

frequent class the modal class. 

  

  

  

  

  

  

  

Example 7.7 

The table gives the frequency distribution  Number ke 

of 25 families in Lower Austria that were oflitres | Frequency frequency 

polled in a marketing survey to find 0 2 0.08 
the number of litres of milk consumed 1 5 0.20 

during a particular week. 2 9 0.36 

Construct a frequency histogram and find B 5 0.20 

the modal class, median and mean. 4 3 0.12 

5 1 0.04           

Solution ‘The symmetric shape 
10 of the histogram shows 

The histogram shows a 9 that the median, mean 

relatively symmetric 8 and E"dfr;'_e auuc:’“ 
, together. This will be 

shape with a modal class g 7 e 

at x = 2. Apparently, the g6 next section. 
P & 

mean and median are 2 P 

not far from each other. i For lists, the mode 

The median is the 13th is a most common 

observation, which is 2 z (frequent) value. A list 
2ike g I can have more than one 

and the mean is calculated 0 mode. For histograms, 

  
tobe2.2. o 1 . 2 n ?1' > amode s a relative 

fumber of litres T 
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Shape of the distributi 

The shape of a distribution indicates how the distribution is centred around the 

mean. Distributions are either symmetric or they are not symmetric. If they 

are not symmetric, the shape of the distribution is described as asymmetric or 

skewed. 

Symmetry 

The shape of a distribution is said to be symmetric if the observations are 

balanced, or evenly distributed, about the mean. In a symmetric distribution, 

the mean, the median, and the mode are equal, as seen in the next section. 

Skewness 

A distribution is skewed if the observations are not symmetrically distributed 

above and below the mean. 

A positively skewed (or skewed to the right) distribution has a tail that extends 

to the right in the direction of positive values. A negatively skewed (or skewed 

to the left) distribution has a tail that extends to the left in the direction of 

negative values. 

Fr
eq
ue
nc
y 

Fr
eq

ue
nc

y 

  

Variable /TN Variable 
Mean = median = mode Mode Median Mean 

Figure 7.6 Symmetric distribution Figure 7.7 Positively skewed distribution 

g £ g 3 g 
£ & 

Variable 

Mean Median Mode 

Figure 7.8 Negatively skewed distribution 

Looking back at the WHO data in Example 7.2, we can clearly see that the data 

are skewed to the left. Few countries have low life expectancies. The bulk of the 

countries have life expectancies between 50 and 65. 

= 

  

= 1028 _ 554, The mean HALE is u = 192 
   

Looking at the raw data, it does not appear sensible to search for the mode, as 

there are several values that are very common (59, 60, 61, and 62). However, 

after grouping the data into classes of width 5, we can see that the modal class is 

60-65.



nt+1_192+1 
2 2 

value. We therefore take the mean of the 96th and 97th observations, which are 

both 60. So the median is 60. 

As there are 192 observations, the median is the = 96.5th 

Knowing the median, we could say that a typical life expectancy is 60 years. 

How much does this really tell us? How well does this median describe the 

real situation? After all, not all countries have a life expectancy of 60 years. 

Whenever we find the centre of a data set, the next step is always to ask how 

well it summarises the data. When we describe a distribution numerically, 

we always report a measure of its spread along with its centre. This will be 

discussed further in Section 7.3. 

1. You are given eight measurements: 5,4, 7, 8, 6, 6, 5, 7. 

(a) Find x. 

(b) Find the median. 

(c) Based on the previous results, are the data symmetric or skewed? 

Explain and support your conclusion with an appropriate graph. 

2. You are given ten measurements: 5,7, 8, 6, 12,7, 8, 11, 4, 10. 

(a) Find x. 

(b) Find the median. 

(c) Find the mode. 

3. The following table gives the number of DVD players owned by a sample 

of 50 typical families in a large city in Germany. 

0 1 2 3 

12 24 8 6 

Find the average and the median number of DVD players. What is more 

appropriate here? Explain. 

  

  

          

4. Ten businesses are listed below along with their 2017 revenue in millions 

  

  

  

  

of US dollars. 

[ Company T Revenue (s millions) | Company [ Revenue (s millions) | 
A 500343 F 265172 

B 348903 G 260028 

C 326953 H 244582 

D 326008 I 244363 

B 311870 ] 242137             
Calculate the mean and median of the revenues. Which measure is more 

appropriate in this case. Explain. 

257



7/ Statistics 

5. Even on a crucial examination, students tend to lose focus while writing 

their tests. In a psychology experiment, 20 students were given a 

10-minute quiz and were observed for the number of seconds they spent 

‘on task’ Here are the results: 
  

350 | 380 | 500 | 460 | 480 | 400 | 370 | 380 | 450 | 530 

520 | 460 | 390 | 360 | 410 | 470 | 470 | 490 | 390 | 340 

  

                        

Find the mean and median of the time spent on task. 

If you were writing a report to describe these times, which measure 

of central tendency would you use and why? 

6. At 5:30 p.m. during the holiday season, a toy shop counted the number 

of items sold and the revenue collected for that day; the result was 

1= 90 toys with a total revenue of > _x = €4460. 

(a) Find the average amount spent on each toy that day. 

Shortly before the shop closed at 6 p.m., two new purchases of €74 and 

€60 were made. 

(b) Calculate the new mean amount spent on each toy that day. 

7. A farmer has 144 bags of new potatoes weighing 2.15 kg each. He also 

has 56 bags of potatoes from last year with an average weight of 1.80 kg. 

Find the mean weight of a bag of potatoes available from this farmer. 

8. The following are the marks earned by 25 students on a 50-mark test in 

statistics. 

26, 27, 36, 38, 23, 26, 20, 35, 19, 24, 25, 27,34, 

27,26,42, 46, 18, 22, 23, 24, 42, 46, 33, 40 

(a) Calculate the mean of the marks. 

(b) Draw a stem-and-leaf plot of the marks. Use the plot to estimate 

where the median is. 

(c) Draw a histogram of the marks. 

(d) Develop a cumulative frequency graph of the marks. Use your graph 

to estimate the mean. 

9. The following are data concerning the injuries in road accidents in a 

certain country classified by severity. 

 



10. 

s 

12. 

158 

14. 

52 

16. 

117, 

(a) Draw bar graphs for the total number of injuries and describe any 

patterns you observe. 

(b) Draw pie charts for the different types of injuries for the years 1970, 

1990, and 2005. 

The data on the right report the car driver 

casualties in a certain district for 2017. 15-19 103 

(a) Draw a histogram of the data. 20-24 125 

(b) Estimate the mean of the data. 25-29 103 

(c) Develop a cumulative frequency 30-34 80 

graph and use it to estimate the By 88 

median of the data. 40-44 96 

45-49 78 

50-54 60 

o) 45 

60-64 33 

65-69 17 

70-74 13 

75-79 26 

  

Use the data in question 9 of Exercise 7.1 to estimate the median and the 

mean of the number of days spent in hospital by heart patients. 

Use the data in question 10 of Exercise 7.1 to estimate the median and 

the mean of the exercise time of the author for 2006. 

Use the data in question 11 of Exercise 7.1 to estimate the median and 

the mean speed of cars on the highway. 

Use the data in question 12 of Exercise 7.1 to estimate the median and 

the mean length of components at this facility. 

Use the data in question 13 of Exercise 7.1 to estimate the median and 

the mean of the waiting time for customers at this supermarket. 

40, 

(a) Given that ) x; = 1664, find X. 
= 
40 

(b) Given that >_(x; — 20) = 1664, find X. 
= 

For 60 students in a large class, 12 marks are added to each score to 

boost the students’ scores on a relatively difficult test. 

(a) Knowing that ) _(x + 12) = 4404, find the mean score of this group 

of 60 students. 

(b) Another section of the class has 40 students and their average score 

is 67.4. Find the average of the whole class of 100 students. 
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Notice that the range is 
asingle number, not an 
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interval of values. 

Statistics 

7_3 Measures of variability 

Measures of location summarise what is typical of elements of a data set, but 

not every element is typical. Are all the elements close to each other? Are most 

of the elements close to each other? What is the biggest difference between 

elements? On average, how far are the elements from each other? The answers 

lie in the measures of spread or variability. 

It is possible that two data sets have the same mean, but the individual 

observations in one set could vary more from the mean than the observations 

in the second set. It takes more than the mean alone to describe data. Measures 

of variability (also called measures of dispersion or spread), which include the 

range, the variance, the standard deviation, the interquartile range, and the 

coefficient of variation, help to summarise the data. 

Ran 

  

The range in a data set is the difference between the largest and smallest 

observations. 

Consider the expenses data given in Table 7.1. Also consider the same data with 

the largest value of 68 replaced by 120. What is the range for these two sets of data? 
  

  

  

    

Expenses data_| Expenses data with outlier 
Minimum 38 38 
Maximum 68 120 
Range 30 82         

Table 7.3 Expenses data with outlier 

The maximum of the WHO data in Example 7.2 is 79 and the minimum is 29, so 

the range is 50. 

Range doesn’t take into account how the data are distributed. It is affected by 

extreme values (outliers), as we see above. 

Variance and standard deviatiol 

The most comprehensive measures of variability are those given in terms of the 

average deviation from some location parameter. 

Variance 

The sample variance is denoted s? and is evaluated as 

  

where X is the sample mean, 7 is the size of the sample and the x; are the values 

of the items in the sample.



This sample variance is the sum of the squared differences between each 

observation and the sample mean, divided by the sample size. 

  

In most statistics references, the sample variance, < is called the unbiased estimate of the 
population variance, 0, and is denoted as 52, It s calculated slightly differently from the sample 

3 — 2 
variance required by the IB syllabus. Its value s s2_, = ‘71 " 

  

‘The reason for defining the sample variance in this manner is beyond the scope of this book. 

‘The use of n — 1 in the denominator has to do with the use of the sample variance as an estimate 

of the population variance. Such an estimate has to be unbiased, and this sample variance is the 

‘most unbiased estimate of the population variance. However, the IB syllabus uses a different 

definition of the sample variance as already discussed. 

Be careful when using a calculator, because the s, function on GDCs corresponds tos2 ;. 
When you use your GDC to calculate the sample variance, make sure you use the o7 function. 

The population variance, o, is the sum of the squared differences between each 

observation and the population mean, divided by the population size, N. 

N 

> ei-w? &t 
N 

  

where w is the population mean and x; is the value of each item in the 

population. 

The variance is a measure of the variation about the mean, squared. This 

means that the unit used for the variance is the square of the unit used for 

the measurements. In order for the measure to have the same unit as the data 

measurements, the square root is taken. This gives a new measure, the standard 

deviation. 

Standard deviation 

The standard deviation measures the standard amount of deviation or spread 

around the mean. 

The sample standard deviation, s,,, is the (positive) square root of the variance, 

and is defined as: 

  

where X is the sample mean, 7 is the number of items in the sample and x; is 

the value of each item in the sample. 

The population standard deviation is 

- i = wy? 
o=Va? 

  

where p is the sample mean and x; is the value of each item in the population. 

If the unit of the data 

measurements is kg, the 
unit of the variance is kg2, 
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These are measures of variation about the mean. 

« When is o = 02 When all the data takes on the same value and there is no 

variability about the mean. 

« When is o large? When there is a large amount of variability about the mean. 
  

  

  

  

  

  

Stock A Stock B Consider the following example. 

4 L In business, investors invest their money in stocks whose prices fluctuate 

425 3 with market conditions. Stocks are considered risky if they have high 

5 25 fluctuations. Table 7.4 gives the closing prices of two stocks traded on 

475 5 Vienna’s stock market for the first seven business days in September 2017. 
5.75 7 
  Even though the two stocks have similar central values, they behave very 
  

  

5.25 6.5 
o o differently. It is obvious that stock B is more variable and it becomes more 

— — obvious when we calculate the standard deviations. 
=5 =5 
        Median (A) = 5 | Median (B) = 5 ‘We will calculate the standard deviation manually in this example to 

demonstrate the process. You do not have to do this manually all the time! 
  

Table 7.4 Stock closing prices 

— 52 
2 ;( ) ) _(4—=52+ 42552+ (5524 (475 =52+ (575 = 52 + (5.25 = 5)> + (6 — 5)2 

& 7 7 

= 0.464 

M
 — 52 

2 IXI ) _(1=524+B-52+025-52+(5-52+(7—52+(6.5—5*+(10—5? 
£ 7 7 

=821 

This means that the standard deviations are: 

sy =0.464 = 0.681 

3= V82T = 2.865 

Stock B is 4.2 times as variable as stock A. 

‘When computing s? manually, you might find it easier to use the following 

shortcut formula: 

  

However, remember that once you have a good understanding of the standard 

deviation, you will rely on a GDC or software to do most of the calculation for 

you. 
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The output from a GDC is shown below. 

1-Var Stats 
    

            

  

which uses the calculation o = | =+ 

  

‘The screenshots also show you that the GDC gives you >_x2. You can use this to find the variance 
by hand. 

o4 
_&t 

T 
   :@'5::0.464é5n = 0681 

The interquartile range and measures of ni 

tendency 

  

Another measure of spread is the interquartile range. To understand this 

measure, we must first define percentiles and quartiles. 

Percentiles and quartiles 

Percentiles separate large ordered data sets into 100ths. The pth percentile is a To find percentiles and 
number such that p per cent of the observations are at or below that number. iactles, dals st it be in ascending order. 
Quartiles are descriptive measures that separate large ordered data sets into 
four quarters. A practical method to 

calculate the quartiles 
A test score in the 90th percentile means that 90% of the test scores were less is to split the data 

into two halves at the 
median. (When nis odd, 
include the median in 

both halves.) The lower 

quartile is the median 

than or equal to your score. An excellent performance! The score is in the 

upper 10% of all test scores. 

The first quartile, Q,, is another name for the 25th percentile. The first quartile 

  

divides the ordered data such that 25% of the observations are at or below of the first half and the 

this value. Q, is located in position 0.25(n + 1) when the data are in ascending upper quartile is the 
order. That is, median of the second 

1 half, For example, with 
Qi= th ordered observation the stocks data, {4, 4.25, 

4.75,5,5.25,5.75, 6}, 

The third quartile, Q,, is another name for the 75th percentile. The third n =7 and the median is 
the 4th observation, 5. 

The first quartile is then 

the median of {4, 4.25, 

quartile divides the ordered data such that 75% of the observations are at or 

below this value. Q; is located in position 0.75(n + 1) when the data are in 

ascending order. That is, 4.75,5), which is 4.5, and 

_3mn+1) ) the third quartile is the 
Q= T(h ordered observation median of {5, 5.25, 5.75, 

The median is the 50th percentile, or the second quartile, Q,. 6}, which is 5.5. 
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minimum < Q 
< median < Q; 

< maximum 

An outlier is an unusual 

observation. It lies at 

an abnormal distance 

from the rest of the data. 
‘There is no unique way 

of describing what an 
outlier is. A common 

practice is to consider 
any observation that is 
further than 1.5 X IQR 
from the first quartile 

or the third quartile an 

264 

outlier. 

Statistics 

Interquartile range 

A measure which helps to measure variability and is not affected by extreme 

values is the interquartile range (IQR). It avoids the problem of extreme values 

by just looking at the range of the middle 50% of the data. 

The interquartile range measures the spread in the middle 50% of the data. It is 

the difference between the observations at the 25th and the 75th percentiles: 

IQR=Q, - Q   

  

  

  

  

  

  

            

; Expenses | Expenses data 
If we.conslder the studerft expenses i B 

da{ta in Table 7.14, both with an.d Minirsiim 38 38 

without the outlier 120 replacing Q 50 50 
the largest value 68, we have the - 

. Median 55 55 
results shown in Table 7.5. Q, 61 61 
Range doesn’t take into account Maximum 68 120 

how the data are distributed and is Range 30 82 

affected by extreme values. We can IQR 11 11 

see in Table 7.5 that the IQR does Table 7.5 The IQR is not affected by extreme 
not have this problem. values 

Box-and-whisker plots 

The five descriptive measures, minimum, first quartile, median, third quartile, 

and maximum, give us a five-number summary of a data set. 

‘Whenever we have a five-number summary, we can put the information together 

in one graphical display called a box-and-whisker plot, also known as box plot. 

Let us make a box plot with the student expenses data. 

« Draw an axis spanning the range of the data. Mark the numbers corresponding 

to the median, minimum, maximum, and the first and third quartiles. 

« Draw a rectangle with the lower end at Q; and the upper end at Q;, as shown 

in Figure 7.9. 

« To help us consider outliers, we calculate lower and upper fences. Any point 

outside these fences is considered an outlier. Mark the fences with a dotted 

line since they are not part of the box. The fences are constructed at the 

following positions: 

Lower fence: Q, — 1.5 X IQR (in this case: 50 — 1.5(11) = 33.5) 
Upper fence: Q; + 1.5 X IQR (in this case: 61 + 1.5(11) = 77.5) 

« Mark any outlier with an asterisk (*) on the graph. 

« Extend horizontal lines, called whiskers, from the ends of the box to the 

smallest and largest observations that are not outliers. In the first case these 

are 38 and 68, while in the second they are 38 and 67. 

« Outliers are important in statistical analysis. They may contain important 

information not shared with the rest of the data. Statisticians look very 

carefully at outliers because of their influence on the shapes of distributions



and their effect on the values of the other statistics such as the mean and 

standard deviation. 

   
  

  

        

  

  

  

  

        

  

  

=11 

o | | 

335 38 50 55 61 68 77.5 

Lower fence Upper fence 
Minimum Q, Median Q, Maximum 

Figure 7.9 Box plot for student expenses data 

IQR il.=50 =11 

| | % 

o | | 

335 38 50 55 61 67 77.5 120 

Lower fence Upper fence 
Minimum Q, Median Q, Maximum 

Figure 7.10 Box plot for student expenses data with outlier 

Using the box plots, we can immediately see that the IQR is €11, the difference 

between 50 and 61. 

We can also construct box plots using software packages, as in Figure 7.11. You can also use your 

Again, this shows that the box contains the middle 50% of the data. The width GDC to draw box plots. 

of the box is the IQR. B 
  

    

    

  

         

4 
3% 40 45 50 55 60 65 70 

Expenses (€) 

  

Figure 7.11 Box plot for student expenses data 

This is a reasonable summary of the spread of the distribution, as you can 

see by comparing it to the histogram in Figure 7.12. Locating the IQR on the 

histogram gives another visual indication of the spread of the data. 

     

  

20 
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Figure 7.12 Histogram showing student expenses data 
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€TV el=leRo oI F:] 

The calculation of the mean and variance for grouped data is similar to the 

calculation for raw data. The difference lies in the use of frequencies instead of 

individual data points. A comparison is given in Table 7.6. 
  

  

  

  

  

  

  

    

Statistic | Raw data Grouped data Grouped data with intervals 

¥ 3 3 S fim) 
== 

S fom) 

3 fom) 

s lm 2 fim) g-m 

30m,— 5 fom) 

5 ftx) 3= fom) 
  

x;: data point   m;: interval midpoint (mid-mark or mid-value) 

3" ftx), 3 fim)): total number of data points 

fx): frequency of x; 
fim): frequency of interval i 

  

from Example 7.1. 

Table 7.6 Formulae for calculating the mean and variance of raw and grouped data 

Table 7.7 shows how we estimate the mean and variance for the grouped data 

  

  

  

  

  

  

  

  

  

            

o ;e‘“";:f(x) M‘d}," oint sfi::‘::;{:fl) mxfim) | (my— 52| (= 22 % fim) 

B=x<40] 375 2 75 3445 6889 
40=x<45 42,5 3 127.5 183.9 551.6 

45=x<50 47.5 11 522.5 733 806.0 

D= x<55 52.5 21 1102.5 12.7 266.1 

55=x<60 575 19 1092.5 21 39.4 

60 =x<65 62.5 11 687.5 41.5 456.2 

65=x<70 67.5 13 877.5 1309 1701.4 

Totals > fim;) = 80 ;m, - flm)) = 4485 ;(m, — %)2- fim,) = 4509.6 

    4485 
Mean = ——= = 56.06 | Variance = 

80 

4509.6   

  

Table 7.7 Estimating mean and variance for grouped data 

  

  

=56.37 

Standard deviation = 7.51     

‘The numbers in Table 7.7 are estimates of the mean, the variance, and the 

standard deviation. As you will notice, they are not equal to the values we 

calculated earlier, but they are close. The reason for the difference is that, with 

grouping, we lose the detail in each interval. For example, the interval between 

45 and 50 is represented by the mid-interval value 47.5. In essence, we are 

assuming that every number in the interval is equal to 47.5.



       

  

An ogive can also be produced from this data, as shown in Figure 7.13. 2 100 
2580 

You can also use your GDC to produce an ogive. £g Zg 
g2 

T—Var Stats T—Var Stats 7 2820 
®=55.475 tn=80 < 0 

4438 minx=38 3 40 50 60 70 
220400 4 0.5 Expenses 
247370213 & Figure 7.13 Cumulative 

distribution for expenses data                
  

Figure 7.14 is a realistic ogive. 
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35 40 45 50 o 60 65 70 

Expenses (€) 

Figure 7.14 Ogive constructed from real data 

Notice how we locate the first quartile. Since there are 80 observations, the first 

n+1_ 81 
quartile is at approximately the = 2" 20th position. Read from 20 on 

the y-axis across to the curve, then down to the x-axis to find that it is around 50. 

nt1_381   The median is at the 3= 40.5th position, i.e. approximately 55. 

3n+1 _ 243 
Similarly, the third quartile is at S 61st position, which 

happens to be approximately 61. 

Example 7.8 

Speed limits in some European cities are set to 50 kmh ™. Drivers in various 

cities react to such limits differently. A study was undertaken to compare 

drivers’ behaviour in Brussels, Vienna, and Stockholm. The table shows the 

recorded speeds of different drivers. Use box plots to compare the results. 
  

Brussels 646163 |57(49|49|46|58|45|60|51|36(65|45|47|46 

Vienna 62(60|59(50(61|63|53|46|58|49|51|37(47|51|63|52|44|50(45|44 

Stockholm |43|44|34|35|31|34(29|33|36|38|45|47(29|48|51|49|48 
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Mean Median 

Figure 7.15 Close to 
symmetrical data 
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Statistics 

I 

Solution 

Parallel box plots are an appropriate tool for comparing the three data sets. 

After arranging each data set in ascending order and finding the minimum, 

first quartile, median, third quartile, and maximum for each data set, we can 

draw three box plots on the same set of axes. 
  

Cit
y 

20 25 30 35 40 45 50 55 60 65 70 

Speed 

      
The box plots show that, on average, drivers in Brussels and Vienna tend to 

drive faster. The median in both cities is higher than 50, which means that 

more than 50% of the drivers in the two cities do not respect the speed limit. 

The variation in these two cities is similar, with Brussels having a slightly 

wider range than Vienna. 

Almost all drivers in Stockholm appear to adhere to the 50 kmh~! limit. 

The median is around 40 kmh~! and the third quartile about 47 kmh~1, 

which means that more than 75% of the drivers in this city drive at a speed 

less than the 50 kmh ™! limit. 

Shape, cel and spread 

Statistics is about variation, so spread is an important fundamental concept. 

Measures of spread help us to precisely analyse what we do not know. If the 

values we are looking at are scattered very far from the centre, then the IQR 

and the standard deviation will be large. If these are large, then our central 

values will not represent data well. That is why we always report spread with 

any central value. 

A practical way of seeing the significance of the standard deviation can be 

demonstrated with the following (optional) observations. 

Empirical rule 

If the data are close to being symmetrical, as in Figure 7.15, then the following 

is true: 

« The interval u & o contains approximately 68% of the measurements. 

« The interval p & 20 contains approximately 95% of the measurements. 

« The interval p & 30 contains approximately 99.7% of the measurements.



The empirical rule usually indicates whether or not an observation is very far 

from the expected value. Take the following example. 

A car’s fuel efficiency is recorded each time it is refuelled. 98 efficiency 

measurements are taken. The data are given in Table 7.8. 
  

  

  

  

  

  

  

  

Fuel effiency (km1-!) | Frequency | Fuel effiency (km1-') | Frequency 
6.0 1 10.0 14 

7.0 1 10.5 Z 

7.5 4 11.0 9 

8.0 8 15 5 

8.5 14 12.0 1 

9.0 21 12.5 2 

9.5 11           
  

Table 7.8 Data about a car’s fuel efficiency 

  

  

  

  

  

  

  

  

          
  

                
  

  

  

The summary measures are given in Table 7.9. Mean 9454 

We can draw a histogram and a box plot from the data. o 1.223 

T Median 9.25 

204 ‘ 1 | L | Q 85 

T T TR T T T Q 10.125 
15 5 5 T i IQR 1.625 

£ - - . | 
g T T, = i Table 7.9 Summary data about 
£ 1 | [ a car’s fuel efficiency 

s{— ! 
/I | 

oje o= L L L ; 
6 7 8 9 10 11 12 

Fuel efficiency (km1™) 

Figure7.16 Fuel efficiency histogram 

| | 
oo 1         

6 7 8 9 10 11 12 13 

Fuel efficiency (km1™) 

Figure7.17 Fuel efficiency box plot 

The histogram shows that the distribution is almost symmetric. The possible 

outlier has little effect on the mean and standard deviation. That is why the 

mean and median are almost the same. 

Looking at the box plot, we can see that there is one outlier. This is confirmed 

by calculation. 

Lower fence = 8.5 — 1.5 X 1.625 = 6.1. As 6 is smaller than this, it is 

considered an outlier. 
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Upper fence = 10.125 + 1.5 X 1.625 = 12.6. Hence there are no outliers on 
this side. 

If we use the empirical rule, we can expect about 99.7% of the data to lie within 

three standard deviations of the mean. 

Three standard deviations below the mean = 9.454 — 3 X 1.223 = 5.8. 

Three standard deviations above the mean = 9.454 + 3 X 1.223 = 13.1. 

In fact, all the data are within the specified interval, including the potential 

outlier. 

If you are asked to describe a quantitative variable, you should report the shape of ts distribution, 
and include a measure of centre and a measure of spread. 

« Ifthe shape s skewed, report the median and IQR. You may want to include the mean and 
standard deviation, but you should point out that the mean and median differ because the data 

are skewed. A histogram can help. 
« Ifthe shape is symmetrical, report the mean and standard deviation. You may report the 

‘median and IQR as well. 
« Ifthere are clear outliers, report the data with and without the outliers. The differences may be 

revealing. 

Example 7. 

The records of a large high school show the heights of their students for the 

year 2018. 

200 

@ 3 
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nc
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@ 3 

0 
169 171173 175 177 179 181 183 185 187 189 191 193 195 

Height (cm) 

  

(a) State which statistics would best represent the data. Give reasons for 

your answer. 

(b) Calculate the mean and standard deviation. 

(c) Construct a cumulative frequency table and a cumulative frequency 

graph of the data. 

(d) Use your cumulative frequency table or graph to estimate the median, 

Qi Q;, and IQR. 

(e) Are there any outliers in the data? Give reasons for your answer. 

(f) Write a few sentences describing the distribution.



s 

Solution 

(a) The data appear to have outliers and are slightly skewed to the right. 

The most appropriate measure is the median since the mean is 

influenced by the extreme values. 

(b) Set up a table to calculate the mean and standard deviation. Read the 

values from the histogram. 
  

  

  

  

  

  

    
      
  

        

Height | Number of = s + X flx) . — X)2 2 ) x X flx) (= %) | (%= %)* X fix) 

170 15 2550 51.84 777.6 

171 60 10260 38.44 2306.4 
172 90 15480 27.04 2433.6 

194 2 388 282.24 564.5 
196 3 588 353.44 1060.3 

Totals | 3 fix) = 1300 | Dox; - fixy = 230376 | D(x; — %) - fix) = 19927.6 
& i 

_ 230376 _ 199274 _ R = 280 = 1770 | Vs = S S 1528 

Standard deviation = 3.92       
Using the shortcut formula for the variance will give the same result. (Answers may differ 
slightly due to rounding.) 

S fin) 

n 
40845390 - 2 — 1300 177.2123 15.3315 

  

2 - S 

(c) To construct a cumulative frequency graph, we first need a cumulative 

frequency table. This is constructed by accumulating the frequencies as 

  

  

  

  

  

  

  

  

  

  

  

  

shown. 

x fx) Cum f(x) x fx) Cum flx) 
170 15 15 181 80 1095 

171 60 —+4> 75 182 90 1185 

172 0<T]> 165 183 40 1225 
173 W= %5 184 20 1245 
174 50 285 185 40 =—> 1285 

175 200 485 186 10 1295 
176 180 665 187 0 1295 
177 70 735 g i g 

178 120 855 194 225 12y 
179 50 905 195 0 1297 
180 110 1015 196 3 1300               
  

The cumulative frequency table is constructed such that the cumulative 

frequency corresponding to any measurement is the number of 

observations that are less than or equal to its value. So, for example, the 

cumulative frequency corresponding to a height of 174 cm is 285, 

27



7/ Statistics 

which consists of the 50 observations with height 174 cm and the 235 

observations with heights less than 174 cm. 

The cumulative frequency graph plots the observations on the 

horizontal axis against their cumulative frequencies on the vertical axis 

as shown below. 
  

  

  

              

5 1400 i { - 
£ 1200 T T . 
& 10004 { I £ | | 

{ ] I | 
e | | 

6 285 J | 

200+ 1 
174 | | 

O 71 173 75 177 179 TR 183 185187 189 191 195195 
Height (cm) 

Ifa data set has two (d) As the number of observations is even and Ll 650.5, the median is 
‘modes, it is said to be 2 

bimodal. the observation between the 650th and 651st observations. From the 

cumulative table, we can see that the median is in the 176 cm interval. 

So the median is 176 cm. 

1301 
4 

‘The same calculations 
canbe made usinga 

GDC. Q, is at the   = 325th observation. From the table, as 174 cm has 
  

a cumulative frequency of 285, and 175 cm has 485, then Q, has to be 

175cm. 

3 x1301 
Qs is at the ~ 976th observation. So it is 180 cm. 

  IQR =180 — 175 =5 
To check for outliers, we can calculate the lower and upper fences. 

Lower fence = 175 — 1.5 X 5 = 167.5, which is lower than the 

minimum value, so there are no outliers on the left. 

Upper fence = 180 + 1.5 X 5 = 187.5. There are five outliers: 194 cm 

occurs twice and 196 cm occurs three times. 

—— °° (f) The distribution appears to have two modes, at 175 cm and 176 cm. 

It is slightly skewed to the right with a few extreme values at 194 cm and 

196 cm. This is further confirmed by the fact that the mean of 177.2 is 

higher than the median of 176. 

1. The pulse rates of 15 patients chosen at random from visitors at a local 

clinic are given below. 

  

(e 

  

r?\axX=1 96 
1   

  

        

72, 80, 67, 68, 80, 68, 80, 56, 76, 68, 71, 76, 60, 79, 71 

(a) Calculate the mean and standard deviation of the pulse rate of the 

patients at the clinic. 
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(b) Draw a box plot of the data and indicate the values of the different 

parts of the box. 

(c) Check if there are any outliers. 

2. The numbers of passengers on 50 flights from Washington to London on 

a commercial airline are given below. 
  

165 | 173 | 158 | 171 | 177 | 156 | 178 | 210 | 160 | 164 

141 | 127 | 119 | 146 | 147 | 155 | 187 | 162 | 185 | 125 

163 | 179 | 187 | 174 | 166 | 174 | 139 | 138 | 153 | 142 

153 | 163 | 185 | 149 | 154 | 154 | 180 | 117 | 168 | 182 

130 | 182 | 209 | 126 | 159 | 150 | 143 | 198 | 189 | 218 

  

  

  

                          
(a) Calculate the mean and standard deviation of the number of 

passengers on this airline between the two cities. 

(b) Set up a stem-and-leaf diagram for the data and use it to find the 

median of the number of passengers. 

(c) Develop a cumulative frequency graph. Estimate the median, first, 

and third quartiles. Draw a box plot. 

(d) Find the IQR and use it to check whether there are any outliers. 

(e) Use the Empirical rule to check for outliers. 

3. Ata school, 100 students took a practice IB exam using Paper 3. 

The paper was marked out of 60 marks. Here are the results 
  

10-19 | 20-29 | 30-39 | 40-49 | 50-60 
  

  

              

(a) Draw a cumulative frequency curve. 

(b) Estimate the median and quartiles. 

4. 130 first year IB students were given a placement test to decide whether 

they go for SL or HL. The times, in minutes, for these students to finish 

the test are given in the table below. 
  

40-50 | 50-60 | 60-70 | 70-80 | 80-90 | 90-100 | 100-110 | 110-120 
  

12 24 29 19 16 12 8 2                 

  

  
  

(a) Develop a cumulative frequency curve. 

(b) Estimate the median and the IQR. 

(c) 20 students did not manage to finish the test after 120 minutes and 

had to hand it in uncompleted. Estimate the median finishing time 

for all 150 students. 

5. The mean score of 26 students on a 40-point paper is 22. The mean for 

another group of 84 other students is 32. Find the mean of the combined 

group of 110 students.



7/ Statistics 

6. The scores on a 100-mark test of a sample of 80 students in a large 

school are given in the table. 

59-63 | 63-67 | 67-71 | 71-75 | 75-79 | 79-83 | 83-87 

6 10 18 24 10 8 4 

(a) Find the mean and standard deviation of the scores of all students. 

  

  

                

(b) A bonus of 13 points is to be added to these scores. What is the new 

value of the mean and standard deviation? 

7. In alarge theatre in London (1744 capacity), during a period of 10 years, 

there are 1000 performances of a particular production. The manager of 

the group kept a record of the empty seats on the days it played. Here is 

the table. 

(a) Copy and complete the cumulative frequency table below for the 

above information 

  

1 11-20 | 21-30 | 31-40 | 41-50 

  

        

  
  

51-60 | 61-70 | 71-80 | 81-90 | 91-100 

  

=0 

i3 50 100 170 260 

20 2! 90 45 30 20             

  

  

  
  

            

x=10 | x=20 | x=30 | x=40 | x=50 

15 165 

Xx=60 | x=70 | x=80 | x=80 [ x=100 

815 1000 
  

(b) Draw a cumulative frequency graph of this distribution. Use 1 unit 

on the vertical axis to represent every 100 days and 1 unit on the 

horizontal axis to represent every 10 seats. 

(c) Use the graph from (b) to answer the following questions. 

(i) Find an estimate of the median number of empty seats. 

(ii) Find an estimate for the lower and upper quartiles, and the IQR. 

(iii) The days the number of empty seats was less than 35 seats were 

considered bumper days (lots of profit). How many days were 

considered bumper days? 

(iv) The highest 15% of the days with empty seats were categorised 

as loss days. What is the number of empty seats above which a 

day is claimed as a loss? 
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8. 

10. 

R 

12. 

Aptitude tests sometimes use 

jigsaw puzzles to test the ability 

of job applicants to perform 10 =<t <30 16 

precision assembly work in 30=t<40 24 

electronic instruments. One 40<t<45 22 

company, which produces the 15=t<50 26 

computerised parts of video and S0=r<55 38 

(@D p:»layers, gave the results on S 60 36 

theright; 60=t<65 32 
(a) Draw a histogram of the 65=1<70 18 

data. 

(b) Draw a cumulative frequency curve and estimate the median and IQR. 

(c) Calculate estimates of the mean and standard deviation of all the 

applicants. 

. The heights (to the nearest cm) of football players at a given school are 

given in the table on the right. 

(a) Find the five-number summary for this data. 

(b) Display the data with a box plot and a histogram. 

(c) Find the mean and standard deviation of the data. 

(d) Describe the data in a few sentences. 

(e) Draw a cumulative frequency graph and estimate the height of a 

player that is in the 90th percentile. 

(f) 10 players’ data were missing when the data was collected. 

The average height of the 10 players is 182. Find the average height 

of all the players, including the last 10. 

Consider ten data measures. 

(a) If the mean of the first nine measures is 12, and the tenth measure is 

12, what is the mean of the ten measures? 

(b) If the mean of the first nine measures is 11, and the tenth measure is 

21, what is the mean of the ten measures? 

(c) If the mean of the first nine measures is 11, and the mean of the ten 

measures is 21, what is the value of the tenth measure? 

Suppose that the mean of a set of 10 data points is 30. 

(a) Itis discovered that a data point having a value of 25 was incorrectly 

entered as 15. What should be the revised value of the mean? 

(b) Suppose an additional point of value 32 was added. Will this 

increase or decrease the value of the mean? 

Half the values of a sample are equal to 20, one-sixth are equal to 40, and 

one-third are equal to 60. What is the sample mean?   

152 

155 

157 

160 

163 

165 

168 

170 

173 

175 

178 

180 

183 

185 

188 

191 

193 

  

Table 7.10 Data for question 9 
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13. The seven numbers 7, 10, 12, 17, 21, x, and y have a mean p = 12 and a 
172 

variance o2 = 7 . Find x and y given that x < y. 

14. A sample of 25 observations was taken out of a large population of 
25 n 

measurements. If it is given that ) x; = 278 and » x? = 3682, estimate 
= =1 

the mean and the variance of the population of measurements. 

15. Use the data in question 9 of Exercise 7.1 to estimate the IQR and the 

standard deviation of the number of days spent in hospital by heart 

patients. 

16. Use the data in question 10 of Exercise 7.1 to estimate the IQR and the 

standard deviation of the exercise time of the author for 2006. 

17. Use the data in question 11 of Exercise 7.1 to estimate the IQR and the 

standard deviation of the speed of cars on the highway. 

18. Use the data in question 12 of Exercise 7.1 to estimate the IQR and the 

standard deviation of the length of components at this facility. 

19. Use the data in question 13 of Exercise 7.1 to estimate the IQR and 

the standard deviation of the waiting time for customers at this 

supermarket. 

7_4 Linear regression 

Correlation and covariance 

Scatter plots 

Consider the following statements. 

« The time you spend getting ready for an exam affects the score you obtain in 

that exam. 

« In general, the foot size of an adult is related to the height of that adult. 

« Smoking increases the chances of a heart attack. 

Such statements concern the relationship between two variables. So far we 

have considered how to describe the characteristics of one variable. In this 

section, we will look at relationships between two variables. This study is called 

bivariate statistics. 

To study the relationship between two variables, we measure both variables on 

the same subjects. For example, if we are interested in the relationship between



height and foot size, then for a group of individuals we record each person’s 

height and foot size. This way we know which foot size goes with which height. 

Similarly, we record the grades of each individual in the study along with the 

time that person spent preparing for the exam. So our data are sets of ordered 

pairs. These data allow us to study the link between height and foot size or time 

and grade. In fact, taller people tend to have larger foot sizes, and the more you 

prepare for an exam, the higher your grade is. We say that pairs of variables like 

these are associated. 

Table 7.11 shows the grades of 10 students in an IB Economics SL class. 

The table also gives the time they spent preparing for a test and the score they 

achieved, out of a maximum score of 100. We have already seen how 
- - o " to use histograms and box 

Student | Tim | Joon [ S-youn | Kevin | Steve | Niki | Henry | Anton | Cindy | Lukas S S o e 
Hours 4 4.5 6 3.5 3 a a0 6.5 7 6.5 one variable. In bivariate 

Grade | 65 | 80 83 61 | 55 | 79 | 8 89 | 92 | 95 e et 
plot, or scatter diagram. 

  

  

  

                          

Table 7.11 1B Economics student grades In a scatter plot, each 

observation is represented 

Figure 7.18 shows a scatter plot of the data given in the table. The horizontal by a point on a grid. The 
axis shows the number of hours spent studying and the vertical axis shows horizontal component 

the d ived. A il notice, it that th he t represents the explanatory 
e grades received. As you will notice, it appears that the more hours spent A 

studying, the higher the grade. We say that the grades on tests and the time component represents the 
spent preparing for them are associated. We call the time the explanatory response variable. 

variable (or independent variable) and the grade the response variable (or 

dependent variable). The students whose times and grades are recorded are . 
Two variables measured 

the subjects of the experiment/study. on the same subjects 
are associated if 
specific values of one 
variable tend to occur 
in connection with 

particular values of the 
other variable. 

100 

90 

80 

Gr
ad
e 

Larger values for the foot 
size of an individual tend 

to occur in connection 

with taller individuals. 

A higher rate of serious 
road accidents happens in 
connection with drivers 

Hours that have a high level of 

alcohol in their blood. 
Figure 7.18 Scatter plot of IB Economics student data ‘We claim that height and 

70 

60 

50 

  

foot size are positively 
associated, and we can 

also claim that alcohol 

level and involvement in 

serious road accidents 
are positively associated. 
‘There may be a negative 
association between time 
spent watching TV and 

To study the nature of the relationship between two variables, we look into how scores on weekly tests for 
teenagers. 

A response variable measures an outcome of a study. An explanatory variable explains the 
changes in the response variable, Ifthe study is to determine the relationship between weight 
and blood pressure, then weight is the explanatory variable and blood pressure is the response 
variable. If the study i to investigate the relationship between the level of fertiliser and the crop 
volume during an agricultural season, then the level of fertiliser s the explanatory variable and the 
crop is the response variable. 

changes in the values of one variable help explain the variation in the other 
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variable. For instance, we look at how the increase in a person’s height can 

explain the increase in foot size. 

The principles that guide this work are: 

 Start with a graphical display, and then explore numerical summaries. 

+ Look for overall patterns and deviations from those patterns. 

« When the overall pattern is quite regular, use a mathematical model to 

describe it. 

Example 7.10 

The data presented below is for 80 adults in a dieting programme. The 

researchers are testing the hypothesis that the metabolic rate (calories burnt 

per 24 hours) is influenced by the lean body mass (in kg without fat). 

1800 

1700 

1600 

1500 

1400 

    

    

    

Me
ta
bo
li
c 

ra
te

 

o 5 

(54,1291.6)    

30 40 50 60 70 80 

Lean body mass 

The scatter plot shows that there is an association between the metabolic 

rate and lean body mass. There is a positive association between these two 

variables: the greater the lean body mass, the higher the metabolic rate. 

How to analyse a scatter plot 

As a rule of thumb, when we examine a scatter plot, we may look at the 

following characteristics: 

« Overall pattern (form, direction, and strength) 

« Striking deviations from the pattern (outliers) 

In Example 7.10, the form is roughly linear. That is, the points appear to cluster 

around a straight line. The direction, as mentioned earlier, appears to be a 

positive association. The strength is determined by how closely the points 

follow the form. We will discuss this idea in more detail later in the chapter. 

Even though some points stray away from the line, in this case it does not 

appear that there are any outliers. 

In bivariate statistics, an outlier is an observation whose values fall outside the overall pattern of 
the relationship.



Example 7.11 

The table lists the fuel consumption of 34 small cars in km1~! during city 

driving and highway driving. Make a scatter plot of the data and comment 

on any patterns you observe. 
  

City 7 77 7.3 G 8.5 S8l 6.8 10.7 6.0 

Highway 10.2 10.7 9.8 e 11.1 8.1 9.8 13.7 9.4 

  

  

  

City 8.5 Shl 3.8 9.4 8.5 9.0 ez 9.8 25.6 

Highway 9 8.5 6.4 11.9 124 12.4 T 152 28.2 

      

  

City 8.5 4.7 3.8 6.8 6.4 8.1 6.8 8.5 

Highway 119 6.8 55 9.8 9.8 15 9.8 124 

  

  

  

City e 4.3 6.4 55! 11.1 8.1 7.7 77 

Highway i 6.8 9.4 8.1 13.7 e 9.8 11.1 
                        
[ e 

Solution 

A scatter plot of the data is given, with highway fuel consumption plotted on 

the x-axis and city fuel consumption plotted on the y-axis. 

i [ 

  

li L outlier 
£ 
B 
Es 
z 
S 
= 3 Z 0 Ly 
B o8 

8 e o 
5 .o 

o d 

0 5 10 15 20 25 30 

Highway fuel consumption 

The data are tightly clustered around a positively sloped line. This indicates 

that the fuel consumption in highway driving and city driving are, as 

expected, positively associated, and the relationship is strong. 

However, we can see that there is one observation that is positioned quite far 

from the rest of the data. This observation is an outlier. 

Outliers in statistics are important. Sometimes they indicate a problem in 

the data being observed and sometimes they may have a special significance. 

In this case, the data corresponds to a ‘hybrid’ car, which uses battery power 

in addition to fuel and hence can travel much further on a litre of fuel. This 

observation is not typical of the study and should be removed in order to get 
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[ 

You can use either a 
spreadsheet or your GDC 
to produce a scatter plot. 

Here are two samples. 

Note that you need to 
enter your data into 
lists to perform any 

calculations. 
  
  T   
  

          

  

  

  

      

E(X) is the expected 
value of X. This is the 

average value that you 
would expect after a large 
number of observations 

and is usually the same as 
the population mean. 
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a clear indication of the nature of the relationship between the two variables. 

Here is an adjusted scatter plot without the hybrid car. 

12 

s 
= 

Ci
ty

 
fu
el
 
co

ns
um

pt
io

n 

  

[
 

) 

] 6 7 8 9 10 11 12 13 14 

Highway fuel consumption 

Covariance 

Intuitively, we think of the dependence of two variables X and Y as implying 

that one variable, Y for example, either increases or decreases as the other 

variable, X, changes. In this book, we will confine our discussion to two 

measures of dependence: the covariance between two random variables and 

their correlation coefficient. 

In the scatter plots in Figures 7.19, 7.20, and 7.21 we give plots of variables X 

and Y, for samples of size 15. 

In the scatter plot in Figure 7.19, all the points fall on a straight line. Obviously 

Xand Y are dependent in this case. Suppose we know E(X) = puyand E(Y) = 

y- Locate the point with coordinates (wy, py) and then locate any point, say (x;, 

1), and measure the deviations (x, — py) and (y, — wy). If the point is in the 

upper right quadrant, both deviations are positive. Similarly, if the point is in the 

lower left quadrant, both deviations are negative. The product of the deviations 

(x, = ) (y, — py) will be positive in both cases. This is a typical and extreme 

case of positive association. When the line representing the pattern in the data is 

positively sloped, the product of deviations from the mean is on average positive; 

that is, E((X — ux)(Y — py)) > 0. 

Y 
  

  

  

        
T X 

Figure 7.19 Positively sloped pattern



In the scatter plot in Figure 7.20, the data follow a 

negatively sloped pattern. If the point is in the upper 

left quadrant, the X-deviations are negative while 

the Y-deviations are positive. Similarly, if the point 

is in the lower right quadrant, the X-deviations are 

positive while the Y-deviations are negative. 

The product of the deviations (x; — py)(y; — py) 

is negative in both cases. 

Figure 7.21 shows a scatter plot where little 

dependence (if any) exists between the variables. 

In this case, the deviations (x, — uy)(y, — y) sometimes 

assume the same algebraic sign and sometimes opposite 

signs. Thus the product (x; — y)(y; — py) will be 

positive sometimes and negative other times, and the 

average may be close to zero. 

The average E(X — uy)(Y — uy)) provides a measure 

of the linear dependence between X and Y. This 

quantity is called the covariance of X and Y. 
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Figure 7.20 Negatively sloped pattern 
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Figure 7.21 Scatter plot with little (if any) dependence between 

variables 

1 X and Y are random variables with means oy and p1y, the covariance of X and Y is 
cov(X, ) = E[(X — py)(Y — )] 

‘The larger the absolute value of the covariance of X and Y, the greater the linear dependence 

between X and Y. Positive values indicate that Y increases as X increases and negative values 

indicate that Y decreases as X increases. A zero value of the covariance indicates that the variables 

are linearly uncorrelated and that there is no linear association between X and Y. 

You will usually use your GDC or software to calculate the covariance, but there is a shortcut 
calculation formula that can be helpfulif you need to o the calculations manually. 

covlX, ¥) = B((X = py)(Y = py)) 
=EXY —Xpuy = py Y+ pxpy) 
= EXY) — EX py) — E(ux Y) + By py) 
=EXY) — uyBX) — uxEY) + pypy 

=EXY) — pypy = px iy + oy iy 
=EXY) - pypy 

‘The above result leads to 
cov(X, X) = EXX) — pux puy = EX?) — p? = VIX) 

If X and Y are not independent, then 

V(X + Y) = V(X) + 2 cov(X,Y) + V(Y) 

If X and Y are independent, then 

cov(X,Y) = EXXY) — uxuy = EXEY) — uxpuy =0 

and consequently 

V(X + Y) = V(X) + V() 

. V(X) is the variance of X. 
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All models discussed 

concerning correlation 
and regression assume 

that data are samples 

that come from normal 

  

Statistics 

Note that the converse of the theorem above is not true: if cov(X, Y) = 0, then 

X and Y are not necessarily independent. 

Unfortunately, it is difficult to employ the covariance of X and Y as an absolute 

measure of association between variables because its value depends on the 

scales used. In Example 7.11, the covariance of the data expressed as km 1! 

is 3.8. However, if we change the scale from km 1! to milel™!, then the 

covariance will be 1.49, even though the scatter plot does not indicate any 

change in the form or the strength of association between the two variables. 

This problem with covariance can be eliminated by ‘standardising’ its value and 
using the correlation coefficient, p, instead. 

_ cov(X, Y) 

w Ox Oy 

Since oy and oy are both positive, the sign of the correlation coefficient is the 

same as that of the covariance. 

Correlation 

A scatter plot is a good device that reveals the form, trend, and strength 

of the association between two quantitative variables. At this level, we are 

only interested in linear relations. As mentioned earlier, we say that a linear 

relationship is strong if the data are tightly packed around the line, and weak if 

they are widely dispersed around the line. Our judgement using our eyes only 

  

  

populations. 

may be misleading though. Look at the scatter plots in Figure 7.22. 
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Highway fuel consumption Highway fuel consumption 

Figure 7.22 The second graph gives the impression that the association is stronger than it is in the first graph. 
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The graph on the left is a copy of the scatter plot (excluding the outlier) in 

Example 7.11. The second graph gives the impression that the association is 

stronger than it is in the first graph. This is due to the change in scale on the 

vertical axis. However, both scatter plots represent the same situation. We need 

a more robust measure to support our initial graphical impressions. 

This measure is the correlation coefficient. 

Let us consider the height and weight data collected from 130 19-year-olds in 

Figure 7.23.



The measurements were made in metric units. 

Not surprisingly, the association between the two 

variables is strong. To measure the strength of this 

association, we use the correlation coefficient. 

The correlation coefficient measures the 

strength and direction of the linear relationship 

We
ig
ht
 

(k
g)
 

between two quantitative variables, when such a 

relationship exists. 

For a set of data (x;, y;) of size n, the correlation 

coefficient is T181 182 183 184 185 186 187 188 189 

S\ — Height (cm) 
X—X\(yi—)y =) 3 ) Figure7.23 Height and weight data for 130 19-year-olds 

    

=1 

where x and y are the means of the variables and s, and s, are the standard 

deviations. Specific observed values of R are denoted by . 

Ris also called the Pearson product-moment correlation coefficient. In fact, R is an unbiased 
estimate of the population coefficient, which is given by 

_covXY) g (xrm) Vi by 
7, =“oxoy ~n = 5,     

The GDCs use r. 

In exams, you will not be asked to calculate the coefficient by hand but to interpret the GDC result. 
‘There are several equivalent forms for the equation but it is not necessary at this stage to calculate 
any of them. 

This formula is somewhat complex to calculate. However, it helps us to see 

what correlation is. In practice, you will read the result from your calculator or 

computer output. 

X=X 

Sx 
-y 

  If we look at the formula we see that the first component, , is the 

    standardised value for x;. Similarly, the second componen is the 

  

standardised value for y,. So, the correlation coefficient can be written as 

R Y2z, 165.5   . That is, the correlation coefficient 

  

n—1 

is an average of the products of the 

standardised values of the two variables. 165.0 

In fact, if we take the height and weight data 2 
and express it in inches and pounds instead Z 1645 

of cm and kg, we get the scatter plot in g 

Figure 7.24. 
164.0 

163.5 
725 73.0 73.5 74.0 745 75.0 75.5 76.0 

Height (in) 

Figure7.24 Height and weight data for 130 19-year-olds (inches and pounds) 
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As you notice, other than the scale on the axes being inches and pounds, the 

plot has the same form, direction, and strength as the original one. Similarly, 

when you standardise the variables, you are subtracting a constant from each 

value and dividing by another constant. If you plot the standardised variables, 

you get the scatter plot shown in Figure 7.25. 

Weight standard 

3 

      

  

Height standard 

Figure 7.25 Standardised height and weight data for 130 19-year-olds 

As you will notice, other than the centre of the data being at the origin, the 

form, direction, and strength appear to be the same. 

This fact is verified by calculating the correlation coefficient for all three forms 

of the data. The result is always the same, 0.95. 
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Figure 7.26 Your GDC can produce the correlation coefficient as part of the linear regression output. 

You may have observed in the technology output that 2 s also reported. This measure is not 
required by your exam. However, it is an extremely useful and powerful tool, known as the 
coefficient of determination. It reports the portion of variation in the response variable that 

can be explained by the variation in the explanatory variable. As such, r can be expressed as a 
percentage. For the data in Example 7.11, r> = 0.879, which can be interpreted as ‘all else being 
equal, 8% of the variation in city consumption can be explained by variation in the highway 
fuel consumption: That is, on average for cars with the same characteristics, if there is a 1 km 1~ 
change in city fuel consumption, we expect that 88% of this change can be explained by changes in 
the highway fuel consumption. 
For the data in Example 7.10, r = 0.84 and r* = 0.7056, which means that approximately 70.6% 
of the changes in the metabolic rate can be explained by changes in the lean body mass. Finally, 
in the height: t example, r2 = 0.9025, which means that, all else being equal, approximately 

90% of the variation in weight could be explained by the variation in the height of these teenagers. 

  

Properties of the correlation coefficient 

The correlation coefficient is a measure of the strength of the linear 

association between two quantitative variables. Do not apply correlation to 

non-quantitative data!



§ : s ; ‘There are statistical tests 
The coefficient makes sense only if there is a linear relationship. It does not to report the strength 
prove a linear relationship. If there is a linear association, the coefficient will of correlation between 

g variables, They are 
describe its strength. beyond the scope of this 

course. However, some 

guidelines are suggested 
below. 
1f|r| < 0.1, then there 

L is a very weak to no 

association. association indicated. 

R does not change as we change the units of measurement. R has no units and 1601 <} <03, 
then there is a small 

is not a percentage. Don't express a correlation of 0.85 as 85%. association indicated. 

Outliers can distort the correlation. Special attention must be paid to such outliers. 

The correlation is always a number between —1 and +1. Values of R near 

0 indicate a weak relationship. Values close to +1 or —1 indicate strong 

Correlation between two variables means there is some association between 1f0.3 <[r] <05, then 
he Itd he £ th he other. S Jation d there is a medium 
them. It does not mean that one of them causes the other. So, correlation does T 

not mean causation. That is, two variables can have a strong correlation without If]r| > 0.5, then there 

one of them being the cause of the changes in the other. For example, there may is relatively strong 

be a strong correlation between the amount of crude oil imported by country :55"1‘;‘“"" (d“"“:“l;')‘g o0 
; ) ow close we are to 1). 

X and the birth rate in country Y. That should not mean that the increase of 
ys . P = Remember that these 

oil imports causes an increase in birth rate. However, in some cases, there values are guidelines. 

  

  

may be a causal relationship. For example, the increase in level of income in a RN he e 

certain country and the decrease of unemployment can have a strong negative association, 
correlation. This association is also causal. However, the task of proving a cov(X, Y) = 0and hence 

causal relationship has many subtle difficulties. This is something that has been = “':;'[)i’ry] 
g ¢ XoY 

studied in depth by economists. 0 

~oxoy 
A proof for the values =1 

e i 15 beyond the scope of this 
The table below gives data from a lab experiment involving the length (in = 

mm) of a metal alloy bar used in electronic equipment when it is exposed to 

heat (temperature in °C). 
  

Temperature 40 45 50 55 60 65 70 75 80 

Q) 
Length (mm) 20 | 20.12 | 20.20 | 20.21 | 20.25 | 20.25 | 20.34 | 20.47 | 20.61 

  

                        

Draw a scatter plot to represent this data. Comment on the strength of the 

relationship, using both r and 2. 

| 

Solution 

The scatter plot is shown on the right, with temperature on the x-axis and 

length on the y-axis. 

  

  This shows a relatively strong relationship, where the points are tightly 19-950 2060 70 80 5 
spread around the trend line. Temperature (°C) 

This is confirmed by calculating the correlation coefficient. In this case, Figure 7.27 Scatter plot 

regardless of which formula we use (r or p), the correlation is approximately 

0.95521. Using > = 0.912 implies that 91.2% of the variation in the length ol 
: i the first four questions in 

can be explained by variation in the temperature. et 
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‘The regression model can 
be stated formally as 

EY[X=x)=a+ Bx. 

The interpretation of a in 

this case is peculiar. As 
you know from algebra, 

astands for the value 
of y (which is weight in 

this case) corresponding 
to azero value of x 
(which s height in 

this case). However, 

for this problem, the 
interpretation is not 

ideal, as it corresponds 
to a height of zero. The 

general rule is that 
if 0 is not included 

in the domain of the 
explanatory variable, 

then trying to interpret 
the intercept is pointless. 

This issue has to do 
with extrapolation. 

Extrapolation is the use 

of the regression line for 
predicting values far off 

the range of values of the 
explanatory variable X 

used to find the equation 
of that line. Such 

predictions are often 

inaccurate. 
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Least-squares regressi    

‘We have seen above that correlation measures the strength and direction of 

a linear relationship between two quantitative variables. If we suspect from a 

scatter plot that the relationship is linear, then we need to summarise this linear 

behaviour. We need to find an equation of a straight line that best fits the trend 

in the data. In this section, we will discuss how to find a line of best fit that 

describes the linear relationship between an explanatory and response variable, 

when such a relationship exists. 

Finding a line of best fit means finding a line that comes as close as possible to 

the points in the data set. Usually, there is no straight line that contains all the 

points in the set. 

Regression line 

A regression line is a straight line that describes how a response variable 

changes with changes in an explanatory variable. 

Let Y be the response variable and X be the explanatory variable. We can expect 

several values of Y for the same value of X. Our linear model enables us to 

predict, on average, the value of Y given a value of X = x, and hence we write 

the equation of the linear regression line in the form 

EY)=a+ Bx 

That is to say, given a specific value of x, the expected value of Y is equal to 

a + Bx, where a is the value corresponding to x = 0, and S is the slope 

representing the rate with which the response variable changes with every 

change of one unit in the explanatory variable (in other words, the gradient). 

‘When we are working with data from a sample of a population, we can only 

estimate the regression equation. We write our estimate as 

y=atbx=bxta 

where b, the slope of the line, is an estimate of 3 and reflects how the response 

variable, Y, changes according to changes in the explanatory variable, X. 

The constant a is an estimate of @ and is the value of the response variable 

corresponding to a zero value in X. 

In the height-weight example, the equation is 

w = 56.1 + 0.0966h 

where w is the weight in kg and h is the height in cm. That is, b = 0.0966 and 

a=56.1 

This means that on average, for every increase (or decrease) of 1 cm in height, 

we predict an increase (or decrease) of 0.0966 kg in weight. 

Why the least-squares regression line? 

The graph in Figure 7.28 represents a few points in a data set. The diagonal line 

is the line of best fit. Take, for example, the point (x;, y;). The point on the line



(%1, §,) is the point whose y-coordinate, §,, predicts the real y-coordinate using 

the line of best fit. The distance y, — 7, is the error in this prediction and 

similarly for y, — 7, and all other y; — ;. The line of best fit is the line that 

minimises the sum of all these errors. However, like the variance, some of these 

errors are positive and some are negative and may eventually cancel each other. 

To avoid this, as we did in the variance, we try to minimise the squares of these 

errors. That is, the line of best fit is the line that minimises the sum »_(y; — 7,)2. 

Hence it is called the least-squares line of regression y = bx + a. 

    

    
  

      

X 

0.~ 9) 
ED 

) ; S (s 9) 

0 =9 

// 

0 X 

Figure7.28 Least-squares line of regression 

The process of finding the slope of such a line is beyond the scope of this book. 

Here are some of the many forms of the resulting formulae for the slope and 

intercept: 

  

Here r is the correlation coefficient, and %, y, s,, and s, are the means and 

standard deviations of the explanatory and response variables. The last form 

demonstrates the close relationship between the slope of the regression line and 

the correlation coefficient. One conclusion we can draw from this formula is 

that along a line of regression with slope b, a change of 1 standard deviation in As you may notice from 

the x direction will result in a change of r standard deviations in the y direction. the equations, every 
regression line should 

After estimating the slope, and using the fact that the line has to contain the contain the point 
(%) with the means 

of the variables as 
a=7—b¥ coordinates. 

point with coordinates (X, y), the intercept, a, can be found using 

Example 7. 

The following scatter plot represents a random sample of IB students who 

went on to study at university. It gives a comparison of their scores on the IB 

exams they took with their grade point averages (GPA) in their university 

studies (scale 1-4). 

287



Exceptional cases of the 

regression line: 
* Ifr = 0, the regression 

line is horizontal: its 
slope s zero. 

 Ifr = 1, all the points 

fall on a line with positive 

slope. 
o Ifr= —1,all the 

points fall on a line with 
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22 24 26 28 30 0 34 36 38 

1B score 

There appears to be a linear relationship between them. When we run a 

linear regression, the equation is 

s==ilgil ap(hiiziby 

This means that on average, for every increase of 1 point in the total IB 

score, we expect an increase of 0.151 points in university GPA. If we want 

to predict the GPA of students who scored 30 on an IB exam, the model 

predicts, on average, a grade of 

y=—151 + 0.151(30) = 3.02 

The correlation coefficient of this relationship is » = 0.758, which is a 

relatively strong correlation. Add to this a value of 2 = 0.575, which means 

that changes in the IB score may help us explain 57.5% of the variation in the 

university GPA. 

Does that mean high IB scores cause high university averages? The answer is 

no. They only help predict the future university averages. 

Features of the regression line: 

« The regression line equation can be used to predict the response variable for 

given values of the explanatory variable. 

+ The regression line must pass through the point (¥, 7). 

‘When the regression line is used for prediction, the predicted value  of 

the response variable is an average value. For example, when we use the 

height-weight example equation w = 56.1 + 0.0966/ to predict the weight 
corresponding to a height of 182 cm, the value of 73.68 kg that we get is an 

average weight of 19-year-old students with height 182 cm. 

Estimating the value of Y for a value of X that is within the range of the observed 

values of X but is not equal to any of the observed values is called interpolation. 

Estimating the value of Y for a value of X that is larger or smaller than any of 

those observed is called extrapolation.



Extrapolation is extremely suspect. Without data in the range in which the 

estimate is wanted, there is no reason to believe that the relationship between 

X and Y is the same as it is in the region in which there are data. 

Interpolation is sometimes reasonable when the scatter plot shows a strong 

relationship, especially if there are many points near the value of X or Y at 

which the estimate is sought. 

Example 7.14 

  

  

  

  

  

  

  

  

The table on the right shows the data for two variables. = y 

Draw the line of regression and indicate the distances, 11 21 

the sum of whose squares is minimised by the choice 12 3 

of the line of regression. 13 31 

14 34 

15 29 

16 5! 

17 33         

Solution 

The scatter plot below shows the data and line of regression. The solid 

vertical lines show the distances required. 

  

Fitted line plot 
¥ =614+ 2.071x 

o 14 
b S 109244 : 

RSq 16.8%       

50 

40 

30      
£ 

10 11 12 i3 14 15 16 17 

The line has the equation y = 6.14 + 2.071x. 

In the table below, we introduce the value of each predicted y (in the Fit 

column) and calculate the directed distances whose squares have been 

minimised. 
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x y Fit Distance | Distance squared 
11 21 28.92857 —7.92857 62.8622449 

12 43 2 12 144 

13 31 33.07143 —2.07143 4.290816327 

14 34 35.14286 —1.14286 1306122449 

15 29 37.21429 —8.21429 67.4744898 

16 55 39.28571 15.71429 246.9387755 

17 3B 41.35714 28.35714 69.84183673 
  

The minimum sum is 596.71. You can try any other line and perform the 

same calculations. You will notice that 596.71 is the minimum sum of the 

squares of distances. 

Moreover, since ¥ = 14 and y = 35.14 then 

35.14 = 6.14 + 2.071 X 14 

This indicates that the line contains the point (¥, ). 

In cases where the explanatory variable is not controlled, we can regress x on y. The equation of 
regression willbe £ = dy + c. 

v Y) _ D= D —7) 

v(Y) X0i-7” 
‘The resulting formulae for the slope and intercept are d = 

  

“Thus, taking into consideration our discussion of regressing y on x, a remarkable relationship 
appears between the gradients of the two regression lines and r. 

s 
=r2X, then bd = 

Sy    
‘The product of the gradients of the two regression lines is equal to the square of the correlation 
coefficient (or coefficient of determination). 

Example 7.15 

The following data represent the volume in mm?® and weight in grams of a 

certain fruit studied by a biologist. 
  

Volume (x) | 223 | 236 | 242 | 226 | 223 | 221 | 233 | 222 | 222 | 218 | 232 | 223 

Weight (y) | 165 | 171 | 173 | 170 | 168 | 172 | 168 | 167 | 162 | 166 | 164 | 164 
  

                              

Obtain the least-squares regression line of y on x and the regression line of 

xon y. Use the model to predict the weight of a 230 mm? fruit. Predict the 

volume of a 168 g fruit. 

SRR 

Solution 

Use software or a GDC to find the regression equations. 

The least-squares regression of y on x is 

Y= N155=012337% 
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The predicted weight is y = 115 + 0.233(230) = 168.22 g 

. i i The product of the The least-squares regression of x on y is o e 

=56.1 + 1. (1.02) is 0.237, which is 

Kiglee gl the same as the value of 
) ‘The predicted volume is x = 56.1 + 1.02(168) = 227.26 mm®  given by the software. 

Here are two samples of GDC output. Notice that in order to get the 

regression of x on y you switch the choice of List 1 and List 2, but the GDC 

still reports it as y = a + bx. 
  

LinearReg(a+bx) LinearReg(a+bx) 

a =114.731215 a =56.1015037 
b =0.2327179 
r 0.48692124 
r? =0.2370923 
MSe=10.1466723 

    

    

  

  

  

y=a+bx 

FINE inRe LinRed| LinRed| 

y=ax+b x+b 
a=.2327179047 
b=114.7312151 

.018796992 
6.10150376 
.2370923014 
4869212476 

  

r=.4869212476 
u         

  

  

Notice too that regardless of which regression we have (y on x or x on y), the 

values of rand 2 do not change. 

Segmented regression, also known as piecewise regression or broken-stick regression, is a 
‘method in regression analysis in which the independent variable is partitioned into intervals and 

a separate line segment is fitted to each interval. For example, if we are analysing data concerning 
road accidents before and after a certain law has been enforced, 

we collect accident data for the period before the law and for the 

period after the law. For our purposes at this level, a regression 

line can be fitted to each interval separately. If we judge that a 
scatter plot shows that the data implies a change in pattern at 

some point, called a break point, then we split our data into 

two or more segments as shown. 

1. The following table lists the values of a response variable y against an 

explanatory variable x. Draw a scatter plot and comment on the strength 

of the relationship. 

  

  

  

    

  

  

12| 6 [12|11|16|13|11|12|11|12|12|12|15|16|14(13|13| 8 [10|11 

8|10/ 9|6 |14[10{10| 9 |15[14|10| 6 |12]| 8 [13|11 (11| 9|9 |6                                         
  

Develop a regression model for this situation and interpret the gradient. 

2. The data below represents the outcome of an experiment on a small car, 

relating fuel consumption to speed. 
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65 | 70 | 75 | 80 | 85 | 90 | 95 

16.8 | 15.9 | 15.9 | 14.4 | 14.3 | 13.2 | 14.3 

  

    
  

105 | 110 | 120 | 130 | 140 | 150 

120102 | 98 | 90 | 80 | 7.1 

                  

(a) Make a scatter plot to show the data. 

(b) Describe the relationship and justify your choice of which variable is 

the explanatory variable and which is the response variable. 

(c) Is the relationship strong? Explain your answer. 

(d) Develop a regression model for this situation and interpret the 

gradient. 

The following data are from the World Bank statistics relating the gross 

national income per capita (GNI/Cap) to purchasing power parity 

(PPP) for a few developed countries. The exchange rate adjusts so that 

an identical good in two different countries has the same price when 

expressed in the same currency. For example, a chocolate bar that sells 

for C$1.50 in a Canadian city should cost US$1.00 in a US city when the 

exchange rate between Canada and the USA is 1.50 USD/CDN. 

  

  

  

  

  

  

  

  

  

  

  

  

NOR 85380 57130.0 

CH 70350 49180.0 

DK 58980 40140.0 

SWE 49930 39600.0 

NL 49720 42590.0 

FIN 47170 37180.0 

USA 47140 47020.0 

AUT 46710 39410.0 

BEL 45420 37840.0 

D 43330 38170.0 

F 42390 34440.0 

JPN 42150 34790.0 

SGP 40920 54700.0           

(a) Make a scatter plot. 

(b) Describe the relationship and justify your choice of which variable is 

the explanatory variable and which is the response variable. 

(c) Is the relationship strong? Explain your answer. 

(d) Develop a regression model for this situation and interpret the 

gradient.



4. In hotel management, there is a need to estimate the electricity 

consumption in relation to the number of guests. The data for a large 

hotel is given in the table. 

    

   

  

311 321 334 352375 412 447 | 456 472|480 495512 
  

278     270 303     298|328   387     390|376     402 | 431     430|432       

(a) Make a scatter plot. 

(b) Describe the relationship and justify your choice of which variable is 

the explanatory variable and which is the response variable. 

(c) Is the relationship strong? Explain your answer. 

(d) Develop a regression model for this situation and interpret the gradient. 

To test the benefit of using an online tutoring course for exam 

preparation, 20 students were given a test before they took the course 

and then afterwards. The tests were similar and the scores before and 

after the course were recorded. The intention was to find how improved 

the scores were due to taking the online course. 

Analyse the data. For a student whose score before the course was 60, 

what do you expect, on average, the student’s new score to be? 
  

  

  

  
  

  

                    

2 3 4 5 6 7 8 o 10 

24 6 8 56 54 40 40 68 30 

46 16 28 84 68 64 62 82 50 

12 13 14 15 16 17 18 19 20 

80 102 30 12 16 60 58 50 48 

100 | 129 56 32 56 90 78 74 70     

A large electronics company produces LCD monitors to be used in the 

computer industry. The monthly total cost of production over the period 

of one year is given in the table below. Number of units produced is in 

thousands and the cost is in €1000. 

[ 

(a) Draw a scatter plot of the data. 

  

  

  
  

              

16 Bl 57 76 13 25 

1875 | 2586 | 3716 | 4712 1690 | 2191 

49 71 20 38 63 81 

3319 | 4362 | 2005 | 2775 | 4116 | 4860 
  

(b) Write down the equation of the regression line representing the 

association between units of production and cost. Draw the line on 

your scatter plot. 

(c) Interpret the slope of the line and comment on the strength of this 

association. 

(d) If the selling price of each unit during this year is €105, what is the 

production level where the sales are equal to the cost? 
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7. The table shows the marks of 12 students sitting for both IB Economics 

SL and IB Physics SL. 
  

  

  

                          

(a) Find the correlation coefficient and comment on your result. 

(b) Find the regression equation that enables us to predict the 

economics scores from the physics scores. 

(c) What mark in economics would you expect for a candidate with a 

mark of 4 in physics? 

8. Diamonds are usually priced according to weight. The carat is the usual 

measure and it is the weight of the diamond. 1 carat is equivalent to 

200 mg. Some experts use points as the measure instead. 1 point is 

equivalent to 2 mg. Therefore, every carat is equivalent to 100 points. 

So,2 0.5 carat diamond is equivalent to 50 points. Here is the data for 

20 diamonds and their prices. 
  

  

  
  

  

  

        

103 106 21 Bl 100 

15260 | 13640 | 1287 | 2177 | 12837 

82 101 100 63 66 

6927 | 16143 | 10945 | 9117 | 6020       

(a) Construct a scatter plot of the data. What type of trend do you observe? 

(b) Write down the equation of a straight-line model relating the price 

to the number of points. 

(c) Give a practical interpretation of the coefficients. If a practical 

interpretation is not possible, explain why. 

(d) How well does the line fit the given data? 

(e) Use the line you found to predict the price of a diamond with 63 points. 

(f) Find the residual corresponding to your estimate in part (e). 

9. The amount of blood that is pumped out of the left ventricle to the body 

with each heartbeat is called the stroke volume. Researchers studying, 

among other factors, the effect of age (in years) on the amount of blood 

for every heartbeat (in ml) collected the following data from a random 

sample of patients. 
  

30 8o 39 | 44 50 56 | 60 | 64 68 | 73 
  

75 

  

    75   72 | 70     71   68 | 69 | 66       62 | 61       

(a) Draw a scatter plot of the data. 

(b) Find the product-moment correlation coefficient and comment on 

the result. 

(c) Find an equation for the regression line and interpret the coefficients. 

(d) For a 45-year-old person, what stroke volume can we predict? What 

stroke volume can we predict for a 90-year-old? 
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10. The table below shows the speed of a car, in km h™! against time in 

seconds for the first 7 seconds as it tries to accelerate to maximum speed. 
  

O o] @a]| 1| s 2 |[2e 26| 28] 3 || 28] 28 

0 | 18|19 |42 |38 |58 |56 |77 |79 |92 |89 |101]|100(114 106 
  

  

  

  

  

39] 4 [42]45]48] 5 [54]55]57] 6 [63]65]68] 7 
Speed | 116]118]125]124]136]135]139] 140]153[155] 154|158 ] 157 161 
                                        

(a) Draw a scatter plot of the data and comment on the pattern you observe. 

(b) Considering the whole data as one set, find the equation of the 

regression line. Plot the regression line along with the data and 

comment on its appearance. 

(c) Write down the product-moment correlation coefficient and explain 

your answer. 

(d) Split the data into two intervals, [0, 3.0] and [3.1, 7.0], and find the 

equations of the regression lines for each interval. 

(e) Predict the speed of a car at 4 seconds using your equation in (b) 

and that in (d). Comment on the result. 

Chapter 7 practice questions 

1. Given that  is the mean of a data set y,, y,, i, Y3 and that 
30, 30, 
>y, =360and > (y; — m)* =925, find 
=1 = 

(a) the value of u 

(b) the standard deviation of the set. 

2. Laura made a survey of some students at school, asking them about 

the time it takes each of them to come to school every morning. She 

scribbled the numbers on a piece of paper and, unfortunately, could 

not read the number of students who spend 40 minutes on their trip to 

school. The average number of minutes she had originally found was 34 

minutes. Find out how many students spend 40 minutes on their trip. 
  

Time in minutes 10 | 20 | 30 | 40 | 50 

Number of students with this time 1 2 5 i g 
  

              

3. The following table gives 50 measurements of the time it took a certain 

reaction to complete in a laboratory experiment. 
  

SHL || Bl || B | || 2 || B | S0 | 2 || 2| B 

45|25 |35|36|37|51|41| 48|49 | 16 

29 36 |21 |61 35|47 |4 SOlBArs 

27 |43 | 4 57 | 44 |37 |37 | 46 | 42 | 4 

38 |56 |62 |49 |25 (42 |29|31]|28]39 

  

  

  

                          

(a) Construct a frequency table and histogram starting at 1.6 with 

interval length of 0.5 
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(b) What fraction of the measurements is less than 5.1? 

(c) Estimate, from your histogram, the median of this data set. 

(d) Estimate the mean and standard deviation using your frequency table. 

(e) Construct a cumulative frequency table. 

(f) From your cumulative frequency graph, estimate each of the five 

numbers in the five-number summary. 

4. In large cities around the world, governments offer parking facilities 

for public use. The histogram below gives a picture of the number of 

parking sites available with the capacity of each in a number of cities 

chosen at random. 
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(a) Which statistics would best represent the data here? Why? 

(b) Calculate the mean and standard deviation. 

(c) Develop a cumulative frequency graph of the data. 

(d) Use the result of (c) above to estimate the median, Q;, Q3, and IQR. 

(e) Are there any outliers in the data? Why? 

(f) Write a few sentences describing the distribution. 

    

  

  

          
    

5. The box plots display the 

case prices (in €) of red L0 i g | 

wines produced in France, s T 

Italy, and Spain. 8 FiE 

(a) Which country o 100 i 

produces the most 3 L 1] 

expensive red wine? 75 

The cheapest? 

(b) In which country are 50 == 
France Ttaly Spain 

the red wines generally v " 

more expensive? 

(c) Write a few sentences comparing the pricing of red wines in the 

three countries.



6. The table shows the record for the times (in seconds) of the 71 male 

swimmers competing in the 100-metre swim on the first day of the 

2000 Summer Olympics in Sydney. 
  
112.72 | 53.55 | 54.12 | 54.33 | 58.79 59.26 60.39 62.45 5222 52.52 | 52.58 | 52.85 
  

54.06 | 51.34 | 51.93 | 52.09 | 52.14 5224 5224 5253 535 51.82 | 51.93 | 52 
  

5278 | 52.82 | 50.28 | 50.49 | 51.28 5128 5152 51.62 524 5243 | 49.83 | 50.46 
  

5095 | 51.07 | 51.11 | 49.45 | 49.45 49.73 19.76 49.93 50.19 50.32 | 50.63 | 48.64 
  

49.79 | 50.19 | 50.62 | 50.96 | 49.09 49.16 4929 49.74 49.74 49.75 | 49.84 | 49.76 
  

529 |5291|534 |5218 5257           5272     50.56 50.87     50.9   49.32 | 49.7         

(a) Calculate the mean time and the standard deviation. 

(b) Calculate the median and IQR. 

(c) Explain the differences between these two sets of measures. 

In a survey of universities in major cities in the world, the percentage 

of first-year students who graduate on time (some require 4 years and 

some 5 years) was reported. The summary statistics are given below. 
  

  

  

  

  

  

  

  

  

Number of universities surveyed | 120 

Mean percentage 69 
Median percentage 70 
Standard deviation 9.8 

Minimum 42 

Maximum 86 

Range 44 
o 60.25 

@, 75.75         

(a) Is this distribution symmetric? Explain. 

(b) Check for outliers. 

(c) Create a box plot of the data. 

(d) Describe the data in a short paragraph. 

The International Heart 

Association studies, L 

among other factors, 

the influence of 

cholesterol level 

(in mgdl~!) on the 

conditions of heart 

patients. In a study 

of 2000 subjects, the 

cumulative relative 

frequency graph on the 

right was recorded. 
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10. 

(a) Estimate the median cholesterol level of heart patients in the study. 

(b) Estimate the first and third quartiles, and the 90th and the 10th 

percentiles. 

(c) Estimate the IQR. Also estimate the number of patients in the 

middle 50% of this distribution. 

(d) Create a box plot of the data. 

(e) Give a short description of the distribution. 

Many of the streets in Vienna, Austria, have a speed limit of 30 kmh~1. 

On one Sunday evening, the police registered the speed of cars passing 

an important intersection in order to give speeding tickets when drivers 

exceeded the limit. Here is a random sample of 100 cars recorded that 

afternoon. 
  

26 | 46 | 39 | 41 | 44 | 37 | 38 | 35 | 34 | 31 

27 | 47 | 39 | 41 | 44 | 37 | 38 | 35 | 34 | 32 

27 | 47 | 39 | 41 | 44 | 37 | 38 | 35 | 34 | 32 

27 | 48 | 39 | 41 | 44 | 37 | 38 | 35 | 34 | 32 

29 | 48 | 40 | 41 | 45 | 37 | 38 | 36 | 34 | 33 

30 | 48 | 40 | 41 | 45 | 37 | 38 | 36 | 35 | 33 

30 | 48 | 40 | 42 | 45 | 38 | 39 | 36 | 35 | 33 

30 | 49 | 40 | 42 | 46 | 38 | 39 | 36 | 35 | 33 

30 | 50 | 41 | 42 | 46 | 38 | 39 | 36 | 35 | 33 

31 | 54 | 41 | 43 | 46 | 38 | 39 | 36 | 35 | 33 

  

  

  

  

  

  

  

  

                          

(a) Prepare a frequency table for the data. 

(b) Draw a histogram of the data and describe the shape. 

(c) Calculate, showing all working, the mean and standard deviation of 

the data. 

(d) Prepare a cumulative frequency table of the data. 

(e) Find the median, Q,, Q;, and IQR. 

(f) Are there any outliers in the data? Explain using an appropriate 

diagram. 

The following are the data collected from 50 industrial countries 

chosen at random in 2001. The data represent the per capita gasoline 

consumption in these countries. The Netherlands’ consumption was 

1123 litres per capita, while Italy’s was 2220 litres per capita. 
  

2062 | 2076 | 1795 | 1732 | 2101 | 2211 | 1748 | 1239 | 1936 | 1658 

1639 | 1924 | 2086 | 1970 | 2220 | 1919 | 1632 | 1894 | 1934 | 1903 

1714 | 1689 | 1123 | 1671 | 1950 | 1705 | 1822 | 1539 | 1976 | 1999 

2017 | 2055 | 1943 | 1553 | 1888 | 1749 | 2053 | 1963 | 2053 | 2117 

1600 | 1795 | 2176 | 1445 | 1727 | 1751 | 1714 | 2024 | 1714 | 2133 

  

  

  

                          

(a) Calculate the mean, median, standard deviation, Q,, Q;, and IQR. 

(b) Are there any outliers?



ik, 

12. 

(c) Draw a box plot. 

(d) What consumption levels are within 1 standard deviation from the 

mean? 

(e) Germany, with a consumption level of 2758 litres per capita, was 

not included in the sample. What effect on the different statistics 

calculated would adding Germany have? Do not recalculate the 

statistics. 

90 students on a statistics course were given an experiment where each 

reported the time, x, it took them to commute to school on a specific 

day to the nearest minute. The teachers then reported back that the total 

travelling time for the course participants was >_x = 4460 minutes. 

(a) Find the mean number of minutes the students spent travelling to 

school that day. 

Four students who were absent when the data was first collected 

reported that they spent 35, 39, 28, and 32 minutes, respectively. 

(b) Calculate the new mean including these two students. 

Two thousand students at a large university take the final statistics 

examination, which is marked out of 100, and the distribution of marks 

received is given in the table below: 
  

  

  
  

  

Marks 1-10 11-20 | 21—-30 | 31—-40 | 41-50 

Number of candidates 30 100 200 340 520 

Marks 51—60 | 61—70 | 71—80 | 81—90 [91—100 

Number of candidates 440 180 90 60 40 
  

(a) Complete the table below so that it represents the cumulative 

frequency for each interval. 
  

  

  
  

Marks =10 =20 =30 =40 =50 

Number of candidates 30 130 

Marks =60 =70 =80 =90 =100 
                Number of candidates 1630 
  

(b) Draw a cumulative frequency graph of the distribution, using a scale 

of 1 cm for 100 students on the vertical axis and 1 cm for 10 marks 

on the horizontal axis. 

(c) Use your graph to answer parts (i)-(iii) below, 

(i) Find an estimate for the median score. 

(ii) Candidates who scored less than 35 were required to retake the 

examination. How many candidates had to retake the exam? 

(iii) The highest scoring 15% of candidates were awarded a distinction. 

Find the mark above which a distinction was awarded. 
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138 

14. 

158 

16. 

174, 

100 physicians are taking part in a symposium. 72 of the physicians are 

male and 28 are female. The mean height of the men is 179 cm and that 

for the women is 162 cm. Find the mean height of the 100 physicians. 

25 
Consider a population x;, X,, ..., X,; such that >_x;= 300 and 

= 25 
> (x; — w2 = 625, where g is the mean. 
= 

(a) Find the value of u. 

(b) Find the standard deviation of the population. 

The table below lists the scores of students in a small class on a 50-mark 

test. 
  

Score 10 | 20 | 30 | 40 | 50 

Number of students with this score | 1 2 5 k 5 
  

                
The mean score is 34. Find the value of k. 

  

  

  

  

  

  

  

  

  

‘Waiting times for 100 customers at a Waiting time, | Number of 

supermarket’s cash counter are recorded t(seconds) | customers 

in the table on the right. 0=t<30 5 

(a) Estimate the mean waiting time for a 30=1t<60 15 
customer. 60 =t <90 B2 

(b) Set up a cumulative frequency table PO IHSI20 21 

for these data. 2ORSIGSIS0 u 
150 = t < 180 7 

(c) Use the table in (b) to draw a 
a 180 = t < 210 5 

cumulative frequency graph. 
210 =t <240 3         (d) Use the graph in (c) to find estimates 

for the median and the first (lower) and third (upper) quartiles. 

The diagram on the right 

represents the lengths, 

in cm, of 80 plants grown 

in a laboratory. 

N S   

Fr
eq

ue
nc

y 
@w 

S 
G 

        

  

  (a) How many plants have n 
lengths in cm between 0 10 20 30 40 50 60 70 80 90 100 

(i) 50 and 60? Length (cm) 

(i) 70 and 90? 

  

(b) Calculate estimates for the mean and the standard deviation of the 

lengths of the plants. 

(c) Explain what feature of the diagram suggests that the median is 

different from the mean.



  
(d) The following is an extract from the Length | Cumulative 

  

  

  

  

cumulative frequency table. incm | frequency 

B G < <50 22 
Use the information in the table to estimate 

5 < 60 32 
the median. 

<70 48 

< 80 62       
18. The table below represents the weights, W, in grams, of 80 packets of 

roasted peanuts. 
  

  

  
  

                

  

  

  
  

                

‘Weight (W) 80<W=85 | 85<W=90 | 90<W=95 |95< W= 100 

Number of packets 5 10 15 26 

Weight (W) 100 < W=105/105 < W=110{110 < W= 115 

Number of packets 13 7 4 

(a) Use the midpoint of each interval to find an estimate for the standard 

deviation of the weights. 

(b) Copy and complete the following cumulative frequency table for the 

above data. 

Weight (W) W=385 W=90 W=95 W= 100 

Number of packets 5 15 

‘Weight (W) W=105 W=110 Ws=115 

Number of packets 80 

(c) A cumulative o 

frequency graph 

of the distribution 70 

is shown on the 
. 60 

right. 

Use the graph to 50 

estimate 

(i) the median; 

Nu
mb

er
 

of 
pa

ck
et

s 
N 5     (ii) the upper 30 

quartile (that 

is, the third 0 

quartile). 10 

Give your 

80 8 9 95 100 105 110 115 
nearest gram. Weight (grams) 

Let Wy, W, ..., Wy, be the individual weights of the packets, and let 

W be their mean. What is the value of the sum (W, — W) + 

W, = W)+ (W, — W)+ ...+ (Wyg— W)+ (Wgg— W)? 

(e) One of the 80 packets is selected at random. Given that its weight 

satisfies 80 < W =< 110, find the probability that its weight is greater 

than 100 grams. 

answers to the 

( 
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19. A TV camera is mounted at a critical stretch of a highway and records 
the speeds in km h ™" of cars passing a certain point. The table shows the 

record of a 5-minute interval. 
  

  

  

  

  

            
  

  

  

  

  

  

  

  

  

  

          

Speed s s=60 | 60<s=70 | 70<s=80 | 80<s=90 | 90 <s= 100 

T ot 0 7 25 63 70 
cars 

Speeds | 100 <s=<110|110 <s=120|120 <s=130[130 <s = 140 s> 140 

ploRs 71 39 20 5 0 
cars 

(a) Estimate of the mean speed of Speed s | Cumulative frequency 

cars passing this point. s<60 0 

(b) The table lists cumulative s<70 7 

frequencies for the speeds above. s =80 32 

(i) Write down the values of m s=90 95 

and n. 5 =100 m 

(ii) Construct a cumulative s=110 236 

frequency curve to represent s =120 n 

information in (b)(i). s=130 295 

(c) Use the graph in (b) to determine s =140 300 

(i) the percentage of cars travelling at a speed in excess of 105kmh™! 

(ii) the speed that is exceeded by 15% of the cars. 

20. A taxi company has 200 taxi cabs. The cumulative frequency curve below 

shows the fares in dollars ($) taken by the cabs on a particular morning. 

200 

180 

160 

140 

Nu
mb

er
 

of
 c

ab
s 

2 
% 

5 
B 

SR 
= 

& & 

20   0 10 20 30 40 50 60 70 80 

Fares ($) 
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22. 

(a) Use the curve to estimate 

(i) the median fare 

(ii) the number of cabs in which the fare taken is $35 or less. 

The company charges 55 cents per kilometre for distance travelled. 

There are no other charges. Use the curve to answer the following. 

(b) On that morning, 40% of the cabs travel less than a km. Find the 

value of a. 

(c) What percentage of the cabs travel more than 90 km on that 

morning? 

Three positive integers a, b, and ¢, where a < b < ¢, are such that their 

median is 11, their mean is 9, and their range is 10. Find the value of a. 

A real estate agent keeps records of small houses sold in a suburb 

of Vienna, Austria. The table below is a cumulative frequency table 

showing 100 houses that were sold in the second half of 2017. Prices are 

in thousands of euros. 
  

  

    
  

    

Selling price P (€1000) P =100 P =200 P =300 

Total number of houses 12 58 87 

Selling price P (€1000) P = 400 P = 500 

Total number of houses 94 100         

(a) Draw a cumulative frequency curve for the information in the table. 

(b) Use your curve to find the lower and upper quartiles as well as the 

interquartile range. 

Below is the frequency distribution of the information above. 

  

Selling price P (€1000) 0<P=100 |100<P= 200|200 <P = 300 

Number of houses 12 46 29 

  

    
  

Selling price P (€1000) | 300 < P < 400 | 400 < P < 500 

Number of houses m n 
            

(¢) Find the values of m and n. 

(d) Use mid-interval values to calculate an estimate for the mean selling 

price. 

(e) Houses that sell for more than €350,000 are described as luxury 

houses. 

(i) Use your graph to estimate the number of luxury houses sold. 

(ii) Two luxury houses are selected at random. Find the probability 

that both have a selling price of more than €400,000. 
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23. A student measured the 

diameters of 80 snail shells. 

His results are shown in 

the following cumulative 

frequency graph. The lower 

quartile (LQ) is 14 mm and 

is marked clearly on the 

graph. 

Cu
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i 

0 5 10 15 20 25 30 35 

Diameter (mm) 

(a) On the graph, mark clearly in the same way, and write down the 

value of: 

(i) the median 

(ii) the upper quartile. 

(b) Write down the interquartile range. 

24. The cumulative frequency 

curve on the right shows 

the marks obtained in an 

examination by 

200 students. 

a group of 

(a) Use the cumulative 

frequency curve to 

  

  

  

  

  

  

complete the frequency 

table below. 

= 
U=x=20 22) 

20=x<40 

40=x<60 

60 = x < 80 

80 = x < 100         

(b) Forty percent of the 

students fail. Find the 

pass mark. 
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25. 

26. 

27. 

The cumulative frequency curve 

on the right shows the heights 

of 120 basketball players in 

centimetres. 

Use the curve to estimate 

(a) the median height 

(b) the interquartile range. 

N
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0 
160 165 170 175 180 185 190 195 200 

Height in centimetres 

Leta, b, ¢, and d be integers such thata < b, b < ¢,and ¢ = d. 

The mode of these four numbers is 11. 

The range of these four numbers is 8. 

The mean of these four numbers is 8. 

Calculate the value of each of the integers a, b, ¢, d. 

A test marked out of 100 is written by 800 students. The cumulative 

frequency graph for the marks is given below. 

800 

700 

600 

5004 

400 

3004 

Nu
mb
er
 

of
 s

tu
de
nt
s 

200 

100 

  

o 10 20 30 40 50 60 70 80 90 100 

Mark 

(a) Write down the number of students who scored 40 marks or less on 

the test. 

(b) The middle 50% of test results lie between marks a and b, where 

a<b.Findaand b 
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28. 

29. 

x and y are integers with x < y. 

The set of numbers {x, y, 10, 12, 16, 16, 18, 18} have a mean of 13 and a 

variance o2 of 21. Find x and y. 

The following table gives the average yield of olives per tree, inkg, 

and the rainfall, in cm, for nine separate regions of Italy. You may 

assume that these data are a random sample from a bivariate normal 

distribution, with correlation coefficient p. 
  

Rainfall (x) 11 1 | = |k 7 188227200 F 28] 

Yield (y) 560 M2 meZ N me L F54N sl mecH Rs3h 7S 

  

                        

A scientist wishes to use these data to determine whether there is a 

positive correlation between rainfall and yield. 

(a) Draw a scatter plot of the data and comment on its shape. 

(b) Determine the product-moment correlation coefficient for these 

data and comment on the strength of the relationship. 

(c) Find the equation of the regression line of y on x and interpret its 

parameters. 

(d) Hence, estimate the yield per tree in a tenth region where the 

rainfall was 19 cm. 

(e) Determine the angle between the regression line of y on x and that 

of x on y. Give your answer to the nearest degree.



 



Itis important to 
distinguish between 

‘randon and ‘haphazard® 

(or chaos). At first glance 
they might seem to be 

the same because neither 
of their outcomes can be 

anticipated with certainty. 
However, random 

events have a long-term 
predictability, where 

‘haphazard events do not. 
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Learning objectives 

By the end of this chapter, you should be familiar with... 

« the concepts of trial, outcome, equally likely outcomes, sample space (U) 

and event 
(4) « the probability of t A as P(4) = T2 EP[’O al 11y0 an even as n(U) 

+ complementary events A and A’ (not A), and the identity P(A) + P(A) = 1 

« combined events and use of the formula 

P(AUB) = P(A) + P(B) — P(AN B) 

+ mutually exclusive events and the fact that P(A N B) = 0 

- e P(ANB) « conditional probability and the formula P(A|B) = T 

« probabilities of independent events: P(A|B) = P(A) = P(A|B) 

« the use of Venn and tree diagrams and tables of outcomes to solve problems. 

Now that we have learned to describe a data set in Chapter 7, how can we 

use sample data to draw conclusions about the populations from which we 

drew our samples? The techniques we use in drawing conclusions are part of 

inferential statistics. Inferential statistics uses probability as one of its tools. 

To use this tool properly, we must first understand how it works. This chapter 

will introduce you to the language and basic tools of probability. 

The variables we discussed in Chapter 7 can now be redefined as random 

variables, whose values depend on the chance selection of the elements in 

the sample. Using probability as a tool, later in Chapter 12, you will be able 

to create probability distributions that serve as models for random variables. 

You can then describe these using a mean and a standard deviation. 

Randomness 

Probability is the study of randomness and uncertainty. 

The reasoning in statistics rests on asking, ‘How often would this method give a 

correct answer if I used it very many times?” When we produce data by random 

sampling or by experiments, the laws of probability enable us to answer the 

question ‘What would happen if we did this many times?’ 

‘What does ‘random’ mean? In ordinary speech, we use ‘random’ to denote 

things that are unpredictable. Events that are random are not perfectly 

predictable, but they have long-term regularities that we can describe and 

quantify using probability. In contrast, haphazard events do not necessarily 

have long-term regularities. 

Throwing an unbiased coin and observing the number of heads that appear 

gives an example of random behaviour. When you throw the coin, there are 

only two outcomes: heads or tails. Figure 8.1 shows the results of the first



50 throws in an experiment that involved throwing the coin 5000 times. Two 

trials are shown. The red graph shows the result of first trial, in which the first 

toss was a head, followed by a tail, making the proportion of heads after two 

throws 0.5. The next two throws were also tails, so the proportion of heads after 

three throws was 0.33, and after four throws it was 0.25. 

The second trial, shown in blue, starts with a series of tails. The fifth throw was 

a head, which raised the proportion of heads to 0.2. 

The proportion of heads is quite variable at first. However, in the long run, and 

as the number of throws increases, the proportion of heads stabilises at around 

0.5. We say that 0.5 is the probability of a head. 
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1 11 21 31 41 51 
Number of throws 

Figure 8.1 Probability of throwing a head 

Imagine the following scenario. I drive to school every day. Shortly before 

school, there is a traffic light. It always seems to be red when I get there. 

I collected data over the course of one year (180 school days) and considered 

the green light to be a ‘success Table 8.1 shows some of the collected data. 

The first day it was red, so the proportion of success is 0% (0 out of 1). The 

second day it was green, so the proportion is now 50% (1 out of 2). The third day 

it was red again, so the proportion is 33.3% (1 out of 3), and so on. As more data 

is collected, the new measurement becomes a smaller and smaller fraction of the 

accumulated frequency;, so, in the long run, the graph settles to the real chance of 

finding a green light, which in this case is about 30%. This is shown in Figure 8.2. 
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Figure 8.2 The chance of finding the traffic light green is about 30% over time 

It is important to realise 

that the proportion of 

heads in a small number 

of tosses can be far 

from the probability. 
Probability describes 
only what happens in 
the long run. How a fair 
coin lands when it is 

thrown is an example 

of a random event. One 
cannot predict perfectly 

whether the coin will 
land on heads or tails. 

However, in repeated 

throws, the percentage 
of times the coin lands 
on heads will tend to 
settle down to a limit 
of 50%. The outcome 

of an individual throw 

is not predictable, but 

the long-term average 
behaviour is predictable. 
Thus, it is reasonable to 
consider the outcome of 
tossing a fair coin to be 
random. 

  

  

  

  

  

  

  

  

Day | Light | % green 
1 red 0 
2 | green | 50 
3 red 333 
4 | green | 50 
o red 40 

6 | red 333 
7 | red 286 
            

Table 8.1 Traffc light data 

309



Note that the 
randomness in the 

experiment is not in 
the traffic light itself, 

as this is controlled by 
atimer. In fact, if the 

system works well, then 
it may turn green at the 

same time every day. The 
randomness of the event 
is the time L arrive at the 

traffic light. 

An experiment is 
the process by which 

an observation (or 
measurement) is 

obtained. A random 

experiment (or chance 
experiment) is an 
experiment where 

there is uncertainty 
concerning which of 
two or more possible 
outcomes will result. 

‘The sample space, U, of 
arandom experiment 

(or phenomenon) is 
the set of all possible 

outcomes. 
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If you run a simulation for a longer period, as shown in Figure 8.3, you can see 

that it really stabilises around 30%. 
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Figure 8.3 Further stabilisation at 30% over time 

If we ask for the probability of finding the traffic light green in the above 

example, our answer will be about 30%. We base our answer on knowing that, 

in the long run, the fraction of time that the traffic light was green is 30%. We 

could also say that the long-run relative frequency of a green light settles 

down to about 30%. 

Basic definitions 

Data are obtained by observing either uncontrolled events in nature or 

controlled situations in a laboratory. We use the term experiment to describe 

either method of data collection. 

Throwing a coin, rolling a dice and observing the number on the top surface, 

counting cars at a traffic light when it turns green, measuring daily rainfall in a 

certain area, and so on, are a few experiments in this sense of the word. 

A description of a random phenomenon in the language of mathematics is 

called a probability model. For example, when we throw a coin, we cannot 

know the outcome in advance. What do we know? We can say that the outcome 

will be either heads or tails. Because the coin appears to be balanced, we believe 

that each of these outcomes has probability 0.50. This description of coin 

throwing has two parts: 

« alist of possible outcomes 

« a probability for each outcome. 

This two-part description is the starting point for a probability model. We 

will begin by describing the outcomes of a random phenomenon and learning 

how to assign probabilities to the outcomes by using one of the definitions of 

probability. 

For example, for one toss of a coin, the sample space is 

U = {heads, tails}, or simply {h, t} 

. ‘The notation for sample space could also be S or any other letter.



Example 8. 

Throw a coin twice (or two coins once each) and record the results. What is 

the sample space? 

  

Solution 

U = {hh, ht, th, tt} 

Example 8.2 

Throw a coin twice (or two coins once) and count the number of heads 

thrown. What is the sample space? 

  

Solution 

U= {0,1,2} 

d A simple event is the outcome we observe in a single repetition (trial) of the experiment. 

For example, an experiment is throwing a dice and observing the number that 

appears on the top face. The simple events in this experiment are {1}, {2}, {3}, 

{4}, {5}, and {6}. The set of all these simple events is the sample space of the 

experiment. 

We are now ready to define an event. There are several ways of looking at it, 

which in essence are all the same. 

d An event is an outcome or a set of outcomes of a random experiment. 

‘With this understanding, we can also look at the event as a subset of the 

sample space or as a collection of simple events. 

Example 8.3 

‘When rolling a standard six-sided dice, the event A is ‘observe an odd 

number, and the event B is ‘observe a number less than 5° Write a set to 

represent each of these events. 

Solution 

Event A is the set {1, 3, 5}. 

Event B is the set {1, 2, 3, 4}. 

Use I to represent 
throwinga head, and 
to represent throwing 
atail 

‘There could be zero 

heads, one head, or two 

heads. 

Probability and set 
theory 
Set theory provides 
a foundation for all 

of mathematics. The 

language of probability 
is much the same as the 
language of set theory. 
Logical statements 
canbe interpreted as 
statements about sets. 
Later, this will enable us 

to introduce a method 
for setting up probability 
problems. 
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& 
U   

Figure 8.4 Events A and B 
from Example 8.3 
  

  O U     

Figure 8.5 The rectangle 
represents the sample space 
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Sometimes it helps to visualise an experiment using some tools of set theory. 

There are several similarities between the ideas of set theory and probability 

and it is very helpful when we see the connection. A simple, but powerful, 

diagram is the Venn diagram. Figure 8.4 shows the events A and B from 

Example 8.3. 

In general, in this book, we will use a rectangle to represent the sample space 

and closed curves to represent events, as shown in Figure 8.5. 

To understand these definitions more clearly, let’s look at the following 

example. 

Example 8.4 

  

Suppose we choose one card at random from a deck of 52 playing cards. 

‘What is the sample space U? 

  

  

Solution 

U= {Ad, 2, .., K, A, 24, 
. K&, A®,20, K9, 

AM, 24, ., Kb} 

Some other events of interest are: 

K = event of king = {Ké, K4, K®, K&} 

H = event of heart = {A®, 29, .., K¥} 

J = event of jack or better 

= {J%.]4.]9,]4,Qh, Q4. QY, QA K&, K¢, K 
Q = event of queen = {Qd, Q$, QY, QA} 

         

    

Example 8.5 
  

Throw a coin three times and record the results. Show the event ‘observing 

two heads’ as a Venn diagram. 

  

  
Solution U 

    

hhh tht 

The sample space is made up of eight possible 

outcomes: hhh, hht, tht, etc. Observing exactly " 

two heads is an event with three elements: tth 

{hht, hth, thh} i   

Set operations have a number of properties, which are basic consequences of the 
definitions. Some examples are: 
AUB=BUA @)y =4 ANU=A 
AUU=U ANA =0 AUA =T



Uis the sample space and & is the empty set. 
‘Two valuable properties are known as De Morgan's laws, which state that 
(AUB)'=A'NB' 
(ANB) =A'UB' 
Finally 
AN(BUC) = (ANB)UANC), 
AUBNC)=(AUBN(AUC) 

Tree diagrams, tables, and grids 

In an experiment to check the blood types of patients, the experiment Blood type Rh factor  Outcome 

can be thought of as a two-stage experiment: first we identify the type 

of the blood and then we classify the Rh factor + or —. 

The simple events in this experiment can be counted using 

another tool, the tree diagram, which is extremely powerful and 

helpful in solving probability problems. 

Our sample space in this experiment is the set 

{A+, A—, B+, B—, AB+, AB—, O+, O—}. 
These can be read from the outcomes in the last column. 

  

The same simple events can also be arranged in a probability table, as 

shown in Table 8.2 Figure 8.6 Blood types tree 
diagram 

Blood type 

Rh factor | A B AB o 

Positive A+ B+ AB+ | O+ 

Negative | A— B- AB- | O- 

  

  

                

Table 8.2 Blood types probability table 

They can also be shown using a 2-dimensional grid as in Figure 8.7. 

B— 

pd 

O+   & e 
A B AB O 

Figure 8.7 2D grid for the probability of simple events 

Example 8.6 
  

Two tetrahedral dice, with sides numbered 1 to 4, one blue and one yellow, 

are rolled. List the elements of the following events when both dice are 

thrown. 

T = {3 is face down on at least one dice} 

B = {the 3 on the blue dice is face down} 

S = {sum of the face-down faces on both dice is a six} 
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Solution 

T=1{(1,3),(23),(3,3),(43), 
(3,2),(3,1), 3, 4)} 

B=1{(1,3),(2,3),3,3)} 

$=1{2,4),3,3),42)} 
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Exercise 

1. In a large school, a student is selected at random. Give a reasonable 

sample space for answers to each of the following questions: 

(a) Are you left-handed or right-handed? 

(b) What is your height in centimetres? 

(c) For how many minutes did you study last night? 

2. You throw a standard six-sided dice and a coin and record the number 

and the face that appear in that order. For example, (5, h) represents a 

5 on the dice and a head on the coin. List the sample space. 

3. You draw cards from a standard deck of 52 playing cards. 

(a) List the sample space if you draw one card at a time. 

(b) List the sample space if you draw two cards at a time. 

(c) How many outcomes do you have in each of the experiments above? 

4. Tim carried out an experiment where he flipped 20 coins together and 

observed the number of heads showing. He repeated this experiment 

10 times and got the following results: 

[EIRO O RSRIGRON G781 (1 

(a) Use Tim’ data to calculate the probability of obtaining a head. 

(b) Tim flipped the 20 coins for the 11th time. How many heads should 

he expect to observe? 

(c) Ifhe flipped the coins 1000 times, how many heads should he expect 
to observe? 

5. In a game, a four-sided dice with sides marked 1, 2, 3, and 4 is used. The 

intelligence of the player is determined by rolling the dice twice and 

adding 1 to the sum of the two rolls. 

(a) What is the sample space for rolling the dice twice? 

(b) What is the sample space for the intelligence of a player? 
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11. 

. A box contains a yellow ball, a green ball, and a blue ball. You run an 

experiment where you draw a ball at random, look at its colour and then 

replace it and draw a second ball at random. 

(a) What is the sample space of this experiment? 

(b) List the elements of the event of drawing yellow first. 

(c) List the elements of the event of drawing the same colour twice. 

. Repeat the same exercise as in question 6, except this time without 

replacing the first ball. 

. Nick flips a coin three times and each time he notes whether it is heads 
or tails. 

(a) What is the sample space of this experiment? 

(b) What is the event that heads occur more often than tails? 

. Franz lives in Vienna. He and his family decided that their next vacation 

will be to either Italy or Hungary. If they go to Italy, they can fly, drive, 

or take the train. If they go to Hungary, they will drive or take a boat. 
Letting the outcome of the experiment be the location of their vacation 

and their mode of travel, list all the points in the sample space. Also list 

the sample space of the event ‘fly to destination. 

A hospital codes patients according to whether they have or do not have 
health insurance, and according to their condition. The condition of 

the patient is rated as good (g), fair (f), serious (s), or critical (c). The 

hospital clerk marks a 0 for a non-insured patient and a 1 for an insured 

patient, and one of the above letters for the patient’s condition. For 
example, (1, c) means an insured patient with critical condition. 

(a) List the sample space of this experiment. 

(b) What is the event: not insured, in serious or critical condition? 

(c) What is the event: patient in good or fair condition? 

(d) What is the event: patient has insurance? 

A social study investigates people for different characteristics. 

One part of the study classifies people according to gender (G, = female, 

G, = male), drinking habits (K, = abstain, K, = drinks occasionally, 

K; = drinks frequently), and marital status (M, = married, M, = single, 

M, = divorced, M, = widowed). 

(a) List the elements of an appropriate sample space for observing a 

person in this study. 

(b) Three events are defined as: A = the person is a male, 

B = the person drinks, and C = the person is single. 

List the elements of each event A, B, and C. 

(c) Interpret each event in the context of this situation: 

(i) AUB (i) ANC (iii) C (i) ANBNC (v) A'NB 
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14. 

Cars leaving the highway can make a right turn (R), left turn (L), or 

go straight on (S). You are collecting data on traffic patterns at this 

intersection and you group your observations by taking four cars at a 

time every 5 minutes. 

(a) List three outcomes in your sample space U. How many are there? 

(b) List the outcomes in the event that all cars go in the same direction. 

(c) List the outcomes that only two cars turn right. 

(d) List the outcomes that only two cars go in the same direction. 

You are collecting data on traffic at an intersection for vehicles leaving 

a highway. Your task is to collect information about the type of vehicle: 

truck (T), bus (B), or car (C). You are also recording whether the driver 

is wearing a safety belt (SY) or is not wearing safety belt (SN), as well as 

whether the headlights are on (O) or off (F). 

(a) List the outcomes of your sample space, U. 

(b) List the outcomes of the event SY (the driver is wearing the 

safety belt). 

(c) List the outcomes of the event C (the vehicle is a car). 

(d) List the outcomes of the event in C N §Y, C’, and C U SY. 

Many electric systems use a built-in backup 

system so that the equipment using the 

system will work even if some parts fail. 

Such a system in given in the diagram. 

Two parts of this system are installed in parallel, so that the system will 

work if at least one of them works. If we code a working part by 1 and 

a failing part by 0, then one of the outcomes would be (1, 0, 1), which 

means parts A and C work while B failed. 

(a) List the outcomes of your sample space, U. 

(b) List the outcomes of the event X, that exactly two of the parts work. 

Probability assignments 

bability theories 

There are a few theories of probability that assign meaning to statements 

such as ‘the probability that A occurs is p%. In this book we will primarily 

examine only the relative frequency theory. In essence, we follow the idea that 

probability is ‘the long-run proportion of repetitions on which an event occurs. 

This allows us to merge two concepts into one.



Equally likely outcomes 

In the theory of equally likely outcomes, probability has to do with symmetries probability is on a 
o A e i : i scale of 0% to 100%. 

and the indistinguishability of outcomes. If a given experiment or trial has n 4 ol . ‘Probability and ‘chance’ 
possible outcomes among which there is no preference, they are equally likely. are synonymous. 

100% 
n 

In all theories, 

  L . 1 ) . 
The probability of each outcome is then or 5. For example, if a coin 

is balanced well, there is no reason for it to land heads in preference to tails 

when it is thrown, so the probability that the coin lands heads is equal to the 

  probability that it lands tails, and both are 102% = 50%. Similarly, if a dice is 

fair, the chance that when it is rolled it lands with the side showing 1 on top is 

o 
the same as the chance that it shows 2, 3, 4, 5, or 6: )   or é— In the theory of 

equally likely outcomes, probabilities are between 0% and 100%. If an event 

consists of more than one possible outcome, the chance of the event is the 

number of ways it can occur, divided by the total number of things that could 

occur. For example, the chance that a dice lands showing an even number on 

top is the number of ways it could land showing an even number (2, 4, or 6), 

divided by the total number of things that could occur (6, namely showing 1, 2, 

3,4,5,0r6). 

Frequency theory 

In frequency theory, probability is the limit of the relative frequency with which 

an event occurs in repeated trials. Relative frequencies are always between 0% 

and 100%. According to the frequency theory of probability, ‘the probability 

that A occurs is p%’ means that if you repeat the experiment over and over 

again, independently and under essentially identical conditions, the percentage 

of the time that A occurs will converge to p. For example, to say that the chance 

that a coin lands heads is 50% means that if you throw the coin over and over 

again, independently, the ratio of the number of times the coin lands heads to 

the total number of throws approaches a limiting value of 50% as the number 

of throws grows. Because the ratio of heads to throws is always between 0% and 

100%, when the probability exists, it must be between 0% and 100%. 

Using Venn diagrams and the equally likely concept, we can say that the 

probability of any event is the number of elements in an event A divided by the 

total number of elements in the sample space U. This is equivalent to saying: 

A 
P(A) = M, where n(A) represents the number of outcomes in A and n(U) 

n(U) 
represents the total number of outcomes. So in Example 8.5, the probability of 

observing exactly two heads is P(2 heads) = % 
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No matter how little a 
chance you think an 
event has, there is no 

such thing as negative 
probability. 

No matter how large 
achance you think 
an event has, there 

is no such thing as a 
probability larger than 1. 

  

  

hhh 

  

tt     

  

Figure 8.8 Events of two tails 

or two heads in throwing three 
dice 

  

Figure 8.9 The complement of 
Als denoted by A’ 
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Probability rules 

Regardless of which theory we subscribe to, the probability rules apply. 

Rule 1 

Any probability is a number between 0 and 1 - that is, the probability P(A) 

of any event A satisfies 0 < P(A) < 1. If the probability of any event is 0, the 

event never occurs. Likewise, if the probability is 1, it always occurs. In rolling 

a standard dice, it is impossible to get the number 9, so P(9) = 0. Also, the 

probability of observing any integer between 1 and 6 inclusive is 1. 

Rule 2 

All possible outcomes together must have probability 1 - that is, the probability 

of the sample space U'is 1, or P(U) = 1. Informally, this is sometimes called the 

‘something has to happen’ rule. 

Rule 3 

If two events have no outcomes in common, the probability that one or the 

other occurs is the sum of their individual probabilities. Two events that have 

no outcomes in common, and hence can never occur together, are called 

disjoint events or mutually exclusive events. 

The addition rule for mutually exclusive events is 

P(A or B) = P(4) + P(B) 

For example, in throwing three coins, the events of getting exactly two heads 

or exactly two tails are disjoint, and hence the probability of getting exactly two 

heads or two tails is 

3,3 6.3 

88 8 4 
Additionally, we can always add the probabilities of outcomes because they are 

always disjoint. A trial cannot come out in two different ways at the same time. 

This will give you a way to check whether the probabilities you assigned are 

legitimate. 

Rule 4 

Suppose that the probability that you receive a 7 on your IB exam is 0.2. Then the 

probability of not receiving a 7 on the exam is 0.8. The event that contains the 

outcomes not in A is called the complement of A and is denoted by A". 

P(A) =1 — P(A),or P(4) = 1 — P(A) 

‘The ‘something has to happer’ rule 
You have to be careful with these rules. By the ‘something has to happen’ rule, the total of the 

probabilities of all possible outcomes must be 1. This is because they are disjoint, and their sum 
covers allthe elements of the sample space. Suppose someone reports the following probabilities for 
students in your high school, which has four grades: “The probability that a grade 1, 2, 3 or 4 student 
is chosen at random from the high school is 0.24, 0.24, 0.25, and 0.19 respectively. You should know 

immediately that there is something wrong because these probabilities add up to 0.92. 

Similarly, if someone claims that the probabilities are 0.24, 0.28, 0.25, 0.26 respectively, there is 

also something wrong. These probabilities add up to 1.03, which is more than 1.



Example 8.7 

Data for traffic violations was collected in a certain country. A summary is 

  

  

given below. 

Age group 18-20years | 21-30years | 31-40years | Over40 years 
Probability 0.06 0.47 0.29 0.18             
  

Estimate the probability that the offender is: 

(a) in the youngest age group 

(b) between 21 and 40 

(c) 40 or younger. 

L 

Solution 

Each probability is between 0 and 1, and the probabilities add up to 1. 
Therefore this is a legitimate assignment of probabilities. 

(a) The probability that the offender is in the youngest group is 0.06. 

(b) The probability that the driver is between 21 and 40 years is 

0.47 + 0.29 = 0.76. 

(c) The probability that a driver is 40 or younger is 1 — 0.18 = 0.82. 

Example 8.8 

‘When people create passcodes for their cell phones, the first digits follow 

distributions very similar to that shown in the table. 
  

First digit 0 Il 2 B] 4 5 6 % 8 9 

Probability | 0.009 | 0.300 | 0.174 | 0.122 | 0.096 | 0.078 | 0.067 | 0.058 | 0.051 | 0.045 
  

                        
  

(a) Find the probabilities of the following three events: 

A = {first digit is 1} 

B = {first digit is more than 5} 

C = {first digit is an odd number} 

(b) Find the probability that the first digit is: 

(i) 1 or greater than 5 

(i) not1 
(iii) an odd number or a number larger than 5. 

I 

Solution 

(a) From the table: 

P(A) = 0300 
P(B) = P(6) + P(7) + P(8) + P(9) 

= 0.067 + 0.058 + 0.051 + 0.045 = 0.221 

P(C) = P(1) + P(3) + P(5) + P(7) + P(9) 

= 0.300 + 0.122 + 0.078 + 0.058 + 0.045 = 0.603 
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Notice here that 
P(Bor C) is not the 

sum of P(B) and P(C) 
because Band Care not 
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disjoint. 

Probability 

(b) (i) Since A and B are mutually exclusive, by the addition rule, the 

probability that the first digit is 1 or greater than 5 is 

P(A or B) = 0.300 + 0. 221 = 0.521 

(ii) Using the complement rule, the probability that the first digit is not 

lis 

P(A) = 1 — P(4) = 1 — 0.300 = 0.700 

(iii) The probability that the first digit is an odd number or a number 

larger than 5 is 

P(Bor C) = P(1) + P(3) + P(5) + P(6) + P(7) + P(8) + P(9) 
= 0.300 + 0.122 + 0.078 + 0.067 + 0.058 + 0.051 + 0.045 

=0:721 

qually likely outcomes 

In some cases, we are able to assume that individual outcomes are equally 

likely because of some balance in the experiment. Throwing a balanced coin 

renders heads or tails equally likely, each with a probability of 50%, and rolling 

a standard balanced dice gives the numbers from 1 to 6 as equally likely, each 

having a probability of —é— 

Suppose in Example 8.8, we consider all the digits to be equally likely to 

happen. Then the probabilities would be as shown in Table 8.3. 

  

First digit 0 1 2 3 4 5 6 7 8 9 
  

                        Probability | 0.1 | 0.1 [ 0.1 [ 0.1 {01 ]01]01[01|01]01 
  

Table 8.3 Al digits are equally likely to happen 

P(A) = 0.1 

P(B) = P(6) + P(7) + P(8) + P(9) = 4 X 0.1 = 0.4 

P(C) =P(1) + P(3) + P(5) + P(7) + P(9) =5 X 0.1 = 0.5 

Also, by the complement rule, the probability that the first digit is not 1 is 

P(A)=1—P(4)=1—0.1=09. 

Two-dimensional grids are also very helpful tools that are used to visualise 

two-stage or sequential probability models. For example, consider rolling a 

normal unbiased cubic dice twice. Figure 8.10 shows a two-dimensional grid 

and a number of possible events. 

If we are interested in the probability that at least one roll shows a 6, we count 

the points on the column corresponding to 6 on the first roll and the points on 

the row corresponding to 6 on the second roll, observing that the point in the 

corner should not be counted twice.



If we are interested in the number 

showing on both rolls being the same, 

then we count the points on the 

diagonal as shown. 

P(at least one six) = 3 

    

    

  

Finally, if we are interested in the 

probability that the first roll shows a 

number larger than the second roll, 

then we pick the points below the 

  

Se
co
nd
 

ro
ll
 

    P(same number) = & 
            diagonal. B 

Hence Figure 8.10 Two-dimensional 
2 3 4 5 grid for calculating the bability 

Plfirst number > second number) = > First roll e e e et of events when rolling a dice 36 

Geometric probability 

Some cases give rise to interpreting events as areas in the plane. Take, for 

example, shooting at a circular target at random. What is the probability of 

hitting the central part? 

The probability of hitting the central part is given by 

R\ 

) 
7wR> 16 

This calculation comes from the area of the small circle over the area of the 

whole target. 

  

Figure 8.11 What is the 

probability of hitting the central 
part? 

Example 8.9 
  

  

Lydia and Rania agreed to meet at the museum between 12:00 and 13:00. 

The first person to arrive will wait 15 minutes. If the second person does not 

show up, the first person will leave. Assuming that their arrival times are 

random, what is the probability that they meet? 

  

Solution 

60 

  

If Lydia arrives x minutes after 12:00 and 

Rania arrives y minutes after 12:00, then 

the conditions for them to meet are 

[x — y| < 15and x < 60,y < 60. 

Geometrically, the shaded region in the 

diagram on the right shows the arrival 

times that will allow them to meet. 
15 

iangle is L bhI= L (45)2 The area for each triangle is 3 bh 2 @52, & 

50, the shaded area is 602 — 452, 

R 
The probability they meet is therefore G014 2 

60% 16 391



Counting principles 
are not part of the 

SL syllabus, so for 
the purposes of this 
section we mention 

only the tools you need. 
For a more in-depth 

discussion of counting 
principles, look at 

Chapter 3 of the HL 
version of this book. 

A combination of 

objects out of 1 objects 
is a subset of the set of 

n objects. For example, 
consider the letters 

ABCDE. There are 10 

combinations of 3 letters 
chosen from these 5: 

ABC, ABD, ABE, ACD, 

ACE, ADE, BCD, BCE, 

BDE, CDE. The general 
rule is that the number 

of combinations or 
subsets of r objects out 
of n objects is given by 

the binomial coefficient 
n! ne = 

T   (n— it 
‘Thus the number of ways 

of choosing 3 letters 
from ABCDE is 

  

Your GDC can do the 

work for you too! 

Did you observe that 
8C; = 8Cy? 

Can you think of a 
reason for this? 
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Probability calculation for equally likely outcomes 

using counting principles (Optional — recommended!) 

  

In an experiment where all outcomes are equally likely, the theoretical 

probability of an event A is given by 

n(A) 

n(U) 

where n(A) is the number of outcomes that make up the event A, and n(U) is 

the total number of outcomes in the sample space. 

P(A) =   

The new ideas we want to discuss here involve the calculation of n(A) and n(U). 

Such calculations will involve counting principles. 

Example 8.10 

In a group of 18 students, 8 are females. If five students are chosen at 

random, what is the probability of choosing: 

(a) all girls (b) 3 girls and 2 boys (c) atleast 1 boy? 

| 

Solution 

The total number of outcomes is the number of ways we can choose 5 out of 

the 18 students. 

n(U) = 18C, = 8568 

(a) This event requires that we pick our group from among the 8 girls. 

—sg = T e n(A) = 3C; = 56 = P(all girls) 3568 0.0065 

(b) This event requires that we pick 3 out of the 8 girls, and at the same time 

we pick 2 out of the 10 boys. So, using the multiplication principle, 

n(3 girls and 2 boys) = ¥C, - 1°C, = 56-45 = 2520 

: _ 2520 _ 
= P(3 girlsand 2 boys) = 3563 0.294 

(c) This event can be approached in two ways. 

Method 1: To have at least 1 boy means that we can have, 1, 2, 3, 4, or 5 

boys. These are mutually exclusive, so the probability in question is the 

sum 

1C, - 8C4 + 1°C, - *C3 + ... + 1°C5 - °C,y 
18C, P(at least 1 boy) = 

_ 8512 _ oen 09935 

Method 2: Recognise that at least 1 boy is the complement of no boys at 

all; that is, 0 boys or 5 girls. 

P(at least 1 boy) = 1 — P(all girls) = 1 — 0.0065 = 0.9935



1. In a simple experiment, 20 chips labelled with integers 1 to 20 inclusive 

were placed in a box and one chip was picked at random. 

(a) What is the probability that the number drawn is a multiple of 32 

(b) What is the probability that the number drawn is not a multiple of 42 

2. The probability that an event A happens is 0.37 

(a) What is the probability that it does not happen? 

(b) What is the probability that it may or may not happen? 

3. You are playing with an ordinary deck of 52 cards by drawing cards at 

random and looking at them. 

(a) Find the probability that the card you draw is: 

(i) theace of hearts (ii) the ace of hearts or any spade 

(iii) an ace or any heart (iv) not a face card. 

(b) Now you draw the ten of diamonds and put it on the table and draw 

a second card. What is the probability that the second card 

(i) is the ace of hearts? (ii) is not a face card? 

(c) Now you draw the ten of diamonds and return it to the deck and 

draw a second card. What is the probability that the second card 

(i) is the ace of hearts? (ii) is not a face card? 

4. On Monday morning, my class wanted to know how many hours 

students spent studying on Sunday night. They stopped schoolmates at 

random as they arrived and asked each: ‘How many hours did you study 

last night?” Here are the answers of the sample they chose on Monday 15 

January 2018. 
  

Hoursspentstudying | 0 | 1 [ 2 | 3] 4 | 5 
Number of students 4 (28 |3]2]1 
  

                  

(a) Estimate the probability that a student spent less than three hours 

studying on Sunday night. 

(b) Estimate the probability that a student studied for exactly two or 

three hours. 

(c) Estimate the probability that a student studied for less than six hours. 

5. You throw a coin and a standard six-sided dice and record the number 

and the face that appear. 

(a) Find the probability of getting a number larger than 3. 

(b) Find the probability of getting a head and a 6. 

6. A dice is constructed in such a way that a 1 has a chance of occurring 

twice as often as any other number. 

(a) Find the probability that a 5 appears. 

(b) Find the probability an odd number appears. 
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7. You are given two fair dice to roll in an experiment. 

(a) Your first task is to report the numbers you observe. 

(i) What is the sample space of your experiment? 

(ii) What is the probability that the two numbers are the same? 

(iii) What is the probability that the two numbers differ by 22 

(iv) What is the probability that the two numbers are not the same? 

(b) Your second task is to report the sum of the numbers that appear. 

(i) What is the probability that the sum is 12 

(ii) What is the probability that the sum is 92 

(iii) What is the probability that the sum is 82 

(iv) What is the probability that the sum is 13? 

8. The blood types of people can be one of the four types: O, A, B, or AB. 

The distribution of people with these blood types differs from one 

group of people to another. Here are the distributions of blood types for 

randomly chosen people in the US, China, and Russia. 
  

  

  

              

e Blood Type| () A B s 

uUs 0.43 0.41 0.12 ? 

China 0.36 0.27 0.26 0.11 

Russia 0.39 0.34 ? 0.09 
  

(a) What is the probability of type AB in the US? 

(b) Dirk lives in the US and has type B blood. People with type B blood 

can receive blood only from people with type O or type B. What is 

the probability that a randomly chosen US citizen can donate blood 

to Dirk? 

(c) What is the probability of randomly choosing a US citizen and a 

Chinese citizen with type O blood? 

(d) What is the probability of randomly choosing a US, a Chinese and 

a Russian citizen with type O blood? 

(e) What is the probability of randomly choosing a US, a Chinese and 

a Russian citizen with the same blood type? 

9. In each of the following situations, state whether or not the given 

assignment of probabilities to individual outcomes is legitimate. 

Give reasons for your answer. 

(a) A dice is loaded such that the probability of each face is according to 

the following assignment, where x is the number on the upper face 

and P(x) is its probability. 
  

  

x 1 2 5] 4 5 6 

1 1 4 1 
P(x) 0 5 51 3 & 0                 
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10. 

s 

12. 

(b) Students at a school are categorised in terms of gender and whether 

or not they are diploma candidates. 

P(female, diploma candidate) = 0.57 

P(female, not a diploma candidate) = 0.23 

P(male, diploma candidate) = 0.43 

P(male, not a diploma candidate) = 0.18 

(c) Draw a card from a deck of 52 cards (x is the suit of the card and 

P(x) is its probability). 
  

  

  

x Hearts Spades Diamonds Clubs 

12 15 12 13 
B(x) 5 2 5 5           
  

In Switzerland, there are three official languages: German, French, and 

Italian. You choose a Swiss citizen at random and ask, ‘What is your 

mother tongue?’ Here is the distribution of responses: 
  

Language German | French | Italian | Other 
Probability 0.58 024 0.12 ? 
  

              

(a) What is the probability that a Swiss citizen's mother tongue is not 

one of the official languages? 

(b) What is the probability that a Swiss citizen's mother tongue is not 

German? 

(c) What is the probability that you choose two Swiss citizens 

independently of each other and they both have German as their 

mother tongue? 

(d) What is the probability that you choose two Swiss citizens 

independently of each other and they both have the same mother 

tongue? 

Lots of the email messages we receive are spam. Choose a spam email 

message at random. Here is the distribution of topics. 
  

Topic Adult | Financial | Health | Leisure | Products | Scams 
  

              Probability 0.165 0.142 0.075 0.081 0.209 0.145     

(a) What is the probability of choosing a spam message and it does not 

concern these topics? 

(b) Parents are usually concerned about spam messages with adult 

content and scams. What is the probability that a randomly chosen 

spam email falls into one of the other categories? 

An experiment involves rolling a pair of dice, 1 white and 1 red, and 

recording the numbers that come up. Find the probability: 

(a) that the sum is greater than 8 

(b) that a number greater than 4 appears on the white dice 

(c) that at most a total of 5 appears. 
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‘The intersection of two 
events, Band C, denoted 
by the symbol BN Cor 
simply BC, is the event 

containing all outcomes 
common to Band C. 

  

  
& 

2 

4     

Figure 8.12 Event of B 
‘intersection’ C = {7, 9} 
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13. (a) A box contains 8 chips numbered 1 to 8. Two are chosen at random 

and their numbers are added together. What is the probability that 

their sum is 72 

(b) A box contains 20 chips numbered 1 to 20. Two are chosen at random. 

What is the probability that the numbers on the two chips differ by 32 

(c) A box contains 20 chips numbered 1 to 20. Two are chosen at 

random. What is the probability that the numbers on the two chips 

differ by more than 3? 

14. Tim and Val want to meet for dinner at their favourite restaurant. They 

agree on meeting between 20:00 and 21:00. The first person to arrive will 

order a salad and spend 30 minutes before ordering the main meal. If 

the second person does not arrive within the 30 minutes, the first person 

will pay the bill and leave. What is the probability they manage to eat 

dinner together at the restaurant? 

15. Bus 48A and Tram 49 serve different routes in the city. They share one stop 

next to the library. They stop at this station every 20 minutes. Every stay is 

3 minutes long. Assuming their arrivals at the hour are random, find the 

probability that both are at the stop together in any 20 minute interval. 

16. A wooden cube has its faces painted green. We cut the cube into 1000 

small cubes of equal size. We mix the small cubes thoroughly. We draw 

one cube at random. What is the probability that the cube: 

(a) has exactly two faces coloured green 

(b) has exactly three faces coloured green 

(c) has no faces coloured green? 

Operations with events 

In Example 8.8, we talked about the events 

B = {first digit is more than 5} 

C = {first digit is an odd number} 

‘We also claimed that these two events are not disjoint. This brings us to another 

concept for looking at combined events. 

Here BN C = {7, 9} because these outcomes are in both B and C. Since the 

intersection has outcomes common to the two events, B and C, they are not 

mutually exclusive. 

‘The probability of B N C is 0.058 + 0.045 = 0.103. Recall from Example 8.8 
that we said the probability of B or C is not simply the sum of the two 

probabilities. That brings us to the next concept. How can we find the 

probability of B or C when they are not mutually exclusive? To answer this 

question, we need to define another operation.



Here BU C = {1, 3, 5,6, 7, 8, 9}. In calculating the probability of BU C, we RIS 

observe that the outcomes 7 and 9 are counted twice. To remedy the situation, Band C, denoted by the 

if we decide to add the probabilities of B and C, we subtract one of the incidents symbol BUG, is ‘}hf N 
’ _ = _ y event containing all the 

of double counting. So, P(BU C) = 0.221 + 0.603 — 0.103 = 0.721, which cutcomes that belong to 

is the result we received with direct calculation. In general, we can state the Borto Cor to both. 

following probability rule. 

Rule 5 

For any two events A and B, P(A U B) = P(A) + P(B) — P(A N B). 
  

< 

As we see from Figure 8.13, P(A N B) has been added twice, so the ‘extra’ one 

is subtracted to give the probability of (A U B). 

    & This general probability addition rule applies to the case of mutually 

exclusive events too. Consider any two mutually exclusive events A and B. 

The probability of A or B is given by 

  

Figure 8.13 P(A U B) 

Some useful results 
P(AUB) = P(A) + P(B) — P(AN B) = P(A) + P(B) 1. P(A) =PANB +PANB) 

since P(ANB) = 0. U 
  

A B 

Rule 6 — The simple multiplication rule 

Consider the following situation. In a large school, 55% of the students 
are male. It is also known that the percentage of cyclists among males AN 

and females in this school are the same, 22%. What is the probability of 

selecting a male cyclist when a student is selected at random from this 

population? U B 

) 
  

2. P(B)=PANB) +PA'NB) 
  

Applying common sense, we can think of the problem in the following 

manner. Since the proportion of cyclists is the same in both groups, 

cycling and gender are independent of each other in the sense that 

knowing that the student is a male does not influence the probability 

that he is a cyclist. 

¢       

3. P(A'NB)=1-PAUB) 

The chance of picking a male student is 55%. From that 55% of the 

population, we know that 22% are cyclists, so by simple arithmetic the 

chance that we select a male cyclist is 0.22 X 0.55 = 12.1%. 

This is an example of the multiplication rule for independent events. H 
Two events A and B are independent if knowing that one of them — 
occurs does not change the probability that the other occurs. Independent or disjoint? 

Do not confuse 

independent with 
disjoint. Disjoint 

means that if one of the 

events occurs, then the 
other does not occur. 
Independent means 

At the start of this chapter, we found that the probability of encountering that knowing one of the 

a green light on my drive to school is 30%. What is the probability that T events occurs does not 
influence whether the 

other occurs. 

If two events A and B are independent, then P(A N B) = P(A) X P(B). 

Example 8.11 

encounter a green light on two consecutive days? 
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Solution 

Assume that encountering a light green is a random event and that a green 

light on one day does not influence the event on the next day. In that case 

our calculation is very simple: 

P(green both days) = P(green first day) X P(green second day) 

=0.30 X 0.30 = 0.09 

This rule can be extended to more than two independent events. For example, 

on the assumption of independence, what is the chance that I find the light 

green every day of the week? 

P(green every day) = 0.3 X 0.3 X 03 X 03 X 03 = 0.00243 

Example 8.12 

Computers bought from a well-known producer require repairs quite 

frequently. It is estimated that in the first month after purchase, 17% of 

computers require one repair job, 7% will need two repairs, and 4% require 

three or more repairs. 

(a) What is the probability that in the first month after purchase a computer 

chosen at random from this producer will need: 

(i) no repairs 

(ii) no more than one repair 

(iii) one or more repairs? 

(b) If you buy two such computers, what is the probability that in the first 

month after purchase: 

(i) neither will require repair 

(ii) both will require repair? 

.. ] 

Solution 

(a) Since all of the events listed are disjoint, the addition rule can be used. 

(i) P(norepairs) = 1 — P(some repairs) 

= 1—(0.17 + 0.07 + 0.04) = 1 — (0.28) = 0.72 
(ii) P(no more than one repair) = P(no repairs or one repair) 

=072 +0.17 = 0.89 

(iii) P(one or more repairs) = P(one or two or three or more repairs) 

=0.17 + 0.07 + 0.04 = 0.28 

(b) Since repairs on the two computers are independent of one another, 

the multiplication rule can be used. Use the probabilities of events from 

part (a) in the calculations. 

(i) P(neither will need repair) = 0.72 X 0.72 = 05184 
(ii) P(both will need repair) = 0.28 X 0.28 = 0.0784 
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Conditional probability 

In probability, conditioning means incorporating new restrictions on the outcome 

of an experiment, updating probabilities to take into account new information. 

This section describes conditioning, and how conditional probability can be used 

to solve complicated problems. Let us start with an example. 

Example 8.13 

A public health department wanted to study the exercise behaviour of high 

school students. They interviewed 768 students from grades 10 to 12 and 

asked them about their exercise habits. They categorised the students into 

the following three categories: regular exercise (three or more times per 

week), occasional exercise (one or two times per week), and no exercise. 

The results are summarised in the table. 
  

  

  

  

Regular exercise | Occasional exercise | No exercise | Total 

Male 127 73 214 414 

Female 99 66 189 354 

Total 226 139 403 768               
If we select a student at random from this study, what is the probability that 

we select: 

(a) afemale 

(b) a male who exercises regularly 

(c) astudent who doesn’t exercise? 

] 

Solution 

=3 (a) P(female) = 68 0.461 

(b) Since we have 127 males categorised as taking regular exercise, the 

chance of a male who takes regular exercise will be 

P(male, regular) = % = 0.165. 

o 6B 
(c) P(no exercise) = 768 0.525 

In Example 8.13, what if we know that the selected student is a female? 

Does that influence the probability that the selected student takes no exercise? 

Yes it does! 

Knowing that the selected student is a female changes our choices. The ‘revised’ 

sample space is not made up of all students anymore, only of the female 

students. The chance of finding a student who doesn't exercise among the 

females is % = 0.534; that is, 53.4% of the females take no exercise as 

compared to the 52.5% of students who take no exercise in the whole population. 
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Figure8.14 ANB=( 

  

      

Figure8.15 ANB=B 
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Probability 

This probability is called a conditional probability. We write this as 

189 
354 

‘We read this as ‘probability of selecting a student who takes no exercise given 

that we have selected a female’ 

P(no exercise|female) = 

The conditional probability of A given B, P(A|B), is the probability of the event 

A, updated on the basis of the knowledge that the event B occurred. Suppose 

that A is an event with probability P(A) = p # 0, and that AN B = J (A and B 

are disjoint). Then if we learn that B occurred, we know A did not occur, so we 

should revise the probability of A to be zero. We can say that P(A|B) = 0 (the 

conditional probability of A given B is zero). 

On the other hand, suppose that A N B = B (this would mean that B is a subset 

of A, so Bimplies A). Then if we learn that B occurred, we know A must have 

occurred as well, so we should revise the probability of A to be 100%. We can 

say P(A|B) = 1 (the conditional probability of A given B is 100%). 

Remember that the probability we assign to an event can change if we know 

that some other event has occurred. This idea is the key to understanding 

conditional probability. 

Imagine the following scenario. You are playing cards and your opponent is about 

to give you a card. What is the probability that the card you receive is a queen? 

As you know, there are 52 cards in the deck, and 4 of these cards are queens. 

So, assuming that the deck was thoroughly shuffled, the probability of receiving 

a queen is 

4 1 
P(queen) = 2 1 

This calculation assumes that you know nothing about any cards already dealt 

from the deck. 

Suppose now that you are looking at the five cards you have in your hand, and 

one of them is a queen. You know nothing about the other 47 cards except that 

exactly three queens are among them. The probability of being given a queen as 

the next card, given what you already know, is 

5 3 ;1 
P(queen|1 queen in hand) = T3 

So, knowing that there is one queen among your five cards changes the 

probability of the next card being a queen. 

Consider Example 8.13 again. We want to express the table frequencies as 

relative frequencies or probabilities, as in Table 8.4. 

  

  

  

Regular exercise Occasional exercise No exercise 

Male 0.165 0.095 0.279 

Female 0.129 0.086 0.246             
Table8.4 Relative frequencies



To find the probability of selecting a student at random and finding that 

student is female and takes no exercise, we look at the intersection of the female 

row with the no exercise column and find that this probability is 0.246. 

We can look at this calculation from a different perspective. We know that 

the percentage of females in our sample is 46.1, and among those females in 

Example 8.13, we found that 53.4% of them take no exercise. So, the percentage 

of females who take no exercise in the population is then 53.4% of those 46.1% 

females; that is, 0.534 X 0.461 = 0.246. 

In terms of events, this can be read as 

P(no exercise|female) X P(female) = P(female and no exercise) or P(female N no exercise) 

This is an example of the multiplication rule of any two events A and B. 

Given any events A and B, the probability that both events happen is given by 

P(A N B) = P(A|B) X P(B) 

Example 

In a psychology lab, researchers are studying the colour preferences of young 

children. Six green toys and four red toys (identical apart from colour) are 

placed in a container. The child is asked to select two toys at random. What 

is the probability that the child chooses two red toys? 

| 

Solution 

To solve this problem, we will use a tree diagram. 

First choice Second choice Outcome 

Red(3)      

        Red !    & 

Green(3) 

Every entry on each of the branches has a conditional probability. So, Red on 

the second choice is actually either Red|Red or Red|Green. We are interested 

in RR, so the probability is 

P(RR) = P(R) X P(R|R) = % X % = 133% 

If P(A N B) = P(A|B) X P(B) as discussed above, and if P(B) # 0, we can 

rearrange the multiplication rule to produce a definition of the conditional 

probability P(A|B) in terms of the ‘unconditional’ probabilities P(A N B) 

and P(B). 
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P(ANB) 

P(B) 
  When P(B) # 0, the conditional probability of A given B is P(AIB) = 

‘Why does this formula make sense? 

First of all, note that it agrees with the intuitive answers we found above: if 

ANB=(,thenP(ANB) = 0,50 P(A|B) = % =0.IfAN B = B, then 

p(a18) = X — 100%. 
P(B) 

Now, if we learn that B occurred, we can restrict attention to just those 

outcomes that are in B, and disregard the rest of U, so we have a new sample 

space that is just B (see Figure 8.16). For A to have occurred in addition to B 

requires that A N B occurred, so the conditional probability of A given B 

. P(ANB) 
  

Figure 8.16 P(A[B) = 
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P(ANB) 
P(B) 
  

, just as we defined it above. 
P(B) 

Example 

In an experiment to study the phenomenon of colour blindness, researchers 

collected information concerning 1000 people in a small town and 

categorised them according to colour blindness and gender. A summary of 

the findings is given in the table. 
  

Male | Female | Total 
  

  

  

Colour blind 40 2} 42 

Not colour blind 470 488 958 

Total 510 490 1000             
What is the probability that a person is colour blind, given that the person is 

female? 

i 

Solution 

To answer this question, we notice that we do not have to search the whole 

population for this event. We limit our search to the females. There are 490 

females in the study. When we search for colour blindness, we look only for 

the females who are colour blind - that is, the intersection. There are two 

females who are colour blind. Therefore, the probability that a person is 

colour blind, given that the person is female, is 

Pi 
p(c“:) = fl :M: . 0.004 

where C is the event of selecting a colour-blind person and F is the event of 

selecting a female. 

Notice that in Example 8.15, we used the frequency rather than the probability. 

However, these are equivalent since dividing by n(U) will transform the 

frequency into a probability.



n(CNF) 

WCNE) _ nU) _PCNAP) _ 
n(F) n(F) P(F) 

  

Example 8.16 

A national airline is known for its punctuality. The probability that a 

regularly scheduled flight departs on time is P(D) = 0.83, the probability 

that it arrives on time is P(A) = 0.92, and the probability that it both arrives 

and departs on time is P(A N D) = 0.78. Find the probability that a flight: 

(a) arrives on time given that it departed on time 

(b) departed on time given that it arrived on time. 

L 

Solution 

(a) The probability that a flight arrives on time given that it departed on 

  

time is 

Ay L 0 0 T Y 
P(D) : 

(b) The probability that a flight departed on time given that it arrived on 

time is 

PDNA) _ 078 
P(D|A)=————=——=10.85 
2l P(A) 092 

Independence 

Two events are independent if learning that one occurred does not affect the 

chance that the other occurred. That is, if P(A|B) = P(A), and vice versa. 

If we apply this definition to the general multiplication rule, then 

P(A N B) = P(A|B) X P(B) = P(4) X P(B) 

which is the multiplication rule for independent events we studied earlier. 

These results give us some helpful tools for checking the independence 

of events. 

Two events are independent if and only if either P(A N B) = P(A) X P(B) or 

P(A|B) = P(A). Otherwise, the events are dependent. 

Example 8.17 

Take another look at Example 8.16. Are the events of arriving on time (A) 

and departing on time (D) independent? 
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Blood (0.40) u 

Both 
0.04 Breath (0.81)     

Figure 8.17 Venn diagram for 
the solution to Example 8.18 
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Solution 

We can answer this question in two different ways. 

Method 1: We are told that P(A) = 0.92, and we found that P(A|D) = 0.94. 

Since the two values are not the same, then we can say that the two events 

are not independent. 

Method 2: P(A N D) = 0.78 and 

P(A) X P(D) = 0.92 X 0.83 = 0.76 # P(A N D). 
Again we can say the events are not independent. 

Ifa doctor suspects that a patient is lactose intolerant, they might give the 

patient a breath test, or a blood test, or both in order to make a diagnosis. 

A study found the following results in a particular country: 81% of the 

patients suspected to be lactose intolerant were given a breath test, 40% a 

blood test, and 25% both tests. 

(a) What is the probability that a patient suspected to be lactose intolerant is 

given: 

(i) atleast one test (i) exactly one test (iii) no test? 

(b) Are ‘giving the patient a breath test’ and ‘giving the patient a blood test’ 

independent? 

L e e 

Solution 

A Venn diagram can help explain the solution. 

(a) (i) The probability that a patient receives a test means that they receive 

either a blood test, or a breath test, or both tests. This probability 

can be calculated directly from the diagram or by applying the 

addition rule. 

The diagram shows that if 81% receive the breath test and 25% are 

also given the blood test, then the remaining 56% do not receive 

ablood test. Similarly 15% of the blood test receivers do not get a 

breath test. So, the probability of receiving a test is 

0:56:0:255H01151=10.967 

Alternatively, if we apply the addition rule: 

P(at least one test) = P(breath) + P(blood) — P(both) 

= 0.81 + 0.40 — 0.25 = 0.96 

(ii) To receive exactly one test is to receive a blood test or a breath test, 

but not both. From the Venn diagram it is clear that this probability 

5 ONSER0I561=10171%



Alternatively, since we know that the union of the two events still 

contains the intersection, we can subtract the probability of the 

intersection from that of the union. That is, 0.96 — 0.25 = 0.71. 

(iii) To receive no test is the complement of receiving at least one test. 

Hence, P(no test) = 1 — P(at least one test) = 1 — 0.96 = 0.04. 

(b) To check for independence, we can use either of the two methods we 

tried before. 

Since all the necessary probabilities are given, we can use the product rule: 

P(both tests) = P(breath) X P(blood) = 0.81 X 0.40 = 0.324, but 

P(both tests) = 0.25. Therefore, the events of receiving a breath and a 

blood test are not independent. 

Example 8.19 

Jane and Kate are long-time friends and frequently play tennis together. 

‘When Jane serves first, she wins 60% of the time. The same pattern is true 

for Kate. They alternate the serve. They usually play for a prize, which is a 

chocolate bar. The first one who loses on her serve has to buy the chocolate. 

Jane serves first. 

(a) Find the probability that Jane pays on her second serve. 

(b) Find the probability that Jane eventually pays for the chocolate. 

(c) Find the probability that Kate pays for the chocolate. 

  

Solution 

A tree diagram can help in < ]W< 

understanding this problem. w{ 
Let JW stand for Jane winning 0.6 ]W< 

her serve and JL for Jane losing her serve KW< 

and hence paying. KW and KL are defined similarly. 

(a) For Jane to pay on her second serve, she should win her first serve. 

Kate must also win her first serve, and then Jane loses her second serve. 

See diagram above. The probability this happens is 

P(JW) - P(KW) - P(JL) = 0.6 X 0.6 X 0.4 = 0.4 (0.6)* = 0.144 

(b) For Jane to pay, she needs to be the first one to lose on her serve. 

This means, she loses on her first serve or the second or the third, and 

50 on. So, the probability that she pays is 

P(Jane pays) = P(JL) + P(JW) - P(KW) - P(L) + 

P(W) - P(KW) - PUW) - P(KW) - P(JL) + - 
=04+ 04-(0.6+ 0.4-(0.6) + - 
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;w< < 

This appears to be the sum of an infinite geometric series with (0.6)? as 

common ratio, hence 

0.4 
P(Jane pays) = 0.4 + 0.4 - (0.6)> + 0.4 - (0.6)* + - = w = 0.625 

  

(c) P(Kate pays) = 1 — P(Jane pays) = 1 — 0.625 = 0.375 

Alternatively, for Kate to pay she needs to lose on her first serve, 

(0.6 X 0.4), or on her second, third, etc., 

P(Kate pays) = 0.6 X 0.4 + 0.6 X (0.6)> X 0.4 + 0.6 X (0.6)* X 0.4 + - 

_ 0.6%04 
1— (062 

=10:375 

Example 8.20 
  

  

A target for a dart game is shown 

here. The radius of the board is 

40cm and the board is divided into 

three regions as shown. You score 

2 points if you hit the centre, 

1 point for the middle region, and 

0 points the outer region. 

(a) What is the probability of scoring 

a1 in one attempt? 

  

(b) What is the probability of scoring 

a2 in one attempt? 

(c) How many attempts are necessary so that the probability of scoring at 

least one 2 is at least 50%? 

  

Solution 

_ m202—10) _ 3 
@PO=""" 16 

m102) _ 1 
() PQ) = a0y 16



(c) Let the number of attempts be 7. 

P(at least one 2) = 1 — P(no 2 in 7 attempts) = 1 — (}g) 

For this probability to be at least 50%, then 

(1) 505 e (15 < i (16) 0.5 & I3 0.5 

  

= n=10.74 

So 11 attempts are required. 

i Events A and B are given such that P(A) = Z, P(AUB = % and 

PANB = Fmd P(B). 

. Events A and B are given such that P(A) = E’ P(AUB = 10 a.nd 

P(A N B) = 2. Find: 

(a) P(B) (b) P(B' N A) (c) P(BN A") 

(d) P(B' N A") (e) P(B|A") 

. Events A and B are given such that P(A) = 3 P(A UB) = 9 4 and 

P(B) = 5. Show that A and B are neither mdependent nor mutua]ly 

exclusive. 

. Events A and B are given such that P(A) = 3, andPA NB) = 1—30 

If A and B are independent, find P(A U B). 

. Driving tests in a certain city are not easy to pass the first time. After 

going through training, the percentage of new drivers passing the test 

the first time is 60%. If a driver fails the first test, the chance of passing 

it on a second try, two weeks later, is 75%. Otherwise, the driver has 

to retrain and take the test after 6 months. Find the probability that a 

randomly chosen new driver will pass the test without having to retrain. 

. People with O~ blood type are universal donors. In other words, they 

can donate blood to individuals with any blood type. Only 8% of people 

have O™ blood. 

(a) One person randomly arrives to give blood. What is the probability 

that the person does not have O~ blood? 
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(b) Two people arrive independently to give blood. Find the probability 

that: 

(i) both have O~ blood 

(ii) at least one of them has O~ blood 

(iii) only one of them has O~ blood. 

(c) Eight people arrive randomly to give blood. What is the probability 

that at least one of them has O~ blood? 

7. PINs for cell phones usually consist of four digits that are not necessarily 

different. 

(a) How many possible PINs are there? 

(b) What is the probability that a PIN chosen at random does not start 

with a zero? 

(c) What is the probability that a PIN contains at least one zero? 

(d) Given a PIN with at least one zero, what is the probability that it 

starts with a zero? 

8. An urn contains six red balls and two blue balls. We make two draws 

and each time we put the ball back after marking its colour. 

(a) What is the probability that at least one of the balls is red? 

(b) Given that at least one is red, what is the probability that the second 

one is red? 

(c) Given that at least one is red, what is the probability that the second 

one is blue? 

9. Two dice are rolled and the numbers on the top faces are observed. 

(a) List the elements of the sample space. 

(b) Let x represent the sum of the numbers observed. Copy and 

complete the following table. 
  

X 2 4 Bl 6 7 8 9 10 11 12 
  

                          

3 

P(x) & 
  

(c) (i) What is the probability that at least one dice shows a 62 

(ii) What is the probability that the sum is at most 102 

(iii) What is the probability that a dice shows 4 or the sum is 10? 

(iv) Given that the sum is 10, what is the probability that one of the 

diceis a 4? 

10. A school has the following numbers categorised by class and gender: 
  

Grade 9 Grade10 | Gradell | Gradel2 Total 

Male 180 170 230 220 800 

Female 200 130 190 180 700 
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12. 

5 

(a) What is the probability that a student chosen at random will be a 

female? 

(b) What is the probability that a student chosen at random is a male in 

grade 122 

(c) What is the probability that a female student chosen at random is a 

grade 12 student? 

(d) What is the probability that a student chosen at random is a grade 

12 or female student? 

(e) What is the probability that a grade 12 student chosen at random is 

a male? 

(f) Are gender and grade independent of each other? Explain. 

Some young people do not like to wear glasses. A survey considered a 

large number of teenaged students as to whether they needed glasses to 

correct their vision and whether they used the glasses when they needed 

to. Here are the results. 
  

  

  

        

Used glasses when needed 

Yes No 

Need glasses for Yes 0.41 0.15 

correct vision R 0.04 0.40       
(a) Find the probability that a randomly chosen young person from this 

group 

(i) is judged to need glasses 

(ii) needs to use glasses but does not use them. 

(b) From those who are judged to need glasses, what is the probability 

that the student does not use them? 

(c) Are the events of using and needing glasses independent? 

Copy this table and fill in the missing entries. 
  

P(4) | P(B) |Conditions forevents | P(ANB) | PAUB) | P(4|B) 
Aand B 
  

03 | 04 [Mutuallyexclusive 

03 | 04 |Independent 

01 | 05 0.6 

02 | 05 0.1 

  

  

                  
In a large graduating class, there are 100 students taking the IB 

examination. 40 students are doing Economics SL, 30 students are doing 

Physics SL, and 12 are doing both. 

(a) A student is chosen at random. Find the probability that this student 

is doing Physics, given that they are doing Economics SL. 

(b) Are doing Physics and Economics SL independent events? 
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14. 

116} 

16. 

173 

18. 

19. 

A market chain in Germany accepts only Mastercard and Visa. 

It estimates that 21% of its customers use Mastercard, 57% use Visa, 

and 13% use both cards. 

(a) What is the probability that a customer will have an acceptable 

credit card? 

(b) What proportion of their customers has neither card? 

() What proportion of their customers has exactly one acceptable card? 

132 of 300 patients at a hospital are signed up for a special exercise 

programme that consists of a swimming class and an aerobics class. 

Each of these 132 patients takes at least one of the two classes. There are 

78 patients in the swimming class and 84 in the aerobics class. Find the 

probability that a randomly chosen patient at this hospital is: 

(a) not in the exercise programme 

(b) enrolled in both classes. 

An ordinary unbiased six-sided dice is rolled three times. Find the 

probability of rolling 

(a) three twos 

(b) at least one two 

(c) exactly one two. 

An athlete is shooting arrows at a target. She has a record of hitting the 

centre 30% of the time. Find the probability that she hits the centre: 

(a) with her second shot but not with her first 

(b) exactly once with her first three shots 

(c) atleast once with her first three shots. 

Two unbiased dodecahedral (12 faces) dice, with faces numbered 

1 to 12, are thrown. The scores are the numbers on the top side. 

Find the probability that: 

(a) atleast one 12 shows 

(b) the total score is exactly 12 

(c) there is a total score of at least 20 

(d) atotal score of at least 20 is achieved, given that a 12 shows on at least 

one dice. 

The two dodecahedral dice in question 18 are thrown again. Two events 

are defined: 

A = {at least one of the numbers is a 10} 

B = {the sum of the numbers is at most 15} 

Describe each event, list its elements, and find the probability. 

(@) ANB (b) AUB (c) ANB (d) AuB’ 

(e) AUB (f) ANB (g) ANBIU(A'NB)
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Three fair six-sided dice are rolled. 

(a) Find the probability that a triple is rolled. 

(b) Given that the roll is a sum of 8 or less, find the probability that a 

triple is rolled. 

(c) Find the probability that at least one six appears. 

(d) Given that the dice all have different numbers, find the probability 

that at least one six appears. 

You are given four coins: one has two heads, one has two tails, and the 

other two are normal. You choose a coin at random and flip it. The result 

is tails. What is the probability that the opposite face is heads? 

George and Kassanthra play a game in which they roll two unbiased 

six-sided dice. The first one who rolls a sum of 6 wins. Kassanthra rolls 

the dice first. 

(a) What is the probability that Kassanthra wins on her second roll? 

(b) What is the probability that George wins on his second roll? 

(c) What is the probability that Kassanthra wins? 

A small repair shop for washing machines has the following demand for 

their services: 

On 10% of the days, they have no requests; they have one request on 

30% of the days, and two requests 50% of the time. 

(a) On Monday, what is the chance of more than two requests? 

(b) What is the chance of no requests for a whole week (of 5 days)? 

  

  

  

. A construction company is bidding on three projects: B,, B,, and 3 | B B 
y 2 5 

B,. From previous experience they have the following probabilities 3 011 | 0.05 

of winning the bids: P(B;) = 0.22, P(B,) = 0.25, and P(B;) = 0.28. Bl " o0 
, . . 
          

Winning the bids are not independent of each other. The joint 
B, | 005007     probabilities are given in Table 8.5. Also, P(B, N B, N B;) = 0.01. 

Find the following probabilities: 

(a) P(B; UB,) (b) P(BiN By) (c) P(B1N By UB; 
(d) P(B{ N B,N By) (e) P(B,N By|By) (£) P(B,UBs|B,) 

Table 8.5 Data for question 24 

Circuit boards used in electronic equipment go through more than 

one inspection. The process of finding faults in the solder joints on 

these boards is highly subjective and prone to disagreements among 

inspectors. In a batch of 20 000 joints, Nick found 1448 faulty joints 

while David found 1502 faulty ones. All in all, between both inspectors, 

2390 joints were judged to be faulty. Find the probability that a 

randomly chosen joint is: 

(a) judged to be faulty by neither of the two inspectors 

(b) judged to be defective by David but not Nick. 
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Chapter 8 practice questions 

1. Two independent events A and B are given such that: 

P(A) = k, P(B) = k + 0.3and P(A N B) = 0.18. 
(a) Find k. (b) Find P(A U B) (c) P(A'|B") 

2. Many airport authorities test prospective employees for drug use. This 
procedure has plenty of opponents who claim that this procedure creates 

difficulties for some people and that it prevents others from getting these 

jobs even if they were not drug users. The claim depends on the fact that 
these tests are not 100% accurate. To test this claim, assume that a test is 

989% accurate in that it correctly identifies a person as a user or non-user 
98% of the time. Each job applicant takes this test twice. The tests are 

done at separate times and are designed to be independent of each other. 
‘What is the probability that: 

(a) anon-user fails both tests 

(b) a drug user is detected (i.e., they fail at least one test) 

(c) adrug user passes both tests? 

3. Communications satellites are difficult to repair when something goes 
wrong. One satellite uses solar energy and it has two systems that 

provide electricity. The main system has a probability of failure of 0.002. 
It has a backup system that works independently of the main one and 

has a failure rate of 0.01. What is the probability that the systems do not 
fail at the same time? 

4. In a group of 200 students taking the IB examination, 120 take Spanish, 

60 take French, and 10 take both. 

(a) Ifa student is selected at random, what is the probability that the 
student: 

(i) takes either French or Spanish 

(ii) takes either French or Spanish, but not both 

(iii) does not take either French or Spanish? 

(b) Given that a student takes Spanish, what is the chance that the 

student takes French? 

In a factory producing computer disk drives, there are three machines 
that work independently to produce one of the components. In any 

production process, machines are not 100% fault free. The production 
after one batch from each machine is listed in the table. 
  

  

  

  

Defective Non-defective 

Machine I 6 120 

Machine IT 4 80 

Machine ITT 10 150           
(a) A component is chosen at random from the batches. Find the 

probability that the chosen component is:



(i) from machine I 

(ii) a defective component from machine IT 

(iii) non-defective or from machine I 

(iv) from machine I given that it is defective. 

(b) Is the quality of the component dependent on the machine used? 

. At a school, the students are organising a lottery to raise money for their 
community. The lottery tickets that they have consist of small coloured 
envelopes containing a small note. The note either says: ‘You won a 

prize!” or ‘Sorry, try another ticket. The envelopes have several colours. 
They have 70 red envelopes that contain two prizes, and the rest (130 
envelopes) contain four other prizes. 

(a) You want to help this class and you buy a ticket hoping that it does 
not have a prize. You pick your ticket at random by closing your 
eyes. What is the probability that your ticket does not have a prize? 

(b) You picked a red envelope. What is the probability that you did not 
win a prize? 

. Two events A and B have the conditions: 

P(AIB) = 0.30, P(BIA) =0.60, P(A N B)=0.18. 

(a) Find P(B) 

(b) Are A and B independent? Explain. 

() Find P(BN A") 

. In several ski resorts in Austria and Switzerland, the local sports 

authorities use senior high school students as ski instructors to help 

deal with the surge in demand during vacations. However, to become an 

instructor, you have to pass a test and must be a senior at your school. 

Here are the results of a survey of 120 students in a Swiss school who 

are training to become instructors. In this group, there are 70 boys and 

50 girls. 74 students took the test, 32 boys and 16 girls passed the test, 

the rest, including 12 girls, failed the test. 10 of the students, including 

6 girls, were too young to take the ski test. 

(a) Copy and complete the table. 
  

  

  

  

        

Boys Girls 
Passed the ski test 32 16 
Failed the ski test 12 
Training, but did not take the test yet 
Too young to take the test     

(b) Find the probability that: 

(i) astudent chosen at random, has taken the test 

(ii) a girl chosen at random has taken the test 

(iii) a randomly chosen boy and randomly chosen girl have both 

passed the ski test. 
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el 9. Two events A and B are such that P(A) = e 

Find the probability that: 

(a) both events will happen 

P(®B) =3, and P(AIB) = L. 

(b) only one of the events will happen 

(c) neither event will happen. 

10. Martina plays tennis. When she serves, she has 60% chance of 

succeeding with her first serve and continuing the game. She has 95% 

chance on the second serve. Of course, if both serves are not successful, 

she loses the point. 

(a) Find the probability that she misses both serves. 

If Martina succeeds with the first serve, her probability of gaining the 

point against Steffy is 75%; if she is only successful with the second 

serve, the probability for that point goes down to 50%. 

(b) Find the probability that Martina wins a point against Steffy. 

11. For events Xand Y, P(X) = 0.6, P(Y) = 0.8 and P(X U Y) = 1. 
Find: 

(@) PXNY) 

(b) PX' U Y'). 

12. In a survey, 100 managers were asked ‘Do you prefer to watch the news 

or play sport?’ Of the 46 men in the survey, 33 said they would choose 

sport, while 29 women made this choice. 

  

  

  

Men Women Total 

The news 

Sport 33 29 

Total 6 100             
Find the probability that: 

(a) a manager selected at random prefers to watch the news 

(b) a manager prefers to watch the news, given that the manager is a man. 

  

      

Uy B 13. The Venn diagram shows a sample space U and events X and Y. 

n(U) = 36, n(X) = 11, n(Y) = 6and n(X U Y)' = 21. 

(a) Copy the diagram and shade the region (X U Y)". 

(b) Find: 

Figure 8.18 Venn diagram for () nXNY) 
question 13 

(ii) PX N Y). 

(c) Are events X and Y mutually exclusive? Explain why or why not. 
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In a survey of 200 people, 90 of whom were female, it was found that 

60 people were unemployed, including 20 males. 

(a) Copy and complete the table, using this information. 
  

  

  

  

Males Females Totals 
Unemployed 
Employed 

Totals 200             
(b) Ifa person is selected at random from this group of 200, find the 

probability that this person is: 

(i) an unemployed female 

(ii) a male, given that the person is employed. 

The Venn diagram shows the universal set U and the subsets M and N. 

(a) Copy the diagram and shade the area which represents the set M N N'. 

n(U) = 100, n(M) = 30, n(N) = 50, and n(M U N) = 65. 

(b) Find n(N N M). 

(c) An element is selected at random from U. What is the probability 

that this element is in N N M'? 

Two fair dice are thrown and the number showing on each is noted. 

Find the probability that: 

(a) the sum of the numbers is less than or equal to 7 

(b) at least one dice shows a 3 

(c) atleast one dice shows a 3, given that the sum is less than 8. 

For events A and B, the probabilities are P(A) = i P(B)= % 

Calculate the value of P(A N B) if: 

G 
(a) P(AUB) = i 

(b) events A and B are independent. 

In a school of 88 boys, 32 study Economics (E), 28 study History (H), 

and 39 do not study either subject. This information is represented in 

the Venn diagram. 

(a) Calculate the values a, b, and c. 

(b) A student is selected at random. 

(i) Calculate the probability that he studies both Economics and 

history. 

(ii) Given that he studies Economics, calculate the probability that 

he does not study History. 

(c) A group of three students is selected at random from the school. 

(i) Calculate the probability that none of these students studies 

Economics. 

(ii) Calculate the probability that at least one of these students 

studies Economics. 

U   

M N 

      

Figure 8.19 Venn diagram for 
question 15 

  

  

E(32) H(28) 

  

  

Figure 8.20 Venn diagram for 
question 18 
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19. Sophia is a student at an IB school. 

The probability that she will be woken by her alarm clock is % 

If she is woken by her alarm clock, the probability she will be late for 

schoolis 1. 

If she is not woken by her alarm clock, the probability she will be late for 

schoolis 2. 
) 

Let W be the event ‘Sophia is woken by her alarm clock’ 

Let L be the event ‘Sophia is late for school. 

(a) Copy and complete the tree diagram. i 

(b) Calculate the probability that 

Sophia will be late for school. 

(c) Given that Sophia is late for = 

school, what is the probability 

that she was woken by her 

alarm clock? = 
w 

I 

20. Two unbiased six-sided dice of different colours are rolled. 

Find: 

(a) P(the same number appears on both dice) 

(b) P(the sum of the numbers is 10) 

(c) P(the sum of the numbers is 10 or the same number appears on 

both dice). 

21. The table below shows the subjects 

1 

  

Year 1 | Year 2 | Totals 
  

  

  

          

studied by 210 students at a college. g 
History | 50 | 35 | 85 

(a) A student from the college is 
Science 15 30 45 

selected at random. 

Let A be the event the student Lt 2 35 80 

studies art. Let B be the event Totals 110 100 | 210     
the student is in Year 2. 

(i) Find P(A). 

(ii) Find the probability that the student is a Year 2 art student. 

(iii) Are the events A and B independent? Justify your answer. 

(b) Given that a history student is selected at random, calculate the 

probability that the student is in Year 1. 

() Two students are selected at random from the college. Calculate the 

probability that one student is in Year 1 and the other in Year 2. 
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22. A new blood test has been shown to be effective in the early detection of 

a disease. The probability that the blood test correctly identifies someone 

with this disease is 0.99, and the probability that the blood test correctly 

identifies someone without the disease is 0.95. The incidence of this 

disease in the general population is 0.0001. 

A doctor administered the blood test to a patient and the test result 

indicated that this patient had the disease. What is the probability that 

the patient has the disease? 

23. Asha walks to school every day. If it is not raining, the probability that 

she is late is 0.2. If it is raining, the probability that she is late is 2 

The probability that it rains on any particular day is 0.25. 

Last Friday, Asha was late. Find the probability that it was raining on 

that day. 

24. The probability that Marco leaves his umbrella in any place he visits is % 

After visiting two friends in succession, he finds he has left his umbrella 

at one of his friends’ places. What is the probability that he left his 

umbrella at the second friend’s place? 

25. Two girls, Catherine and Lucy, play a game in which they take turns in 

throwing an unbiased six-sided dice. The first one to throw a 5 wins the 

game. Catherine is the first to throw. 

(a) Find the probability that: 

(i) Lucy wins on her first throw 

(ii) Catherine wins on her second throw 

(iii) Catherine wins on her nth throw. 

(b) Let p be the probability that Catherine wins the game. 

Show that p = % o %p. 

(c) Find the probability that Lucy wins the game. 

(d) Suppose that they play the game six times. Find the probability that 

Catherine wins more games than Lucy. 

26. The chance of rain on any day during the summer in Schaditz, 

Austria, is 0.2. When it rains, the probability that the daily maximum 

temperature exceeds 25°C is 0.3, while it is 0.6 when it does not rain. 

Given that the maximum daily temperature exceeded 25°C on a certain 

summer’s day, find the probability that it rained on that day. 

27. The independent events A and B are such that P(A) = 0.4 and 

P(A U B) = 0.88 Find: 

(a) P(B) 
(b) the probability that either A occurs, or B occurs, but not both. 
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28. 

29. 

30. 

Roberto travels to school in a neighbouring town by bus every weekday 

from Monday to Friday. The probability that he catches the 08:00 bus on 

Friday is 0.66. The probability that he catches the 08:00 bus on any other 

weekday is 0.75. A weekday is chosen at random. 

(a) Find the probability that he catches the 08:00 bus on that day. 

(b) Given that he catches the 08:00 bus on that day, find the probability 

that the chosen day is Friday. 

Antonio and Sarah play a game by throwing a dice in turn. If the dice 

shows a 3, 4, 5, or 6, the player who threw the dice wins the game. If the 

dice shows a 1 or 2, the other player has the next throw. Antonio plays 

first, and the game continues until there is a winner. 

(a) Write down the probability that Antonio wins on his first throw. 

(b) Calculate the probability that Sarah wins on her first throw. 

(c) Calculate the probability that Antonio wins the game. 

Six balls numbered 1, 2, 2, 3, 3, 3 are placed in a bag. Balls are taken one 

at a time from the bag at random and the number noted. Throughout 

the question a ball is always replaced before the next ball is taken. 

(a) A single ball is taken from the bag. Let X denote the value shown on 

the ball. Find E(X). 

(b) Three balls are taken from the bag. Find the probability that: 

(i) the total of the three numbers is 5 

(ii) the median of the three numbers is 1. 

(c) Ten balls are taken from the bag. Find the probability that fewer 

than four of the balls are numbered 2. 

(d) Find the fewest number of balls that must be taken from the bag 

for the probability of taking out at least one ball numbered 2 to be 

greater than 0.95. 

(e) Another bag also contains balls numbered 1, 2, or 3. 

Eight balls are to be taken from this bag at random. It is calculated 

that the expected number of balls numbered 1 is 4.8, and the 

variance of the number of balls numbered 2 is 1.5. 

Find the fewest possible number of balls numbered 3 in this bag.
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Differential calculus 1 

Learning objectives 

By the end of this chapter, you should be familiar with... 

« the concept of a limit 

o the derivative as a gradient (slope) function and as a rate of change 

« finding the derivative of polynomial functions 

« the derivatives of sinx and cosx 

o the relationship between the graphs of a function, its first derivative and 

its second derivative 

« identifying where a function is increasing or decreasing 

« finding and testing for maximum, minimum, and inflection points 

« kinematic problems involving displacement, velocity, and acceleration 

« finding the equation of a tangent or a normal at a given point. 

Figure 9.1 shows a distance-time graph for a 50-kilometre bicycle ride that 

included going up and then down a steep hill. There are four time intervals 

labelled A, B, C, and D. The cyclistss speed is the lowest in interval B. It is the 

highest in interval C. The cyclist’s speed is about the same in intervals A and 

D. The shape of the distance-time graph gives information about the cyclist’s 

speed during a certain interval and at a particular moment (instant) during 

the ride. 
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Figure 9.1 A distance-time graph for a cyclist 

Calculus is the branch of mathematics that was developed to analyse and model 

changing quantities — such as velocity and acceleration. We can also apply it to 

study change in the context of slope, area, volume, and a wide range of other 

concepts that allow us to model real-life phenomena more precisely. Although 

mathematical techniques that we have previously studied dealt with many 

of these concepts, the ability to model change was restricted. For example, 

consider the curve in Figure 9.2 that illustrates the motion of an object by 

indicating the distance (y metres) travelled after a certain amount of time (¢ 

seconds). Without calculus, we can only compute the average velocity between 

two different times (Figure 9.3). With calculus, we can find the velocity of an 

object at a particular instant, known as its instantaneous velocity (Figure 9.4). 

The starting point for our study of calculus is the idea of a limit.
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Figure 9.2 Distance-time graph for an objects motion Figure 9.3 Average velocity from a distance-time graph 
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Figure 9.4 Instantaneous velocity from a distance-time graph 

Limits of functions 

  

A limit is one of the ideas that distinguishes calculus from algebra, geometry, and 

trigonometry. The notion of a limit is a fundamental concept of calculus. Limits 

are not new to us. We often use the idea of a limit in many non-mathematical 

situations. We have already used mathematical limits in this book - finding the 

sum of an infinite geometric series and computing the irrational number e. 

In Chapter 3, we established that if the sequence of partial sums for an infinite 

series converges to a finite number L, we say that the infinite series has a 

sum of L. We used limits to confirm algebraically that the infinite series 

2+ 1+ % + i + é + -+ has a sum of 4. As part of the algebra for this, 

we reasoned that as the value of 1 increases in the positive direction without 
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The notation lim_fx) 
indicates the limit of the 
value of the function fas 

x takes on greater and 
greater positive values 

(also written simply 
as lim fiv),and lim_flv 

indicates the limit of the 
value of the function fas 

xtakes on greater and 
greater (in magnitude) 

negative values. 
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n 
bound (1 — +00) the expression (5) converges to zero - in other words, 

" 
the limit of (%) as n goes to positive infinity is zero. This result is expressed 

" 
using limit notation as lim (%) = 0. It is beyond the requirements of this 

oo 
course to establish a precise formal definition of a limit, but a closer look at 

justifying a couple of limits can lead us to an informal understanding of the 

concept of a limit. 

Example 9. 

Evaluate lim (%) by using your GDC to analyse the behaviour of the 

function flx) = (%) for large positive x values. 

  

  

  

  

      

  

  
    

Solution 

a) [Plotl Plotz plots 
AR 

Y= 
\Y3= 
\Ya= 
\Ys5= 
Y= 
~Y7= 

X Y1 X 

P 15 Z 
2 .25 9 
3 125 10 
4 0625 11 
5 03125 12 
6 01563 13 

X=0 ¥1=1.22070313e-4       
  

The GDC screen images show the graph and table of values for y = (%) 

The larger the value of x, the closer y gets to zero. Although there is no value 

of x that will produce a value of y equal to zero, we can get as close to zero as 

we wish. For example, if we wish to produce a value of y within 0.001 
B e 

of zero, then we could choose x = 10 and y = (E) =102 

And if we want a result within 0.0000001 of zero, then we could choose 

e 1 =24andy= (_) = 
S 5 B 7S 
Therefore, we can conclude that lim (l) %\ 

~0.00097656 

~20.000000059605 and so on. 

n 
0 

‘Theline y = cis a horizontal asymptote of the graph of a function y = fix) if cither 
lim fiv =cor lim fi=c. 

For example, the line y = 0 (x-axis) is a horizontal asymptote of the graph of 
x n 

y= (%) because Jim, (%) 0.



In calculus, we are interested in limits of functions of real numbers. Although 

many of the limits of functions that we will encounter can only be approached 

and not actually reached (as in Example 9.1), this is not always the case. 

For example, if asked to evaluate the limit of the function fix) = % = lsasix 

approaches 6, then we evaluate the function for x = 6. Since fi6) = 2, then 

lim(£ = l) = 2. However, it is more common that we are unable to evaluate 
26 
the limit of f(x) as x approaches some number ¢ because fic) does not exist. 

Example 

Find the value of the following two limits by using your GDC to analyse the 

graph of the relevant function. 

NG| G = lim $IDX b) lim S95% i Bla=a— 
e 

Solution 

(a) We are not able to evaluate this limit by direct substitution because 

when x = 0, ST %and is therefore undefined. We use our GDC 
& 

  

  

      

(in radian mode) to analyse the behaviour of the function y = % 

as x approaches zero from the right side and the left side. 

FIotl Flotz_Flo ¥1(<0.05) ¥1(<0.002) 
S sin(x) /X £9995833854 19999993333 

¥(0.63) ¥(0.002) 
.9995833854 +9999993333 

-Ans 1-Ans 
4.166145864:-4 6.66666655:~7           

Although there is no point on the graph of y = % corresponding to 

x = 0, itis clear from the graph that as x approaches zero (from either 

direction), the value of % converges to 1. 

We can get the value of % arbitrarily close to 1 depending on our 

choice of x (see GDC images above). If we want % to be within 

sin.0.05 
005~ 0.999583 and 0.001 of 1, we choose x = *0.05 giving 
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‘The analysis and result 
for Example 9.2 illustrates 

why itis preferred (and 
often necessary) thatin 

calculus, the argument of a 
trigonometric function be 
in radian measure rather 

than degrees. 
Thelimit of T2 as 

tends to e is not equal to 1 
i xis in degrees. 

Although we can 
describe the behaviour of 

the function 
1 - 

= — by writi 7= by writing 

- | 

it 
not mean that we 

consider oo to represent 

anumber - it does not. 
‘This notation s simply 

a convenient way to 
indicate in what manner 

the limit does not exist. 

= 00, this does 

Thelinex = cisa 
vertical asymptote of the 

graph ofa function 
y = funif either 
lim fix) = oo or 

lim fix) = —eo. 

For example, the line 
x =0 (y-axis) isa 

    

vertical asymptote of the 
raph ofy = 1 graphofy = 

because lim 
o 
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1 —0.999583 = 0.000417 < 0.001, and if we want % to be within 

0.000001 of 1, then we choose x = *0.002 giving % 

~0.9999993333 and 1 — 0.9999993333 = 0.0000006667 < 0.000001 

and so on. Therefore, Lim 3% — ), X0 X 

& _ sinx Py = 5 ENcOsY Sl 
(b) Aswith y = ==, substituting x = 0 into the function y = =—="—— 

cosx — 
produces g The graph of y = L shows that the function 

approaches 0 as x tends to 0. 

A table produced on a GDC also shows that the function approaches 

zero from both directions. 
  Plotl Plotz Plots 
\Y1E (cos(X)-1)/X /_\   

      

    
VV 

      

  

        

‘Therefore, lim% =0 
x—0 

Functions do not necessarily converge to a finite value at every point. 

It is possible that a limit does not exist. 

Example 9.3 

Find liny L, i it exist. 
1 

Solution 

1 
As x approaches zero, the value of 7 

becomes increasingly large in the positive 

direction. The graph of the function below 

seems to indicate that we can make the 

values of y = iz arbitrarily large by choosing 
b 

  

x close enough to zero. Therefore, the values 

ofy = Lz do not approach a finite number, so lim-L does not exist. 
5 X0 X 

If fix) becomes arbitrarily close to a unique finite number L as x approaches ¢ from cither side, 
then the limit of i) as x approaches c s L. The notation for indicating this is lim fix) = L. 
‘When a function flx) becomes arbitrarily close to a finite number L, we say that fix) converges to L.



B 

2 
will havea horizontal asymptote of y = 3. Tn other 

  

Recall from Section 2.2 the end behaviour of rational functions. Since lim 
324501 
EEel 

words, as x — +00 0r x — — o0, the limit of the function values approach % 

= o] 

the rational function y = 

y 

< Il e o 
w 

_3+se—1 
. Y= T+t   

A rational function approaching a horizontal asymptote as x — +00 or x — — 00 

53 

  

. Evaluate each limit. Confirm your result by means of a table or graph on 

your GDC. 

. 4x+3 e ’ 
(@) Jim =~ () lim(3x? + 2hx + ) 

Do )] L x2—9 

© === @ lim*=> 

. Investigate the limit (if it exists) of each expression as x — oo by evaluating 

the expression for the following values of x: 10, 50, 100, 1000, 10 000, and 

1000 000. Hence, make a conjecture for the value of each limit. 

. I cSSI6] @ m 22 ) m S I 322t     

. Use the graphing or table capabilities of your GDC to investigate the 
c 

value of the expression (1 aF %) as c increases without bound 

(i.e. ¢ — 00). Indicate the significance of the result. 

. If it is known that the line y = 3 is a horizontal asymptote for the 

function f{x), then state the value of each of the following two 
limits: lim fix) and lim_fix). 

If it is known that the line x = a is a vertical asymptote for the function 

g(x), and that g(x) > 0, then what conclusion can be made about lim g(x)? 

    

. State the equations of all horizontal and vertical asymptotes for the 

following functions. 

S -1 T (a) fio) = e (b) gtx) ) © heo=3—=;+b 
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Figure 9.5 Gradient ofa 
straight line 

‘The gradient (slope) of 
acurve ata point is the 
gradient of the line that 

is tangent to the curve at 
that point. 

‘The word curve can often 

‘mean the same as function, 
even if the function is 

linear. 
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The derivative of a function: basic 
rules and facts 

Tangent lines and the gradient (or slope) of a ¢ 

  

Any linear function can be written in the form y = mx + c. This is the 

gradient-intercept form for a linear equation where m is the gradient (or slope) 

of the graph and c is the y-coordinate of the point at which the graph intersects 

the y-axis (i.e. the y-intercept). The value of the gradient m, defined as 

2= n vertical change m= —   —— =——————— will be the same for any pair of points, 
X2~ %1 horizontal change 

(*¥1,y1) and (x5, y,), on the line. An essential characteristic of the graph of a linear 

function is that it has a constant gradient. This is not true for the graphs of 

non-linear functions. 

Consider a person walking up the side of a pitched roof as shown in Figure 9.5. At 

any point along the line segment PQ, the person is experiencing a gradient of % 

Now consider someone walking up the 

curve shown in Figure 9.6 that passes 

through the three points A, B, and C. 

As the person walks along the curve 

from A to C, they will experience a 

steadily increasing gradient. The gradient 

is continually changing from one point 

to the next along the curve. Therefore, 

it is incorrect to say that a non-linear 

function, whose graph is a curve, has 

a gradient - it has infinitely many 

gradients. We need a means to determine the gradient of a non-linear function at 

a specific point on its graph. 

    

  

Figure 9.6 Gradient of a curve 

Imagine if the gradient of the curve in Figure 9.6 stopped increasing (remained 

constant) after point B. From that point on, a person walking up the curve 

would move along a line with a gradient equal to the gradient of the curve at 

point B. This line, containing point D in the diagram, only touches the curve 

once, at point B. Line (BD) is tangent to the curve at point B. Therefore, finding 

the gradient of the line that is tangent to a curve at a certain point will give us 

the gradient of the curve at that point. 

Finding the gradient of a curve at a point - or better, finding a rule (function) 

that gives us the gradient at any point on the curve - is very useful information 

in many applications. The gradient of a line, or of a curve at a point, is a 

measure of how fast variable y is changing as variable x changes. The gradient 

represents the rate of change of y with respect to x. To find the gradient of a 

tangent, we first need to clarify what it means to say that a line is tangent to a 

curve at a point. Then we can establish a method to find the tangent at a point.



The three graphs in Figure 9.7 show different configurations of tangent lines. A 

tangent line may cross or intersect the graph at one or more points. 

For many functions, the graph has a 

tangent at every point. Informally, a 

function is said to be smooth if it has this 

property. Any linear function is certainly 

smooth, since the tangent at each point 

coincides with the original graph. However, 

some graphs are not smooth at every point. 

Consider the point (0, 0) on the graph of the 

function y = |x| (Figure 9.8). Zooming 

in on (0, 0) will always produce a V-shape rather than smoothing out to appear 

more and more linear. Therefore, there is no tangent to the graph at this point. 

  
Figure 9.8 y 

  

One way to find the tangent line of a graph at a particular point is to make 

a visual estimate. Figure 9.9 shows the distance-time graph for an object’s 

motion. The gradient at any point (t, y) on the curve will give us the rate of 

change of the distance y with respect to time t, in other words the object’s 

instantaneous velocity at time t. In the figure, an estimate of the tangent to the 

curve at (5, 3) has been drawn. Reading from the graph, the gradient 

appears to be fié— = % Or, in other words, the object has a velocity of 

approximately 0.667 m s~ ! at the instant when t = 5 seconds. 
ey 
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Figure 9.9 Estimating the gradient of a tangent 

A more precise method of finding tangent lines makes use of a secant line and 

a limit process. Suppose that fis any smooth function, so the tangent to its 

graph exists at all points. A secant line (or chord) is drawn through the point 

for which we are trying to find a tangent to fand a second point on the graph 

of f, as shown in Figure 9.10. If P is the point of tangency with coordinates 

(%, fx)), then choose a point Q to be a horizontal distance of h units away. 

Hence, the coordinates of point Q are (x + h,f(x + h)) and the gradient of the 
flx+h) = fx)  flx+h) - flo 

tline (PQ) is myee = ———~—— = secant line (PQ) is m, Gih—% M’ 

The right side of this equation is often referred to as a difference quotient. 

The numerator is the change in y, and the denominator h is the change in x. 

The limit process of achieving better and better approximations for the gradient 

of the tangent at P consists of finding the gradient of the secant (PQ) as Q 

      

  
Figure 9.7 Different 
configurations of lines tangent 
toa curve
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moves ever closer to P, as shown in the graphs in Figure 9.11 and Figure 9.12. 

In doing so, the value of h will approach zero. 

By evaluating a limit of the gradient of the secant lines as h approaches zero, 

we can find the exact gradient of the tangent line at P(x, f(x)) (Figure 9.13). 

y fx) v fix) 

    

    

QG+ hy fix + h) 

: QG+ h, fix + h) 
S+ ) = fix) 

  

o+ B = o) 

  

0 X 0 X 

Figure 9.10 Secant line through points Pand Q Figure 9.11 The horizontal distance / gets 
smaller as point Q moves closer to P 

y flx) y fx) 

       Qx + h, flx + h)), 

St b =) Pl f2), 
— - @ 

0| x [ x     

  

Figure 9.12 As h gets sma 
becomes a better approximation of the tangent 

to the graph of fat P 

er, the secant line Figure 9.13 Tangent to fat point P 

Let’s apply this limit process to a specific curve. We will see that the gradient 

of a line through two points on a curve (a secant line) becomes a better and 

better approximation for the gradient of the tangent to the curve at a point. 

This occurs as one of the points that the secant line passes through moves 

closer and closer to the other (fixed) intersection point where we are trying to 

approximate the gradient of the tangent. 

Consider the graph of the curve fix) = x? + 1. We wish to calculate the gradient 

of the tangent to the curve at the point (1, 2). Let’s compute the gradient of three 

secant lines that pass through (1, 2) and points on the curve where x = 7%, 

then x = 0, and then x = % 

Given fx) = x? + 1, we can show that f(—%) = %‘ £0)=1and f(%) - —Z—. 

Figure 9.14 shows a secant line passing through the points (*—21-, %) and (1,2).



3 
Lo 4 1 . . 

Its gradient is ———— T Figure 9.15 shows a secant line passing 

  

through the points (0, 1) and (1, 2). Its gradient is 1. Figure 9.16 shows a secant 

line passing through the points (—21-, —Z—) and (1, 2). Its gradient is —z— With the 

gradients of successive secant lines going from —21-, to 1, and then to —z—, it seems 

reasonable to conjecture that the gradient of the tangent to the curve at (1, 2) is 

2, as shown in Figure 9.17. 

fo) = St     
  

  

“2=~10 1 2% 

Figure 9.15 Secant line 
through (0, 1) and (1, 2) 

  

Ultimately, from the function fix) = x + 1, we wish to derive another function 

that will compute the gradient (slope) of the graph of fat a point by simply 

inputting the x-coordinate of the point. This derived function is called the 

2 fraction. T, e t tion. If, i nota fraction 
for example, y = x2 + 1, 
then the derivative can be 

derivative of y = fix) at x. There are two common ways to denote this function: denoted by writing 

d; d.» 
either f'(x) or Ey a{p +1)=2x. 

‘This is read as, ‘the 

We could continue to apply the limit process (making secant lines closer to the derivative of x2 + 1 with 

tangent) to calculate the gradient of tangents at other points on the graph of epasioEb S 
fix) = x? + 1 in order to make a conjecture for the derivative of the function, 

but that would be tedious. Let’s use the power of a GDC to quickly compute 

the value of the derivative for fix) = x> + 1 (the gradient of the tangent to the 

curve) at several selected points and use these results to make a reasonable 

conjecture for the function that is the derivative of fix) = x> + 1. 
    

£(x) r=x241 ] 

4 d = (£ =2 ax (£02)) |x= ‘The command name and 
6 syntax f ing the d syntax for computing t 

3¢ (£00) [x=3 value of a derivative ata 
a 8 point will vary from one 
S (£0) |x=4 B GDC model to another.           
  

Figure 9.18 Usinga GDC to make a conjecture for the function that is the derivative of f(x) = * + 1 

The derivative of fix) = x> + 1 seems to be 2x. That is, f (x) = 2x. 
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Now consider the function g(x) = x? and values of its derivative at x = 1, x = 2, 

x=3,andx = 4. 

  

  

glx) 1= Done B 

& (g =1 2 
2 g x2 5 

2 (gt |x=3 e 

& (900 |3 e           
  

Figure 9.19 Using a GDC to make a conjecture for the function that is the derivative of f(x) = x 

It appears that the derivative of gx) = x? is also 2x. That is, g'(x) = 2x. 

In order to develop some basic rules for finding the derivative of functions of 

the form fix) = ax" + bx"~' + ..., where all powers are integers, let’s continue 

to use a GDC to make convincing conjectures for the derivatives of three 

  

    

  

i 1 further functions: f,(x) = 3x? + 2x, ,x) = x*, and fix) = = 1, 

2 (3423 |21 8 | 

2 (3423 | x=2 g 

2 (3423 |23 20 
d 2 & (3ex42-3) x4 2           
  

Figure 9.20 Usinga GDC to make a conjecture for the function that is the derivative of f(x) = 3x° + 2x 

A reasonable conjecture for the derivative of fy(x) = 3x? + 2x is 6x + 2. That is, 

Sl =6x+2. 

    

  

    

00 e ae 

0 |x= 2 

o)X= 4 

)=t B:         
Figure 9.21 Usinga GDC to make a conjecture for the function that is the derivative of f(x) = x> 

After some examination of the results here, it seems that the derivative of 

) = x3is 3x2 That is, f, (x) = 3x2. 

    

  

  

& 0 e 18 
& ) |x=2 

d%w"»\fi o 

) et &           
  

Figure 9.22 Usinga GDC to make a conjecture for the function that is the derivative of f(x) = 

These results make it clear that the derivative of fy(x) = ;(1- =x"lis — 1 . 

That is, f; (x) = — ) 
x 

 



Basic differentiation rules 

‘We have now established the following results: 

o When f(x) = x2, then f'(x) = 2x 

o When f(x) = x> + 1, then f'(x) = 2x 

o When f(x) = 3x2 + 2x, then f'(x) = 6x + 2 

o When f(x) = x3, then f'(x) = 3x2 

o When f(x) = x !, then f'(x) = —x 2 
‘The constant rule 

In addition, we know that when f{x) = x, then f"(x) = 1, since the line y = x has T e TvatTye e 

a constant gradient equal to 1, and that when f{x) = 1, then f'(x) = 0 because the constant function is zero. 

line y = 1 is horizontal and thus has a constant gradient equal to 0. The graph of m&i{g:fif‘rz’ft&l 

any function f{x) = ¢ where c is a constant is a horizontal line, confirming that if thenf’ (;) = ’ 

fix) = ¢, c € R, then f'(x) = 0. Thus, the derivative of a constant is zero. 

These results: flx) = x! = flx)=-x2 

fx)=x=1 = f(x)=0 

f)=x'=x = fx)=1 

flx) = x? = fllx) =2 
‘The power rule 

flx) =% = fl(x) =3x? Given 1 is a rational 
number, and if f(x) = x" 

can be summarised in a single rule called the power rule that is true for any e dcrivzé(ve) of 5t 
value of # that is a rational number (n € Q) (see key fact box on the right). isfi(x) = nx"-1. 

An(v)the.r basic rule of dlfferventlauon is suggested. by our result that the ) e 

derivative of f{x) = x? + 1is f'(x) = 2x. The derivative of a sum of terms is rule 

obtained by differentiating each term separately (differentiating term by term) 16f(x) = g(x)  h(x) then 
F@=ge) £ k). In this case, S (x2 + 1) = L(x2) + L) = 26 + 0 = 2. 

dx dx dx 

The sum rule for derivatives can help us give a very convincing justification of 

our first differentiation rule, the constant rule. The fact that the derivative of 

a constant must be zero can be verified by considering the transformation of 

the graph of a function (Section 2.4). The graph of the function f(x) + ¢, where 

c € R, is a vertical translation by ¢ units of the graph of f(x). As Figure 9.23 

illustrates, when the graph of a function is translated vertically, its shape is 

preserved. Hence, the gradient of the tangent line to the graph of flx) + ¢ 

will be the same as that for f{x) at a particular value of x. This means that the 

derivatives for the two functions must be equal. That is, 

d _d 
L@ +d =) 

%Iflx)] + %(c) = %[flx)] Figure 9.23 Translating the 
graph of a function vertically 
does not alter the gradient of 

  

This is only true if i(c) =0 the tangent line at a particular 
dx value of x. Hence, the 

Our final basic rule of differentiation is illustrated by the result that the derivatives of the two functions 

derivative of fix) = 3x? + 2xis f'(x) = 6x + 2. Using the sum rule, are equal. 
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‘The constant multiple fle= Lz g9 = di(3x2) + %(Zx) = 6x + 2. The fact that %(3):2) = 6x 
ule 

o = c g :hen suggests that 3 - ;—x(xz) = 3. 2x = 6x. In other words, the derivative of a 

fw=c-g'w. function being multiplied by a constant is equal to the constant multiplying the 

derivative of the function. 
‘The different notations 

used for indicating Basic differentiation rules 
aderivative or a 

differentiation can be Constant rule: Ha=0ce R 
traced back to the fact il 1 

that calculus was first Power rule: 2267 = x5, n € Q 
developed by Isaac . d d d Newton (1642-1727) and Sum and difference rule: E[‘M +h) = 7[g(x)] i —[h ) 

Gottfried Leibniz (1646 . e 1716) independently of Constant multiple rule: dx[: f] =c- [ [fx],ceR 

each other - and hence, 
introduced different 

of calculus. The prime 
notations y’ and f”(x) : For each function: (i) find the derivative using the basic differentiation rules; 

come from notations that 
(ii) find the gradient of the graph of the function at the indicated points; and & 

Newte d. The — o 
ewionused The gy (iii) use your GDC to confirm your answer for (ii). 

notation is similar to 

that used by Leibniz. (a) fix) = x* + 2x — 15x — 13 at the points (—3, 23), (3, —13) 
Each has its advantages 7 
and disadvantages, For (b) fix) = (2x — 7)? at the points (2, 9), (-, o) 

example, it s often easier 2 
to write our four basic (c) flx) = 3vx — 6 at the points (4, 0), (9, 3) 
rules of differentiation s 3 15x 3 i 
using Leibniz notation. (d) flx) = G 24 == +yat the points (5, —43), (0, 0) 

Solution 

P _d dopy_ e d oy d (LR 2 50— 13) =2 () 2k S 15 () == 13) 

=3x2 +2(2x) — 15(1) — 0 
=3 (5] 

Therefore the derivative of f{x) = x* + 2x2 — 15x — 13 is 

fx)=3x2+4x— 15 

(ii) Gradient of curve at (—3,23) is f'(—=3) = 3(—3)? + 4(=3) — 15 

=27 S 25=H'5 =10 

‘We should observe a horizontal tangent (gradient = 0) to the curve 

at (—3,23) 

Gradient of curve at (3, —13) is f/(3) = 3(3)> + 4(3) — 15 

= 27012 =015 =24 

‘We should observe a very steep tangent (gradient = 24) to the curve 

at (3, —13) 

(iii) Not only can we use the GDC to compute the value of the derivative 

at a particular value of x on the ‘home’ screen, but we can also do it 

on the graph screen. 
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CALCULATE| 
l:value 
1zero 
:minimum 
imaximum 
:intersect 
d¥/dx x=3 

1T (x)dx dy/dx=24.000001 y=24.000001X%-85.000003 

Observe that the graph of y = x* + 2x* — 15x — 13 appears to have 

a turning point at (—3, 23), confirming that a tangent to the curve 

at that point would be horizontal. 

‘turning point’ 

  

(-3,23) horizontal tangent 

\ 4/» 

dy/dx=1E~6         

Let’s check on our GDC that the gradient is 24 at (3, —13). 

Most GDCs are also capable of drawing a tangent at a point and 

displaying its equation, as shown in the screenshots. 
  

            

(®) (@) 

(ii) 

The equation of the tangent line at (3, —13) is y = 24x — 85. 

‘We will look at finding the equations of tangent lines analytically 

in Section 9.4. 

Differentiate term by term after expanding: 

diiox— 721 = Lix - _ s -7 = e - 7ex -7 
=440 — 28y + 49) 

dx 

d d d =45 () — 285 (x) + S (49 ARG T 49 

=8x—28+0 

Therefore the derivative of f{x) = (2x — 7)?is f'(x) = 8x — 28. 

Gradient of curve at (2,9) is f(2) = 8(2) — 28 = —12 

. T 7 e 7 
Gradient of curve at (E, 0) 1sf(5) = 8(5) 28=0 

Thus, we should observe a horizontal tangent to the curve at (— ,0). 
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(c) (@) 

(ii) 

(i) 

  

Plotl Plot2 Plot3 
\YIE(2X-7) 
4= 

  

Y= 
  

  

(2,9) 

    dy/dx=-12 
[Y1=(2%-7)° 

    X=3.5 ¥=0 
  

The GDC confirms that the gradient of the curve is —12 at (2, 9). 

The vertex of the parabola i 

horizontal tangent at that p: 

A A G 5(3\)(*6)73—():) 

s at (%, 0) confirming that it has a 

oint. 

d 
S0} 

dx dx 

=325 - 

=335 - 

0 

0=—> 
R 

Therefore, the derivative of fix) = 3/x—6 is f'(x) = = or 

230 
2Vx 

fle= 

Gradient of curve at (4, 0) is f'(4) = 

2t 

  Gradient of curve at (9,3) is f'(9) = — = 

As the gradient at x = 9 is less than that at x = 4, we should observe 

the graph of the equation becoming less steep as we move along the 

curve fromx = 4tox = 9. 

  

      

Y1=31(X)-6 nl‘:l)eriv(ZiI(X)—S,X 

! .750000006 
nDeriv(3{(X)-6,X 

£ 5000000009 
x4 =0   
  

The gradient of the graph of y = 3/x — 6 appears to decrease 

steadily as x increases. Let’s check the results for (ii) by evaluating 

the derivative at a point on the home screen. 

The GDC confirms the gradients for the curve when x = 4 and 

x =9, but the GDC computations have incorporated a small amount 

of error.



ad (Jc4 B SRRy 3) =i BROSE X (d) (i) 4 2 i > 1 

  

— Ly —306x0) — = 74— 302 - 200+ =1 +0 

9x2 15 o EEo) 
2 Bty 

3 
Therefore, the derivative of fix) = =~ 3% =Dxt % a4k % is 

  

9(5) 
(ii) Gradient of curve at (5, —43) is f'(5) = 5° — - 4(5) + 12—5 =0. 

Thus, there should a horizontal tangent to the curve at (5, —43). 

15 
Gradient of curve at (0, 0) is f'(0) 

   
  (i) =T 

  

  =5 T 

50       

R 1: Actions| M 

  

45, 1: Zero 
% 2: Minimum 
€% 3: Maximum 

[>x 4: Intersection 
& RS 

b 6: Intergral 
0 7: Bounded Area 
© 8: Analyse Conics M| 

    
    

  

        

  

%(fl(x))|x=5 0 

d i < (FL00)[x=0 =       =5 m 
          

365



A turning point ona 
graph is a point where 
the gradient changes 

from upwards to 
downwards, or vice versa. 
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Example 9.5 

The curve y = ax® + 7x? — 8x — 5 has a turning point at the point where 

x = —2. Determine the value of a. 

Solution 

There must be a horizontal tangent, and a gradient of zero, at the point 
where the graph has a turning point. 

b _d, e Y W iy (a7 Rt ] 

I d d d (5 P O (2 g G B O a—(x3) (x?) 8](x) ](5) 

=3ax2+ 14x — 8 

d 
d—iZOWhenx: —2,503a(—27 + 14(~2) — 8 =0 

=12a—28—-8=0 

= 12a =36 

=a=3 

Recall that the derivative of a function is a formula for the instantaneous 

rate of change of the dependent variable (commonly y) with respect to the 

independent variable (x). In other words, the gradient of the tangent at a point 

gives the gradient, or rate of change, of the curve at that point. The gradient of 

a secant line (that crosses the curve at two points) gives the average rate of 

change between the two points. 

Example 9.6 

Boiling water is poured into a cup. The temperature of the water in degrees 

Celsius, C, after t minutes is given by C = 19 + fi, for t = 1 minute. 
£ 

(a) Find the average rate of change of the temperature from t = 2 to t = 6. 

(b) Find the rate of change of the temperature at the instant when ¢ = 4. 

Solution 
200 

(a) Whent =2, C~ 83.35°C 175 

and whent=6,C~31.38°C. 2 150 
The average rate of change £ 125 

from t = 2to t = 6 is the 5 100 

gradient of the line through E‘ 75 
the points (2, 83.35) and 50 

(6,31.38). 25 

  
0 123456789 

Time (minutes)



Average rate of change = ——————"— = === = —12.9925 

To an accuracy of three significant figures, the average rate of change 

from t = 2to t = 6 is —13.0°C per minute. During that period of time, 

the water is, on average, getting 13.0° C cooler every minute. 

(b) Work out the derivative ‘i{—f; that is, the rate of change of temperature 

with respect to time £, from which we can compute the rate at which the 

temperature is changing at the instant when t = 4. 

dg_a (19 + &) = i(19 + 182) =49+ 182%(!’%)   
3 s dt 

=0+ 182(—%:*%) = 27313 
i de  dt dt 

- 273 _ 273 
4B 

When t = 4: 

de_ a3 _ _om 
dt Va5 32 

Therefore, the instantaneous 

rate of change of temperature 
att = 4 min is —8.53°C per min. 

~ —8.53 

Te
mp
er
at
ur
e 

(°C
) 

  

08034t 5 6 7 8D 
Time (minutes) 

Derivatives of tl ine and cosine functions 

The graph of y = sinx (Figure 9.24) is periodic, with period 277, so the same will 

be true of its derivative, which gives the gradient at each point on the graph. 

Therefore, we need to consider 

only the portion of the graph in 

the interval 0 < x < 2. 

  

  

  

  

  

        
  

    
  

Figure 9.24 Graph of y = sinx 
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Note that the graphs in 
Figures 9.24,9.25, and 

9.26 have x in radians. As 

‘mentioned previously, we 
‘must use radian measure 

when trigonometric 
functions are involved in 

calculus. 
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Figure 9.25 shows two pairs of axes having equal scales on the x- and y-axes 

and corresponding x-coordinates aligned vertically. On the top pair of axes, 

y = sinx is graphed with tangent lines drawn at nine selected points. The points 

were chosen such that the gradients of the tangents at those points, in order, are 
1 1 1 1 

equalto 1, > 0, > 1; > 0, 7 

plotted in the bottom graph, with the y-coordinate of each point indicating 

the gradient of the curve for that particular x value. Hence, the points in the 

bottom pair of axes should be on the graph of the derivative of y = sinx. 

, L. The values of these gradients were then 

b2 
1 

gradient 

=<
 

1 

  

Figure 9.25 Values of gradient for selected tangents to y = sinx (shown in the top graph) plotted in the 

lower graph 

Figure 9.26 is the same as Figure 9.25 except that the graph of y = sinx, the grid 

lines, and the lines connecting points between the two graphs have been removed. 

  

  

X 
1 

0, 
1 2 3 4 5 7% 

-1 

gradient 

¥ 
1 . 

0 T T T T T T T 
1 2 3 4 5 6 7% 

—1 .   
  

Figure 9.26 Tangent lines for y = sinx above and values of gradients of the tangent lines plotted below



This leads to an obvious choice for our conjecture for the derivative of the sine 

function. For f(x) = sinx, it appears that f'(x) = cosx. Let’s use our GDC to 

provide confirmation of this conjecture. 

The GDC screen images below show the derivative of sinx being evaluated 

for various values of x, along with cosx for the same x value. Note that the 

GDC must be in radian mode. You can see that the values are equivalent (to 

6 significant figures). 
  
nDeriv(sin(X),X,| [nDeriv(sin(X),X,| [nDeriv(sin(X),X, 
/ 51/6 

.7071066633 -).8660252595 ! .5120853919 
cos(1/4) cos (51/6) cos(5.25) 

.7071067812 -.8660254038 .5120854772               

Figure 9.27 GDC screens showing the derivative of sinx being evaluated 

Derivative of the sine function 
Iffix) = sinx, then f) = cosx. O, in Leibniz notation, %{sin}r) = cosx. 
‘This result is only true when x is in radian measure. 

Now let’s use a GDC to graph the derivative of cosx, from which we should be 

able to make a conjecture. 

2     
fl() = % (cos(x)) 

  

Figure 9.28 Graph of the derivative of y = cosx; that i, graph of y = di(mu) X 
At first glance, the graph of y = %(cosx) looks like the graph of y = sinx, but 

on closer inspection we see that it is the reflection about the x-axis of y = sinx. 

Therefore, our conjecture is that the derivative of cosx is —sinx. 

That is i(cosx) = —sinx 
dx 

Again, let’s use our GDC to help confirm our conjecture. 
  
nDeriv(cos(X),X,| [nDeriv(cos(X),X,| [nDeriv(cos(X),X, 
m T 3n/ 

-.4999999167 ).9999998333 -.4121184166 
-sin(n/6) -sin(3m/2) -sin(9) 

-.5 € -.4121184852               

Figure 9.29 Usinga GDC to confirm our conjecture 

Derivative of the cosine function 

IE(x) = cosx, then f(x) = —sinx. Or in Leibniz notation d%cosx) = —sinx. 
‘This result is only true when x is in radian measure. 

‘The discrepancies beyond 
6 significant figures are 
due to the small amount 
of error in the algorithm 
used by the GDC to 
compute the derivative of 

a function at a point. 
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1. Find the gradient of the tangent line of the graph of each function at the 

point where x = 1. Sketch each function and draw a line tangent to the 

graphatx = 1. 

@) flx)=1-x2 (b) glx) =x*+2 

© he) = vz @ ) = 
2. For each function: 

(i) find the derivative 

(ii) compute the gradient of the graph of the function at the indicated 

point. 

Use a GDC to confirm your results. 

(a) y=3x2 —4x point (0, 0) 

(b)y=1—6x—x2 point (=3, 10) 

2 . 
© y= ot point (=1, —2) 

(d)ly =iy point (1, —1) 

_— (7 /3 
(e) y = sinx point ( 3 T) 

(f) y= (x + 2)(x — 6) point (2, —16) 

(g)y:2x+l—% point (1, 0) 
o 

_ x3iH1 . 
(h) y= = point (—1,0) 

v (22 2) (i) y=cosx pomt( 12 

3. The gradient of the curve y = x* + ax + b at the point (2, —4) is —1. 
Find the value of a and the value of b. 

4. Use the graph of fto answer ~ » 

each question. 

(a) Between which two 

consecutive points is 

the average rate of change 

of the function greatest? 

(b) Indicate at which point(s) 

the instantaneous rate of 

change of fis: 
0 

  

(i) positive (ii) negative  (iii) zero 

(c) For what two pairs of consecutive points is the average rate of 

change approximately equal? 
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5. For each function, find the coordinates of any points on the graph of the 

function where the gradient is equal to the given value. 

(a) y=x>+3x gradient = 3 

(b) y=x* gradient = 12 

(@) p=d = F7 k1l gradient = 0 

d) y=x>—3x gradient = —1 

6. The gradient of the curve y = x* — 4x + 6 at the point (3, 3) is equal to 
the gradient of the curve y = 8x — 3x” at (a, b). Find the value of a and 

the value of b. 

7. The graph of the equation y = ax® — 2x> — x + 7 has a gradient of 3 at 

the point where x = 2. Find the value of a. 

8. Find the coordinates of the point on the graph of y = x> — x at which 

the tangent is parallel to the line y = 5x. 

9. A car is parked with the windows and doors closed for five hours. 

The temperature inside the car in degrees Celsius, C, is given by 

C = 2/F + 17, with t representing the number of hours since the car 

was first parked. 

(a) Find the average rate of change of the temperature between t = 1 

and t = 4. 

(b) Find the function which gives the instantaneous rate of change of 

the temperature for any time £, 0 < t < 5. 

(c) Find the time t at which the instantaneous rate of change of the 

temperature is equal to the average rate of change fromt = 1tot = 4. 

Maxima and minima: first and second 
derivatives 

The relationship between a function and its derivative 

The derivative is a function derived from a function f that gives the gradient 

(slope) of the graph of fat any x in the function’s domain, given that the curve 

is differentiable at the value of x. The derivative is a gradient, or rate of change, 

function. Knowing the gradient of a function at different values in its domain 

tells us about properties of the function and the shape of its graph. 

In the previous section, we observed that if a graph has a turning point at 

a particular point (for example, at the vertex of a parabola), then it has a 

horizontal tangent (gradient = 0) at the point. Hence, the derivative will 

equal zero at a turning point. In Section 2.1 (Quadratic functions), we found 

the vertex of the graph of a quadratic function by using the technique of 

completing the square to write its equation in vertex form. We can also find the 
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vertex horizontal 

7 tangent 

Figure 9.30 The tangent to 
a parabola at its vertex is 
horizontal 
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vertex by means of differentiation. As we look at the graph of a parabola moving 

from left to right (i.e. domain values increasing), it either turns from going down 

to going up (decreasing to increasing), or from going up to going down (increasing 

to decreasing), as in Figure 9.30. 

Example 9.7 

Using differentiation, find the coordinates of the vertex of the parabola with 

the equation y = x2 — 8x + 14. 

| 

Solution 
d 

Find the value of x for which the derivative, ay, is zero. 

d 
a}l:%(fi*8x+l4):2178:0$x:4 

The x-coordinate of the vertex is 4. 

To find the y-coordinate of the vertex, substitute x = 4 into the equation: 

y=42—84 +14=-2 

Therefore, the vertex has coordinates (4, —2) 

‘We know that the parabola in Example 9.7 will ‘open upwards’ because the 

coefficient of the quadratic term, x?, is positive. The parabola has a negative 

gradient (decreasing) to the left of the vertex and a positive gradient (increasing) 

to the right of the vertex. As the values of x increase, the derivative of 

y=x2— 8x + 14 will change from negative, to zero, to positive, accordingly. 

x<4 x>4 

decre: inc; 

as x i es | as x increa! 

Figure 9.31 Gradient changes from negative to positive as x increases 

d 4 4 & 
a—Zx* 8:>a<0forx<4anda— 0 for x = 4anda>0forx>4 

In other words, the function f{x) = x? — 8x + 14 is decreasing for all x < 4; 

it is neither decreasing nor increasing at x = 4; and it is increasing for all x < 4. 

A point at which a function is neither increasing nor decreasing (where there 

is a horizontal tangent) is called a stationary point. A convenient way to 

demonstrate where a function is increasing or decreasing and the location of 

any stationary points is with a sign chart for the function and its derivative 

(Figure 9.32) for f{x) = x? — 8x + 14. The derivative f'(x) = 2x — 8 is zero only at



X = 4, thereby dividing the domain of f (i.e. R) into two intervals: x < 4 and 

x> 4.f'(x) = 2x — 8 is a continuous function (i.e. no gaps in the domain) so it is 

only necessary to test one point in each interval in order to determine the sign of 

all the values of the derivative in that interval. f'(x) can only change sign at x = 4. 

For example, the fact that f'(3) = 2(3) — 8 = —2 < 0 means that f'(x) < 0 for all 

x when x < 4. Therefore, fis decreasing for all x in the open interval (— o0, 4). 

fx) =2 —8x+ 14 

   
F=2x-8 

—00 +00 
f— 7 

& - 0 + 

BN e 
Figure 9.32 Sign chart for f{x) and f(x) 

If f'(x) > 0 for a < x < b, then fx) is increasing on the interval a < x < b 

Iff'(9) < 0 fora < x < b, then fix) is decreasing on the intervala < x < b 
If f'(x) = 0 for a < x < b, then f(x) is constant on the interval a < x < b 

If f'(x) = 0 for a single value x = c on some interval @ < ¢ << b, then f{x) has a stationary point at 
x = ¢. The corresponding point (¢, f(c)) on the graph of fis called a stationary point. 

It is at stationary points, or endpoints of the domain (if the domain is not all real 

numbers), where a function may have a maximum or minimum value. These 

points at which extreme values of a function may occur are often referred to as 

critical points. Whether a function is increasing or decreasing on either side 

of a stationary point will indicate whether the stationary point is a maximum, 

minimum or neither. 

Example 9.8 

Consider the function f{x) = 2x3 + 3x> — 12x —4,x€R 

(a) Find the coordinates of any stationary points of f. 

(b) Using the derivative of f, classify any stationary points as a maximum, 

a minimum, or neither. 

L] 

Solution 

@ fl(x)=6x2+6x—12=0=6(x>+x—2)=0 
=6(x+2)(x—1)=0 

= x==2orx=1 

With a domain of all real numbers, there are no domain endpoints that 

may be an extreme value. Thus, fhas two critical points: one at x = —2 

and the other at x = 1. 

Whenx = —2:y=2(-2)>+3(-2)2—12(-2) —4=16 

So fhas a stationary point at (—2, 16) 

Andwhen x = 1: y = 2(1)* + 3(1)2 — 12(1) —4 = —11 

So fhas a stationary point at (1, —11) 
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‘The plural of maximum 
is maxima, and the plural 

of minimum is minima. 

Maxima and minima are 

collectively referred to 
as extrema - the plural 
of extremum. Extrema 

of a function that do 
not occur at domain 

endpoints will be turning 
points of the graph of the 

function. 
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(b) Construct a sign chart for f'(x) and fO)=20+3¢ —12x— 4 

f(x) to show where fis increasing or 0 =60+ 20— 1) 

decreasing. The derivative f'(x) has 2 1 

two zeros, x = —2and x = —1, j—}—l—wf 

thereby dividing the domain of finto U SO 

three intervals that need to be tested. /@ { : : : { 
g g & g B 

Since f'(—3) = 6(—1)(—4) =24 >0 § § g § 5 

then f/(x) > 0 for all x < —2. Likewise, g5 I & 
since f'(2) = 6(4)(1) = 24 > 0 then . = = 
f(x) > 0forall x > 1. Thus, fis 

increasing on the open intervals 

(—00, —2) and (1, c0). fo 

Since f'(0) = —12 < 0 then f'(x) <0 

for all x such that —2 < x < 1. Thus, 

fis decreasing on the open interval 

(G20 Nl e it v = 

From this information, we can visualise for increasing values of x that 

the graph of fis going up for all x < — 2, then turning down at x = — 2, 

then going down for values of x from —2 to 1, then turning up at x = 1, 

and then going up for all x > 1. The basic shape of the graph of fwill look 

something like the sketch in Figure 9.33. Clearly the stationary point (—2, 

16) is a maximum and the stationary point (1, —11) is a minimum. 

The graph of fix) = 2x* + 3x2 — 12x — 4 from Example 9.8 confirms the results 

acquired from analysing the derivative of f. 
  

  

  

  

  

  

T y [ [ = :416‘)7 zg | S - / — 

CINCo - / ; 
[/ ] / \ 

-4 /—3 | 42 3 x 

[ 2x —|4 

I /A I | 
| 

|                 

  

Figure 9.33 Gradient changes from negative to positive as x increases 

For Example 9.8, we can express the result for part (b) most clearly by saying 

that f(x) has a relative maximum value of 16 at x = —2, and a relative 

minimum value of —11 at x = 1. The reason that these extreme values are 

described as relative (or local) is because they are a maximum or minimum 

for the function in the immediate vicinity of the point but not for the entire 

domain of the function. A point that is a maximum/minimum for the entire 

domain is called an absolute, or global, maximum/minimum.



The first derivative test 

From Example 9.8, we can see that a function fhas a maximum at some 

x = ciff'(c) = 0 and fis increasing immediately to the left of x = c and 

decreasing immediately to the right of x = c. Similarly, fhas a minimum at 

some x = cif f'(c) = 0 and fis decreasing immediately to the left of x = c and 

increasing immediately to the right of x = c. It is important to understand, 

however, that not all stationary points are either a maximum or a minimum. 

Example 9.9 

For the function f{x) = x* — 2x?, find the coordinates of all stationary points 

and describe them completely. 

Solution 

flo= %(:rcA —2x3) = 4x® — 6x2=0 

B 

= =3 =x=0orx 2 

The implied domain is all real numbers, so x = 0 and x = % are the critical 

points of f. : . 

when x = 0, y = f(0) = 0; and when x = i,y :f(i) = (i) - Z(E) 
2, 2 2) 2 

B 
16 8 16 

Therefore, f has stationary points at (0, 0) and (%, 7%) 

Because f has two stationary points, there are three intervals for which to test 

the sign of the derivative. We could use a sign chart as shown previously, or 

we can use a more detailed table (see below) that summarises the testing of 

the three intervals and the two critical points. 
  

Interval/point x<0 2=0 x<x<% x=% x>% 

Test value gl x=1 x=2 

Signoff'(x) |[f'(—1)=-10<0] 0 [f()=-2<0] 0 |[f@=8>0 

Conclusion | fdecreasing \, | none | fdecreasing \, |abs. min. |fincreasing 

  

  

  

                  

On either side of x = 0, f does not change from either decreasing 
to increasing or from increasing to decreasing. Although there is a 

horizontal tangent at (0, 0), it is not an extreme value (turning point). 

The function steadily decreases as x approaches zero, then at x = 0 the 
function has a rate of change (gradient) of zero for an instant and then 

continues on decreasing. 

  

W Figure 934 Graph for solution to 
2 Example 9.9 

As x approaches %, fis decreasing and then switches to increasing at x = =. 
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Therefore, the stationary point (0,0) is neither a maximum nor a minimum; 

and the stationary point (%, = i—;) is an absolute minimum. In other 

words, fhas an absolute (global) minimum value of *?—Z atx = % The 

reason that an absolute, rather than a relative, minimum value occurs at 

x= %15 because for all x < % the function fis either increasing or constant 

(atx=l0)and forallx — % the function fis increasing, 

First derivative test for maxima and minima of a function 
  

Suppose that x = cis a critical point of a continuous and smooth function f. e IATTYe 
‘That is, fic) = 0 and x = ¢ is a stationary point or x = ¢ is an endpoint of the domain. maximum 

Atastationary point x = c: 

       Iff"(x) changes sign from positive to negative as x increases through x = ¢, 
then fhas a relative maximum at x = c. flx)>0 fx<o 

-+ 
c 

Iff"(x) changes sign from negative to positive as x increases through x = ¢, 
then fhas a relative minimum at x = c. 

    

  

   relative 

minimum    

f@<o i f@>o0 

If'(3) does not change sign as x increases through x = ¢, then fhas 
neither a relative maximum nor a relative minimum at x = ¢.     

  

no 
extreme 

    

    fix)>0 f=0 

  

When x = c is an endpoint of the domain, then x = ¢ will be a relative maximurm or minimurm of fif the sign of (x) is always positive or 
always negative for x > c (at a left endpoint), or for x < ¢ (ata right endpoint). 

  

   

  

relative relative 
maximum ‘maximum 

L fw<0 F)<0 ; 
; relative relative ! 
: minimum, 9 i : | 70 >0 minimum >0 | 

| | ! 1 
< C c c 

Ifit is possible to show that a relative maximum or minimum at x = cis the greatest or least value for the entire domain of f, then it is 
classified as an absolute maximum or minimum. 
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Example 9.10 

Apply the first derivative test to find any extreme values for 
fix) = 4x3 — 9x% — 120x + 25 

| 

Solution 

flw= %(4:(3 — 9x2 — 120x + 25) = 12x% — 18x — 120 

flx)=12x2—18x — 120 =0 

= 6(2x% — 3x = 20) =0 
=6Q2x+5)(x—4=0 

Thus, f has stationary points at x = 7% and x = 4 

To classify the stationary point at x = 7%, we need to choose test points on 

either side of 7%, for example x = —3 (left) and x = 0 (right). 

F=3)=6(-1(~-7)=42>0 
f(0) = 6(5)(—4) = =120 < 0 

50 fhas a relative maximum at x = — 

Z5) = (=5} —o(=5)" — 120(=5) + 25 = f( 2) - 4( 2) 9( 2) 120( 2) +25 = 20625 

g Therefore, f has a relative maximum value of 206.25 at x = =3 

To classify the stationary point at x = 4, we need to choose test points on 
either side of 4, for example x = 0 (left) and x = 5 (right). 

£10) = 6(5)(—4)= —120 < 0 
f'(5) = 6(15)(1) = 90 > 0 

50 fhas a relative minimum at x = 4 

fl4) = 443 — 9(4)2 — 1204) + 25 = —343 

Therefore, fhas a relative minimum value of —343 atx = 4 

Change in displacement and velocity 

Consider the motion of an object such that its position s relative to a reference 
point or line as a function of time ¢ is given by s(?). The displacement of the 
object over the time interval from ¢, to t, is: 

N
 

change in s = displacement = s(t,) — s(t,) 

The average velocity of the object over the time interval is: 

_ displacement _ s(ty) — s(t;) 

Vavg = change in time L4 

The object’s instantaneous velocity at a particular time, ¢, is the value of the 

derivative of the position function, s, with respect to time at . 

velocity = d—j =s'tt) 
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Example 9.11 

A toy rocket is launched upwards into the air. Its vertical position, s metres, 
above the ground at ¢ seconds is given by s(t) = —5¢> + 18t + 1 

(a) Find the average velocity over the time interval from ¢ = 1 second to 

t = 2 seconds. 

(b) Find the instantaneous velocity at t = 1 second. 

(c) Find the maximum height reached by the rocket and the time at which 

this occurs. 

PN ST SO NP 

Solution 

@) = e = gy " 

(b) s') = —10t + 18 =5'(1) = —10 + 18 = 8ms™! 

(c) s'(0= =10t +18=0=1t=1.8 

Thus, s has a stationary point at f = 1.8. t must be positive and ranges from 
time of launch (¢ = 0) until when the rocket hits the ground (h = 0). 

RN o ) 
s(zJ:—5z2+18t+1:0:>t:w 

=t~ =0:5472 or £~ 3.655 

So, the rocket hits the ground about 3.66 seconds after the time of launch. 
Hence, the domain for the position (s) and velocity (v) functions is 

0 < t =< 3.66. Therefore, the function s has three critical points: t = 0, 

t=18,and t ~ 3.66. 

Applying the first derivative test, we determine the sign of the derivative, 
s'(t) = 0, for values on either side of t = 1.8; for example t = 0 and t = 2. 
s'(0) =18 > 0 and 5'(2) = —2 < 0. Neither of the domain endpoints, 
t = 0and t ~ 3.66, are at a maximum or minimum because the function 
is not constantly increasing or constantly decreasing before or after the 
endpoint. Since s'(t) changes from increasing to decreasing at £ = 1.8 
and 5(1.8) = —5(1.8)2 + 18(1.8) + 1 = 17.2, then the toy rocket reaches a 
maximum height of 17.2 metres 1.8 seconds after it was launched. 

I derivative     tion and its sec 

There is another useful test for the purpose of analysing the stationary point 
of a function that makes use of the derivative of the derivative, the second 

derivative, of the function. 

‘When we differentiate a function y = f(x), we obtain the first derivative f'(x) 

d 
(a]so written as a}’) ‘We can often also differentiate the derivative, which is 

2 
denoted in Newton notation as f”(x) or in Leibniz notation as E}; and called 

the second derivative of f with respect to x. For example, if fix) = x*, then 
f'(x) = 3x?and f"(x) = 6x.



Second derivatives, like first derivatives, occur often in methods of applying calculus. 

In Example 9.11, the function s(t) gave the position, in metres above the ground, 

of a projectile (toy rocket) where #, in seconds, is the time since the projectile was 

launched. The function s'(f), the first derivative of the position function, gives the 

rate of change of the object’s position - its velocity, in metres per second (ms~1). 

Differentiation of this function gives the rate of change of the object’s velocity - its 

acceleration, measured in metres per second per second (ms~2). 

The graphs of the position, velocity, and acceleration functions for 

Example 9.11 aligned vertically (Figure 9.35) nicely illustrate the relationships 

between a function, its first derivative, and its second derivative. The gradient 

of the graph of s(t) is initially a large positive value (graph is steep) but steadily 

decreases until it is zero (horizontal tangent) at t = 1.8 and then continues 

to decrease becoming a large negative value (again, steep, but in the other 

direction). This corresponds to the real-life situation in which the rocket is 

launched with a high initial velocity (v(0) = 18 ms~!) and then its velocity 

decreases steadily due to gravity. The rocket’s velocity is zero for just an instant 

when it reaches its maximum height at t = 1.8 and then its velocity becomes 

more and more negative because it has changed direction and is moving back 

(negative direction) to the ground. The rate of change of the velocity, v'(t), 

is constant and it is negative because the velocity is decreasing from positive 

values to zero to negative values. This is clear from the fact that the graph of the 

velocity function, v(t), is a straight line with a negative gradient. It follows then 

that the acceleration function - the rate of change of velocity - is a negative 

constant, a = —10 in this case, and its graph is a horizontal line. 

It would be incorrect to graph a function and its first and/or second derivative on the same axes 
because they have different units. For example, in Figure 9.35 the units on each vertical axis are: 
‘metres for s(), metres per second for v(t) and metres per second per second for a(#). 

In Example 9.11, it is not possible to have a negative function value for s(f) 

because the rocket’s position is always above, or at, ground level. In many 

motion problems in calculus, we consider a simplified version by limiting 

an object’s motion to a line with its position given as its displacement from 

a fixed point (usually the origin). At a position left of the fixed point the 

object’s displacement is negative and at a position right of the fixed point the 

displacement is positive. Velocity can also be positive or negative depending 

on the direction of travel (i.e. the sign of the rate of change of the object’s 

displacement). Likewise, acceleration is positive if velocity is increasing 

(i.e. rate of change of velocity is positive) and negative if velocity is decreasing. 

If an object moves in a straight line such that at time # its displacement (position) from a fixed 

point is s(#), then the first derivative s'(#, also written as % gives the velocity v(f) at time . 
12, 

‘The second derivative s'(¢), also written as % i the first derivative of v(t). Hence the second 

derivative of the displacement, or position, function is a measure of the rate at which the velocity 
is changing; that is, it represents the acceleration of the object, which we express as 

2, 
alt=vin =5 oran =2 = L5 

dt e 

Position function: 
s(f) = =58+ 18t + 1 
  

  

  

  

                   

Velocity function: 
W) =s'(t) = —10t + 18 

  

Acceleration function: 

alt) =v'() = 5'0) = 

  

  

  

  

  

  

    

T 

| 
I 
I 
| 
3| 4 
1   

              
| 

,5% 

[ 
|   

Figure 9.35 Graphs of the position, 
velocity and acceleration functions 
for Example 9.11 

Displacement can be 
negative, positive, or zero. 
Distance is the absolute 
value of displacement. 
Velocity can be negative, 
positive, or zero. Speed 
is the absolute value of 
velocity. 
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A common 

‘misconception is that 
acceleration is positive 

for motion in the positive 
direction (usually right 
or up) and negative for 
‘motion in the negative 
direction (usually left 

or down). Acceleration 
indicates how velocity is 
changing. Even though 

an object may be moving 
ina positive direction, 
eg. to the right, if it is 
slowing down then its 

acceleration is acting in 
the opposite direction 

and is negative. In 
Example 9.1, the rocket 
was always accelerating 

in the neganve direction, 
~10ms2, dueto the 

force of gravity. 
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Example 9.12 

An object moves along a straight line so that after  seconds its displacement 

from the origin is s metres. Given that s() = —2¢* + 6t2 find: 

(a) expressions for the (i) velocity and (ii) acceleration at time t seconds. 

(b) the (i) initial velocity and (ii) initial acceleration of the object (when t = 0) 

(c) the (i) maximum displacement and (ii) maximum velocity for the 

interval 0 < t<3 

Solution 

(@) () vy= ;fi :( 263+ 612) = —612+ 12¢ 

ds _dv_d 
tf—:—— —(=6t + 12t) = —12t + 12 L o 

(b) (i) v(0) = —6(0) + 12(0) = 

The object’s initial velocity is 0ms ™! 

(ii) al0) = —12(0) + 12 = 12 
The object’s initial acceleration is 12ms~2 

(c) (i) To find the maximum displacement, we can apply the first derivative 

test to s(#). Since the first derivative of displacement, s(t), is velocity, 

v(#), then the critical points of s(#) are where the velocity is zero 

(stationary points) and domain endpoints. 

s'O=vlt)=—6t>+ 12t =0= 61—t +2) =0 

v(t)=0whent=0ort=2 

For the interval 0 < ¢ < 3 the critical points to be tested for finding the 

maximum displacement are at t = 0, t = 2 and t = 3. Check whether 

the velocity is increasing or decreasing on either side of the stationary 

point at ¢ = 2 by finding the sign of (#) for t = 1and t = 2.5 

1) = —6(12+ 12(1) = 6 

¥2.5) = —6(2.5)2 + 12(2.5) = —7.5 

Hence, the displacement s is increasing for 0 < t < 2 and decreasing 

for 2 < t < 3. This indicates that the stationary point at t = 2 must 

be an absolute maximum for s in the interval 0 < t < 3 

s2)=-22°+6022=8 

Therefore, the object has a maximum displacement of 8 metres at 

t = 2 seconds. 

(ii) To find the maximum velocity, we can apply the first derivative test 

to v(#). The first derivative of v(f) is acceleration a(f), which is the 

second derivative of s(f). Hence, where s"(t) = 0 (acceleration is zero) 

indicates critical points for v(#); that is, where velocity may change 

from increasing to decreasing or vice versa.



s = at) = %(—6# +126)= —12t + 12= 12(-t + 1) =0 

a) =O0whent=1 

For the interval 0 < t < 3, the critical points to be tested for finding 
the maximum velocity are at t = 0, t = 1 and t = 3. Check whether 

the velocity is increasing or decreasing on either side of t = 1 by 

finding the sign of a(t) for t = 0.5and t = 2 

a(0.5) = —12(0.5 +12=6 

a(2) ="=12(2) N2 =212 

Hence, the velocity v is increasing for 0 < ¢ < 1 and decreasing for 
1 < t < 3. This indicates that the point at = 1 must be an absolute 

maximum for v in the interval 0 < t < 3 

w(l) = —6(1)2 + 12(1) = 6 

Therefore, the object has a maximum velocity of 6ms~'att = 1s 

The second derivative of a function tells us how the first derivative 5 
of the function changes. From this we can use the second 12 placement function: 

   

derivative, as we did the first derivative, to reveal information 

about the shape of the graph of a function. Note in Example 9.12 

that the object’s velocity changed from increasing to decreasing 

when the object’s acceleration was zero at t = 1. Let’s examine 
  graphically the significance of the point where acceleration is zero 

(i.e. velocity changing from increasing to decreasing) in connection 

to the displacement graph for Example 9.12. In other words, what 

can the second derivative of a function tell us about the shape of the 

function’s graph? 
  

Figure 9.36 shows the graphs of the displacement, velocity and 

acceleration functions for the motion of the object in Example 

9.12. A dashed vertical line shows the displacement, velocity and 

acceleration at t = 1. At this point velocity has a maximum value 

and acceleration is zero. It is also where velocity changes from 
  

  

    
increasing to decreasing, which has a corresponding effect on a “Accderition findtioh: 

the shape of the displacement function s(f). At t = 1, the graph 13 I v(t) !i(r) E }lit +12 

of s(#) changes from curving upwards (concave up) to curving 5 Lt 

downwards (concave down) because its gradient (corresponding 0 7 3 17 
to velocity) changes from increasing to decreasing. This can only -5 T 0 A 

occur when velocity (first derivative) has a maximum and, hence, :12 |l T 

where acceleration (second derivative) is zero. We can see from this 2 

illustration that for a general function f(x), finding intervals where -5+   the first derivative f (x) is increasing (positive acceleration) or et e e 
Figure 9.36 Graphs of the displacement, 

z . ) . velocity, and acceleration functions for the 
the graph of f(x) is curving upwards or curving downwards. A point motion of the object in Example 9.12 

at which a function’s curvature (concavity) changes - as at t = 1 for 

the graph of s(#) in Figure 9.36 - is called a point of inflection. 

decreasing (negative acceleration) can be used to determine where 
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‘The graph of x) is concave up where f (x) is increasing and concave down where f/(x) is 
decreasing, It follows that: 
iff(x) > 0 for all x in some interval of the domain of f;then the graph of fis concave p in the 
intervalsiff/(x) < 0 for all x in some interval of the domain of f, then the graph of fis concave 
down in the interval. 
iff{x) is a continuous function, its graph can only change concavity where f"(x) = 0. Hence, for a 
continuous function, an inflection point may only occur where f'(x) = 0. 

concave concave 
up down 

Example 9. 

Determine the intervals on which the graph of y = x* — 4x3 is concave up or 

concave down and identify any inflection points. 

_ 

Solution 

‘We first note that the function is continuous for its domain of all real 

numbers. To locate points of inflection, we then find for what value(s) 

the second derivative is zero. 

d_d e e d_xidx( 4x3) = 4x 12x° 

&y 4 
2 a(4x3 — 12x?) = 12x2 — 24x = 12x(x — 2) 

Setting d_x}; = 0, it follows that inflection points may occur at ¢ = 0 and ¢ = 2. 

These two values divide the domain of the function into three intervals that 

we need to test. Let's choose t = —1,¢ = L and t = 3 as our test 

_ dy _dy _ 
values. Att = *1,9—36>0;att— I,Q— —2<0;andatt=3, 

dZ 

d_;: = 36 > 0. These results can be organised 0 2 
X —f——x 
T . . S0 - 0 + 
in a sign chart illustrating that the graph of ~ dx* 

y = x* — 4x3is concave up for the open N/ B /;\ B \/ 
intervals (— 00 ,0) and (2, o), and is concave § ?‘—:’ % ? g 

2 = =2 
down on the open interval (0, 2). s 5 & B & 

£ 35 &5 % 
s Z o 
EN



stationary  concave 
Att=0,y=0andatt=2, T bl inflection 0   

     
   

   

  

      

y=21— 40P = —16. 74 point 
Therefore, (0, 0) and (2, —16) are 

inflection points because it is at 
these points that the concavity of points of 

the graph changes. inflection <107 
il inflection | o216 | 7 

R | e Concave 
Ve [ | 2| | . down 

| | 1 N 

_ > 
0 x   The graph of the function from Example 9.13 reveals two different types of 

inflection point. The gradient of the curve at (0, 0) is zero - that is, it is a stationary 
point. The gradient of the curve at the other inflection point (2, —16) is negative. 

Figure 9.37 For either type 
of inflection point the graph 

crosses its tangent line at the 

For either type of inflection point the graph crosses its tangent line at the point point of inflection 

of inflection as shown in Figure 9.37.   

  

  

  

  

  

  

  

        

¥ 

The fact that the second derivative of a function is zero at a certain point does T* | 

not guarantee that an inflection point exists at the point. The functions y = x* T 
& 2 4 

and y = x* (Figures 9.38 and 9.39) show that o 0 is a necessary but not efei 
dx? W 

sufficient condition for the existence of an inflection point. 

& 4 &y g dzy 2 Fory:x3:a:£(x3):3x2:§:5(3)(2):6)(:@:03()::0‘ Ll 

We can conclude from this that there may be an inflection point at x = 0. jelig .| 
2 

We need to investigate further by checking to see if E); changes sign at x = 0. Figure 938 Graph of y = x* 
d? dz 

Atx=—1, S —6andatx =1, S 6. Thus, there is an inflection point ¥ 1 
dx? dx? 16 H 

at x = 0 (Figure 9.38) because the second derivative changes sign at x = 0. \ . I 

dy_d dy_4 dy Fory:x‘:aza(x‘):Mfi:E:a(filxl):12x2$E:Oatx:0A T 

) dy ! dy *\ == }" 
Again, we rzxeed to see le changes sign at x = 0. Atx = —1, e 12 and 1 

atx =1, E}; = 12. Thus, there is no inflection point at x = 0 (Figure 9.39) 10 X 

because the second derivative does not change sign at x = 0. 
Figure 9.39 Graph of y = x* 

The second derivative test 

Instead of using the first derivative to check whether a function changes from 

increasing to decreasing (maximum) or decreasing to increasing (minimum) 

at a stationary point, we can simply evaluate the second derivative at the 

stationary point. If the graph is concave up at the stationary point then 

it will be a minimum, and if it is concave down then it will be a maximum. 

383



       
     

>0 

concave 
up 

relative minimum 

relative maximum 

  

    

    
‘concave 
down 

fr<o 
Figure 9.40 Relative minimum 
and relative maximum 

   

384 

Differential calculus 1 

If the second derivative is zero at a stationary point (as for y = x*and y = x*), 

no conclusion can be made and we need to go back to the first derivative test. 

Using the second derivative in this way is a very efficient method for telling us 

whether a stationary point is a relative maximum or minimum. 

The second derivative test 

Iff'(9 = 0 and f"(c) < 0, then fhas a relative maximum at x = c. 

1ff'(c) = 0 and f"(c) > 0, then fhas a relative minimum at x = c. 

Iff'(¢) = 0, the test fails and the first derivative test should be applied. 

Example 9.14 

Find any relative extrema for fix) = 3x> — 25x3 + 60x + 20 

  

Solution 

The implied domain of fis all real numbers. Solve f'(x) = 0 to obtain 

possible extrema. 

fl0 = 15x% — 75x> + 60 = 0 
15(xt — 5x2 + 4) = 0 
15(x2 = 4)(x2 = 1) =0 

150c + 2x — Dx + Dx — 1) =0 

Therefore, fhas four stationary points: x = -2, x = 2,x = —-landx = 1. 

Applying the second derivative test: 

[ = 60x? — 150x = 30x(2x — 5) 

f(=2) = —180 < 0 = fhas a relative maximum at x = -2 

f"(2) = 180 > 0 = fhas a relative minimum at x = 2 

f"(=1) =90 > 0 = fhas a relative minimum at x = -1 

(1) = —90 < 0 = fhas a relative maximum at x = 1 

1. Find the vertex of each parabola using differentiation. 

@ y=x2—2x—6 (b) y=4x?+ 12x + 17 

(O A E 6 e 

2. For each function: 

(i) find the derivative, f(x) 

(ii) indicate the interval(s) for which f(x) is increasing 

(iii) indicate the interval(s) for which f(x) is decreasing. 

(Q)Ey =i XEE6! (b) y=7 — 4x — 3x2 

@y=32-x @ y=xt -4



3. For each function: 

(i) find the coordinates of any stationary points for the graph of the 

equation 

(ii) state, with reasoning, whether each stationary point is a minimum, 

maximum, or neither 

(iii) sketch a graph of the equation and indicate the coordinates of each 

stationary point on the graph. 

@) y=2¢*+3x2—72x + 5 ®) y=gr=5 

(C)yi=(c=43)2 (d)fy =052 56 

(e) y=x3—2x2—7x+ 10 ) y=x—Vx 

4. An object moves along a line such that its displacement s metres at time 

t seconds from the origin O is given by s(t) = > — 42 + t. 

(a) Find expressions for the object’s velocity and acceleration in terms of . 

(b) For the interval —1 < t < 3, sketch the graphs of the displacement— 

time, velocity-time, and acceleration-time graphs of separate sets of 

axes vertically. 

(c) For the interval —1 < t < 3, find the time at which the displacement 

is a maximum and find its value. 

(d) For the interval —1 < ¢ < 3, find the time at which the velocity is a 

minimum and find its value. 

(e) Describe the motion of the object during the interval —1 <t<3 

accurately. 

5. For each function fx): 

(i) find any relative extrema and points of inflection 

(ii) state the coordinates of any such points. 

Use your GDC to assist you in sketching the function. 

(@) fo = x* — 12x (b) f = ifl Y 

= 4 . © fo=x+3 (d) fix)y = —3x° + 5x* 

(e) fix) = 3x* — 4x® — 12x2 + 5 

6. Consider the function g(x) = x + 2 cosx. For the interval 0 < x < 2m 

(a) find the exact x-coordinates of any stationary points. 

(b) determine whether each stationary point is a maximum, minimum, 

or neither and give a brief explanation. 

7. An object moves along a line such that its displacement s metres from a 
fixed point P at time ¢ seconds is given by s(t) = t(t — 3)(8t — 9). 

(a) Find the initial velocity and initial acceleration of the object. 

(b) Find the velocity and acceleration of the object at t = 3 seconds. 
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(c) Find the values of ¢ for which the object changes direction. 

What significance do these times have in connection to the 

displacement of the object? 

(d) Find the value of ¢ for which the object’s velocity is a minimum. 

What significance does this time have in connection to the 

acceleration of the object? 

8. The delivery cost per tonne of bananas, D (in thousands of dollars), 

q " - 100 
when x tonnes of bananas are shipped is given by D = 3x + ==, x> 0. 

Find the value of x for which the delivery cost per tonne of bananas is 

a minimum, and find the value of the minimum delivery cost. Explain 

why this cost is a minimum rather than a maximum. 

9. The curve y = x* + ax? + bx + c passes through the point (—1, —8) 
d2y 

pra = 6. Find the values of a, b, and ¢ and sketch 
e 

. and af apolna* 

the curve. 

10. Find any maxima, minima or stationary points of inflection of the 
X3 Yl 

B function flx) = , stating, with explanation, the nature of 

each point. Sketch the curve, indicating clearly what happens as x — *oo. 

oo thatthe 11. For each graphed function, sketch its derivative on a separate pair of 

derivative of an even axes. Do not use your GDC. 
function is odd and the 

derivative of an odd 
function is even. ¥ y y 

% 
% % 

(d) even function (e) periodic function 

Y. 

AN AN 
NI VIV VvV = 

(a) semicircle (b) parabola (¢) odd function 
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12. The graph of the derivative of a function fis shown. 

(i) On what intervals is fincreasing or decreasing? 

(i) For what value(s) of x does fhave a local maximum or minimum? 

(a) (b) 

  

13. The graph of the second derivative f” of a function fis shown. State the 

x-coordinates of the inflection points of f. Give reasons for your answers. 

  

14. Sketch a continuous curve y = f(x) with the following properties. 

Label coordinates where possible. 

(@) f(=2)=8 (b) f(0) =4 

(©) f2)=0 @@ =f(=2=0 

(e) f'(x) >0 for |x| > 2 (f) f'(x) <O0for|x| <2 

(g) f"(x) <0forx<0 (h) f"(x) > 0 forx>0 

15. An object moves along a horizontal line such that its displacement, 

s metres, from its starting position at any time t = 0 is given by the 

function s(f) = —2#* + 15¢> — 24t. The positive direction is to the right. 

(a) Find the intervals of time when the object is moving to the right, 

and the intervals when it is moving to the left. 

(b) Find the (i) initial velocity, and (ii) initial acceleration of the object. 

16. (a) Use your GDC to approximate to three significant figures the 
q o 5 o 

maximum and minimum values of the function flx) = x — V2 sinx 

in the interval 0 < x < 27 

(b) Find f’(x) and find the exact minimum and maximum values for 

f(x) in the interval 0 < x < 27 
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Tangents and normals 

In many areas of mathematics and physics, it is useful to have an accurate 

description of a line that is tangent or normal (perpendicular) to a curve. 

The most complete mathematical description we can obtain is to find the 

algebraic equation of such lines. 

  

lE 

‘We now make use of the basic differentiation rules that we established earlier 

to determine the equation of lines that are tangent to a curve at a point. 

Example 9.15 shows how we can approximate the square root of a number 

quite accurately without a calculator by making use of a tangent line. 

  

Example 
  

Find the equation of the line tangent to y = Vx at x = 9. 

Use this tangent line to approximate 10. 
I — 

Solution 

‘We can find the equation of any line if we know its gradient and a point it 
passes through. 

Since y = 3 when x = 9, then the point the tangent passes through is (9, 3). 
‘We differentiate to find the gradient of the curve at x = 9, thus giving us the 

gradient of the tangent line. 

Y_dim_da_1 11 Z-dm-da-Lia- L 
d 

atx = :Ey:$—%flThegradlentofthecurveandtangentatx—9153 

Now that we have a point and a gradient for the line, we can substitute in the 

point-gradient form for the equation of a line. 

3 L Sy Y= 3 6(x 9=y 6x+2 

The equation of the line tangent to y = Vx atx = 9is y = % G 

For values of x near 9, y = Vx ~ f + % 

W
 

10,3 19 VIOl === 316 

The actual value of V10 to four significant figures is 3.162. Our 

approximation expressed to four significant figures is 3.167. 

The percentage error is less than 0.2%. 
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Figure 9.41 shows the graphs of y = //x and its tangent at x = 9, 

=2 
6 

approximation to the curve in the interval 5 < x <13 

centred on the point the tangent passes through (9, 3). 

+ %, and illustrates that the tangent is a very good 

20 

  

Figure 9.41 Graphs of y = Vx and its tangent at x = 9 

Example 9.16 

   Find the equation of the tangent to fix):er%atthepo‘mt (%,ZA 

T ———————————————————— 

Solution 

f(x):er%:erx’l 

e =5 1 fo=1-—x2 17? 

L) s S Whenx—z,f(z) P 2 

3) 
Hence, the gradient of the tangent at this point is —3 

,izf(,l) | = s 3|x 2§y B 2+2§y 3x+4 

The equation of the line tangent to fix) = x + ’—lc atx = %is y=-3x+4 

Example 9.17 

Consider the function gx) = x2(x — 1) 

(a) Find the two points on the graph of g at which the gradient of the curve is 8. 

(b) Find the equations of the tangents to the curve at both of these points. 

Solution 

(a) In order to differentiate by applying the power rule term by term, we 
need to write g(x) in expanded form: gix) = x2(x — 1) = x* — x? 

g =00 =3 -2 
g =3x2—2x=8=>3x2—2x—8=0 

(3x + 4) *2):0$x:*§orx:2 

o8-y (- 
g =23-22=4 

112 
Thus, the gradient of the curve is equal to 8 at (*%, i 2—7) and (2,4) 
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(b) tangent at (7é fi) 
5 

(2 AL 32 I 
Y ( 27) 8[" ( 3)]@;: S B 27 

176 =gy + 270 =y=28x 7 

Therefore, the equation of the tangent at (—%, = %) isy=8x+ % 

tangent at (2, 4): 

y—4=8x—2)=>y=8x—16+4=>y=8x—12 

Therefore, the equation of the tangent at (2, 4) is y = 8x — 12 

Figure 9.42 shows the results for Example 9.17 - the graph of the 

function g and the two tangent lines to the graph of the function 

that have a gradient of 8. Note that the scales on the x- and y-axes 

are not equal, which causes the gradient of the tangent lines to 

appear less than 8 for this particular graph. 

  

Figure 9.42 Results for Example 9.17 

    
A normal toa graph of a " 
e s e Th mal to a curve at a po 

line through the point 
that is at a right angle ‘We often need to find the line that is 24 Normal 

) [ofthe tangentatthe perpendicular to a curve at a certain 
point. In other words, the : . . 
tangent and normal to point, which we define to be the line 

curve at a certain point that is perpendicular to the tangent at 

are perpendicular. that point. In this particular context, 

we apply the adjective normal rather 
Recall that two L 

perpendicular lines have than perpendicular to denote that two 

gradients that are negative lines are at right angles to one another. 
reciprocals. If the gradients 
of two perpendicular lines 

  

are my and my, then 
Figure 9.43 The normal to a curve at a point 

= 7%Zormlm2: = 
“The exception is when one e 

of the lines is horizontal 
(gradient is zero), and the Find the equation of the normal to the graph of y = 2x? — 6x + 3 at the 

otheris vertical (gradient is : 
e point (1, —1). 
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Solution 
S =2¢—6x+3 
L= 2 e + G (2 6xEiE3) 

=4x—6 
Gradient of tangent at 

(1, —1)is4(1) — 6 = —2. 
Hence, gradient of normal 

  

| 
1s +EA 

Equation of normal: 

y*(*l):l(x* 1):>;v:l:)c*2 
2 2 2 

The graph in Example 9.18 shows the curve with both its tangent and normal 

at the point (1, —1). Remember that if you graph a function with its tangent 

and normal at a certain point, the normal will only appear perpendicular if the 

scales on the x- and y-axes are equal. However, the tangent will always appear 

tangent to the curve. 

Example 9. 
|
 

Consider the parabola with the equation y = sz 

(a) Find the equation of the normals at the points (—2, 1) and (—4, 4). 

(b) Show that the point of intersection of these two normals lies on the 
parabola. 

Solution 

@ == 

Gradient of tangent at (—2, 1) is %(—2) = —1, so the gradient of the 

normal at that point is +1 

The equation of the normal at (—2, 1) is: 

y ==t SHE2) == e 3 

Gradient of tangent at (—4, 4) is %(74] = —2, so the gradient of the 

normal at that point is % 

The equation of the normal at (—4, 4) is: 

1 I = _ y—4 2[x (=4 =y 2x+6 
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(b) Set the equations of the two normals equal to each other to find their 

intersection. 

x+3:%x+6:>%x:3$x:6 

then y = 9 implies that the intersection point is (6, 9) 

Substitute the coordinates of the points into the equation for the parabola. 

e e e - y=g®t=>9=702=>9=1736=9-9 

This confirms that the intersection point, (6, 9), of the normals is also a 

point on the parabola. 

8 

. Consider the function g{x) = 

Find an equation of the tangent line to the graph of the equation at the 

indicated value of x. 

(a) y=x2+2x+1 x=-3 

(b) y=x*+x? X77§ 

(© y=3x2—x+1 x=0 
1 1 

@ y=2x+3 x=5 

. Find the equations of the normal to the functions in question 1 at the 

indicated value of x. 

. Find the equations of the lines tangent to the curve y = x* — 3x2 + 2x at 

any point where the curve intersects the x-axis. 

. Find the equation of the tangent to the curve y = x> — 2x that is 

perpendicular to the line x — 2y = 1. 

. Using your GDC for assistance make accurate sketches of the curves 

y=x2—6x+20and y = x* — 3x> — x on the same set of axes. 

The two curves have the same gradient at an integer value for x 

somewhere in the interval 0 < x < 7. 

(a) Find this value of x. 

(b) Find the equation for the tangent to each curve at this value of x. 

. Find the equation of the normal to the curve y = x* + 4x — 2 at the 

point where x = —3. Find the coordinates of the other point where this 

normal intersects the curve again. 

I   . Find the equation of both the 

tangent and the normal to the graph of g at the point (1, 0).



8. The normal to the curve y = ax" + bx at the point where x = 1 has a 

gradient of 1 and intersects the y-axis at (0, —4). Find the value of @ and 

the value of b. 

9. (a) Find the equation of the tangent to the function fix) = x° + 2.7 + 1 
at the point (7 1, %) 

(b) Find the coordinates of another point on the graph of f where the 

tangent is parallel to the tangent found in (a). 

10. Find the equation of both the tangent and the normal to the curve 

y = Vx(1 — Vx) at the point where x = 4. 

11. Consider the function fix) = (1 + x5 — x). 

(a) Show that the tangent to the graph of fwhere x = 1 does not 

intersect the graph of the function again. 

(b) Also show that the tangent line at (0, 5) intersects the graph of fat a 

turning point. 

(c) Sketch the graph of fand the two tangents from (a) and (b). 

12. Find equations of both lines through the point (2, —3) that are tangent to 

the parabola y = x? + x 

13. Find all tangent lines through the origin to the graph of y = 1 + (x — 1)? 

14. (a) Find the equation of the tangent line to y = Vx atx = 8. 

(b) Use the equation of this tangent line to approximate V9 to three 

significant figures. 

15. Find the equation of the tangent line for fix) = % atx=a. 
g 

16. The tangent to the graph of y = x> at a point P intersects the curve again 

at another point Q. Find the coordinates of Q in terms of the coordinates 

of P. 

Chapter 9 practice questions 

1. The function fis defined as fix) = x2 

(a) Find the gradient (slope) of fat the point P, where x = 1.5 

(b) Find an equation for the tangent to fat the point P. 

(c) Draw a diagram to show clearly the graph of fand the tangent at P. 

The tangent from part (b) intersects the x-axis at the point Q, and the 

y-axis at the point R. 

(d) Find the coordinates of Q and R. 

(e) Verify that Q is the midpoint of [PR]. 

(f) Find an equation, in terms of a, for the tangent to fat the point 

S(a, a?),a#0. 
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The tangent from part (f) intersects the x-axis at the point T, and the 

y-axis at the point U. 

(g) Find the coordinates of T'and U. 

(h) Prove that whatever the value of a, T is the midpoint of SU. 

. The curve with equation y = Ax + B + %, x€R,x#0,hasa 

minimum at P(1, 4) and a maximum at Q(—1, 0). Find the value of each 

of the constants A, Band C. 

Differentiate: 

(@) 22— 3x) ®) % 

. Consider the function fix) = % Eie 20— () 

(a) Solve the equation f’(x) = 0. Show that the graph of fhas a turning 

point at (2, 8). 

(b) Find the equations of the asymptotes to the graph of f, and hence 

sketch the graph. 

. Find the coordinates of the stationary point on the curve with equation 
1 2 Y=4xth 

. The curve y = ax® — 2x? — x + 7 has a gradient (slope) of 3 at the point 

where x = 2. Determine the value of a. 

. Iff(2) = 3 and f'(2) = 5, find an equation of (a) the tangent to the graph 

of fat x = 2, and (b) the normal to the graph of fat x = 2. 

. The function g(x) is defined for —3 < x < 3. The behaviour of g/(x) and 
g'(x) is given in the tables. 
  

  

      

  

  

i e B 1 == 

g (x) negative 0 positive 0 negative 

1 1 1 —3<x<—3| -5 | —5<x< % Sk 3 3 2 3 

g'(x) positive 0 negative             

Use the information above to answer the following. In each case, justify 

your answer. 

(a) Write down the value of x for which g has a maximum. 

(b) On which intervals is the value of g decreasing? 

(c) Write down the value of x for which the graph of g has a point of 

inflection. 

(d) Given that g(—3) = 1, sketch the graph of g. On the sketch, clearly 

indicate the position of the maximum point, the minimum point, 

and the point of inflection.



9. Given the function f(x) = x? — 3bx + (c + 2), determine the values of b 

10. 

il 

12. 

and ¢ such that f(1) = 0 and f'(3) = 0. 

The graphs show the functions f;, f5, fi, fi, and their derivatives. 

Match each function to its derivative. 

  

  

y (a) y 

A —— 
0 x 

y (b) y 

£ 
e Tz 7 NSO x 

y (c) 5 

. 
NS/ 05 Vi o X 

¥ (d) y 

" 

(e) y   
Consider the function fix) = 1 + sinx 

(a) Find the average rate of change of ffrom x = 0 to x = g 

(b) Find the instantaneous rate of change of fat x = % 

(c) Atwhat value of x in the interval 0 < x < -7 is the instantaneous 

rate of change of f equal to the average rate of change of f from 

x=0tox= g(answer to part (a))? 

B2 
X 

vertical and a horizontal asymptote. 

  Consider the function y = . The graph of this function has a 

(a) Write down the equation of: 

(i) the vertical asymptote (ii) the horizontal asymptote. 

dy 
b) Find — 
bR dx 
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138 

14. 

15, 

16. 

17 

18. 

192 

20. 

(c) Indicate the intervals for which the curve is increasing or decreasing. 

(d) How many stationary points does the curve have? Explain using 

your result to (c). 

Show that there are two points at which the function h(x) = 2x2 — x* 

has a maximum value, and one point at which / has a minimum value. 

Find the coordinates of these three points, indicating whether each is a 
maximum or minimum. 

The normal to the curve y = x? + x7 at the point (1, 2) meets the axes at 

(a, 0) and (0, b). Find a and b. 

The displacement s metres of a car, t seconds after leaving a fixed point 

A, is given by s(t) = 10t — %tl 

(a) Calculate the velocity when t = 0. 

(b) Calculate the value of t when the velocity is zero. 

(c) Calculate the displacement of the car from A when the velocity is zero. 

A ball is thrown vertically upwards from ground level such that its 
height h at t seconds is given by h = 14t — 4.9t 

(a) Write expressions for the ball’s velocity and acceleration. 

(b) Find the maximum height the ball reaches and the time it takes to 

reach the maximum. 

(c) At the moment the ball reaches its maximum height, what is the 

ball’s velocity and acceleration? 

Find the exact coordinates of the inflection point on the curve 
y=x>+12x2 — x — 12, 

Given the function f(x) = 2 cos x — 3. At the point on the curve where 

x= Z, find: 
B 

(a) the equation of the tangent to f 

(b) the equation of the normal to f. 

Express both equations exactly. 

The curve y = ax? + bx + ¢ has a maximum point at (2, 18) and passes 
through the point (0, 10). Find a, b and c. 

For the function f(x) = %xz N ind: 

(a) the equation of the tangent line at x = —2 

(b) the equation of the normal line at x = —2.



2175 

22. 

23. 

258 

26. 

78 

28. 

29. 

Consider the function fix) = x* — x°. 

(a) Find the coordinates of any maximum or minimum points. 
Identify each as relative or absolute. 

(b) State the domain and range of f. 

(c) Find the coordinates of any inflection point(s). 

(d) Sketch the function clearly indicating any maximum, minimum or 
inflection points. 

Evaluate each limit. 

o e . 

R S v ®) Ime = 

    

Find the derivative f'(x) for each function. 

(a) fo = (b) fix) = x* — 3sinx 
x 

_1,x . © f=1+Z @ o =1 

. A point (p, g) is on the graph of y = x> + x> — 9x — 9, and the line 
tangent to the graph at (p, g) passes through the point (4, —1). 
Find p and q. 

For what values of ¢, such that ¢ = 0, is the line y = —1—12x + cnormal 
to the graph of y = x3 + %? 

Find the points on the curve y = %x‘ — x where the tangent line is 

parallel to the line y = 3x. 

At what point does the line that is normal to the graph of y = x — x2 
at the point (1, 0) intersect the graph of the curve a second time? 

An object moves along a line according to the position function 
s(t) = > — 9t + 24¢. Find the positions of the object when 

(a) its velocity is zero 

(b) its acceleration is zero. 

A particle moves along a straight line in the time interval 0 < t < 277 

such that its displacement from the origin O is s metres given by the 

function s = t + sint. 

(a) Find the value(s) of ¢ in the interval 0 < ¢ < 277 when the particle 

changes direction. 

(b) Show that the particle always remains on the same side of the origin O. 

(c) Find the value(s) of ¢ in the interval 0 < ¢ < 277 when the 

acceleration of the particle is zero. 

(d) Sketch a graph of the displacement of the particle from O for 

0 < t < 277, and state the maximum value of s in this interval. 
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30. The curve whose equation is y = ax® + bx? + cx + d has a point of 

inflection at (— 1, 4), a turning point when x = 2, and passes through the 

point (3, —7). Find the values of a, b, ¢, and d, and the y-coordinate of 

the turning point. 

31. Find the stationary values of the function fly) = 1 — - + 8 and 
A " D 

determine their nature. 

32. (a) Find the equation of the tangent to the curve y = % at the point (1, 1) 

(b) Find the equation of the tangent to the curve y = cosx at the 

point (%, 0) 

(©) Deduce that = > cosxfor0<x=< 7T 

33. Show that there is just one tangent to the curve y = x* — x + 2 that 

passes through the origin. Find: 

(a) the equation of the tangent 

(b) the coordinates of the point of tangency. 

34. The displacement s metres of a moving body B from a fixed point O at 

time ¢ seconds is given by s = 50¢ — 10> + 1000 

(a) Find the velocity of Bin ms™! 

(b) Find its maximum displacement from O. 

35. The diagram shows a sketch of the graph of y = f'(x) fora<x < b 

  

Sketch the graph of y = fix) for a < x < b, given that f(0) = 0, f(a) = 0 

and fix) = 0 for all x. On your graph, you should clearly indicate any 

minimum or maximum points, or points of inflection. 
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Learning objectives 

By the end of this chapter, you should be familiar with... 

« finding the derivative of a composite function 

« finding the derivative of a function that is in the form of a product or quotient 

« finding the derivative of exponential and logarithmic functions 

« solving problems requiring a solution that is an optimum; that is, a 

maximum or minimum (optimisation). 

The primary purpose of Chapter 9 was to establish some fundamental concepts 

and techniques of differential calculus. Chapter 9 also introduced some 

applications involving the differentiation of functions: finding maxima and 

minima of a function; kinematic problems involving displacement, velocity, 

and acceleration; and finding equations of tangents and normals. The focus of 

this chapter is to expand our set of differentiation rules and techniques and to 

deepen and extend the applications introduced in Chapter 9 - particularly using 

methods of finding extrema in the context of finding an ‘optimum’ solution to a 

problem. We start by investigating the derivatives of two important functions. 

Derivatives of exponential and 
logarithmic functions 

To make a conjecture for the derivatives of the functions y = e*and y = Inx, 

we will use the same informal approach that worked in the previous chapter 

for determining the derivative of y = cosx. We start by using some graphing 

technology (for example, a GDC) to graph the derivative of the function and 

then examine the graph’s shape to make a persuasive conjecture for the rule 

for the derivative. We then check the rule for a few selected values to help to 

confirm our conjecture. 

rivative of the exponential functi 

  

Let’s review some important facts about exponential functions. An exponential 

function with base b is defined as fix) = b*, b > 0 and b # 1. The graph of f 

passes through (0, 1), has the x-axis as a horizontal asymptote, and, depending 

on the value of the base of the exponential function b, will either be a 

continually increasing exponential growth curve, as shown in Figure 10.1, or a 

continually decreasing exponential decay curve, as shown in Figure 10.2. 

In Chapter 4 we learned that the exponential function e*, sometimes written as 

‘exp x} is a particularly important function for modelling exponential growth 
x 

and decay. The number e was defined in Section 4.2 as the limit of (1 + %) as 

x — 00. Let’s make a conjecture for the derivative of e* by looking at its graph 

on our GDC.



©,1) 

o x 

Figure 10.1 Exponential growth curve: flx) = b for b > 1. 
Asx— 00, fix) — o0; fis an increasing function 

  

Figure 10.2 Exponential decay curv    
As x— o0, fix) — 0 fis a decreasing function 

Look at Figure 10.3. The graph of the derivative of e* appears to be identical to 

e*itself. That is, %{e") = e*. Let’s make further use of a GDC to compare 

results for the derivative’s value computed by the GDC with the value of the 

rule from our conjecture for selected values of x. 

    

ix) = b for0<b<1. 

  

Plotl Plot2 Plot3 
\Yige(X) 
YYo= 

  

  

    
  

9 (ox)|x=1 (€)1 

4 (o|x=3 & 

    

2.71828 

2.71828 

20,0855 

20.0855           

  

  

  

4 356 
& e lxms.37 
e 4315.64 

0.011109 d & e lats 
s 0.011109         

  

Derivative of the exponential function 
Iffix) = e* then f(x) = e* In Leibniz nutzlion,i‘s") S 

The derivative of the exponential function is the exponential function. More 

precisely, the slope of the graph of fix) = e* at any point (x, e¥) is equal to the 

y-coordinate of the point. 

  

Now that we have found the derivative of y = e*, let’s find the derivative of 

its inverse, y = Inx, x > 0. We start by using our GDC to view a graph of the 

derivative of fix) = Inx and also construct a table of ordered pairs (x, f'(x)). 

  

Plotl Plot2 Plot3 

\iE1n(X)H 
Y 
Y 
Y 
Y 
Y 
\¥7= 

   
   

   

  

  Plotl_Plotz Plotd 

      
  

sl 

N     
  

        

X [Y2 
P ERROR 

I 
2 5 
3 133333 
1 25 
5 2 
6 “T6667 
=0   

  

Figure 10.4 Graphing the derivative of y = Inx 

  1 | 

  

  

Plotl Plot2 Plot3 
   e 

=nDeriv(Yi, X, 

Y = 
\Y: 

  

  

        

Figure 10.3 Graphing the 
derivative of ¢* 

Note that in the GDC 
images above, the graph of 
y = e¥is displayed in thin 
style and the graph 

A 
fy = —~(e¥) is displayed ofy = e s displaye 

in bold style. 

Note that in the GDC 
images on the left, the 
second graph screen has 
the graph of y = Inx 
turned off, so that only 
the graph of the derivative 
of y = Inxis displayed. 
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Derivative of the natural 
logarithm function 

Iffix) = Inx, then 

09 =L 0 in Leibniz 
N 

notaunna(lnx) == 

402 

Differential calculus 2 

In the table, each value in the Y, column is the gradient of the tangent to 

y = Inx at the given value for x. From the graph of the derivative, and especially 

from the table, we conjecture that the derivative of Inx is % Lets use a GDC to 

evaluate the derivative of Inx and graph the function of % and see if they match. 
  TETRY 

d 
£1(:0= g (1n(x)) 

1 X] 

T6TRY 

£2(x)=% 

1- k o 
  

-6.67)         
  < 

-6.67|       

Figure 10.5 GDC screens showing the derivative of I x and 

Therefore, %(lnx) = i 

Summary of differentiation rules 
Derivative of " flx) = x" = f'tx) = nx""! 
Derivative of sinx fix) = sinx = f'(x) = cosx 
Derivative of cosx fix) = cosx = f/(x) = —sinx 
Derivative of X fix) = e¥ = ) = e* 

  

Derivativeoflnx flx) = Inx = ) =+ 

Example 10.1 

Differentiate each of the following functions. 

  

@=5-2 ®g=-"  ©y-6-n%) 

Solution 

o9 = 5y 5.4y _1ld, @) fo= dx(S) ZdX(e) (b) gx) de(].nx) 

— (= I =10/=2¢ 2 

= B _ i 

2x dy_d d( (e’)) 
(c) e a(G) 5 In{= 

=0— i(lne3 — Inx) 
dx 

= *%(lnez) S %(lnx) 

d 1 SR 
d)c( g X 

T 
5 

m— 
x



Example 10.2 

Find the equation of the line tangent to each function at the specified value 

of x. Express the equation exactly. 

@) y=e*+1 x=1 (b) y=lnx x=4 

e 

Solution 

(a) Whenx =1,y =e! + 1 = e + L. The point of tangency is (1, e + 1). 

j—')vc = e* = slope of tangent line = e! = e 

Substitute into point-slope form of a line: y — y; = m(x — xy) 

y— (e + 1) = elx — 1) = equation of tangent line is y = ex + 1 

A graph of the curve and the result for the tangent line on a GDC 

provides evidence that the result is correct. 
  

  

Plotl Plot2 Plot3 Yl=e " (X)+1 

sYige  (X)+1 
“YoEex+l b 

YYo= 
Y= 1 ¥=3.7182818               
  

(b) When x = 4, y = In4. The point of tangency is (4, In4). 

i 
dx 

Substitute into point-slope form of a line: y — y, = m(x — x,) 

S slope of tangent line = L 
x 4 

y=Ind= i( — 4) = equation of tangent line is y = ix —1+In4 

Again, a graph of the curve and the result for the tangent line provides 

evidence that the result is correct. 
  Plotl_PlotZ Plotd YI=In(X) 

(2f25k-1+1n(    

  

x=4 ¥=1.3862944         
  

[5G (IR 

1. Write down the derivative of each function. 

@ y=5-e (b) y=x+ Inx ©y=2 
(d) y = 2elnx (e) y= %(e" + 2cosx) (f) y=12e+Inx 
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2. Find the equation of the tangent to the given curve at the specified value 

of x. Express the equation exactly, in the form y = mx + c. 

gi=mll 

4 

(b)y=xt+te x=0 

x=10]   @) y= 

(c) yzglnx x=e 

3. Find the coordinates of any stationary points on the curve y = x — e*. 

Classify any such points as a maximum, minimum, or neither, giving 

reasons for your answer. 

4. Show that the curve y = x — Inx has no points of inflection. 

5. Find the equation of the normal line to the curve y = 3 + sinx at the 
. T 

point where x = = 

6. Consider the function y = e* — x3. 

(a) Find f(x) and f"(x). 

(b) Find the x-coordinates (accurate to three significant figures) for any 

points where f'(x) = 0. 

(c) Indicate the intervals for which f(x) is increasing and the intervals 

for which f(x) is decreasing. 

(d) For the values of x found in part (b), state whether that point on the 

graph of fis a maximum, minimum, or neither. 

(e) Find the x-coordinate of any inflection point(s) for the graph of f. 

(f) Indicate the intervals for which f{x) is concave up, and indicate the 

intervals for which f(x) is concave down. 

7. A line with gradient m passes through the origin and is tangent to the 

graph of y = Inx. Find the value of m. 

The chain rule 

‘We know how to differentiate functions such as fix) =/x and g =x3+2x—3, 

but how do we differentiate the composite function fig(x)) = v B+ 2x— 37 

The rule for computing the derivative of the composite of two functions 

  

(a ‘function of a function’), is called the chain rule. Because most functions 

that we encounter in applications are composites of other functions, it can 

be argued that the chain rule is the most important, and most widely used, 

differentiation rule. 

Table 10.1 shows some examples of functions that we can differentiate with the 

rules that we have learned thus far, and further examples of functions that are 

best differentiated with the chain rule.



  

Differentiate without the chain rule Differentiate with the chain rule 
  

  

    

y = cosx y = cos2x 
=3+ 5x y=V3x % 5x 

y=Inx y=Inll -3 
- - 
S LT       

Table 10.1 Functions that can be differentiated with and without the chain rule 

  

Bl e i     iating a composite fu    

The chain rule says, in a very basic sense, that given two functions, the derivative 

of their composite is the product of their derivatives - remembering that a 

derivative is a rate of change of one quantity (variable) with respect to another 

quantity (variable). For example, the function y = 8x + 6 = 2(4x + 3) is the 

composite of the functions y = 2u and u = 4x + 3. Note that the function y is in 
terms of u, and the function u is in terms of x. How are the derivatives of these 

. b_ b du_ oo 
three functions related? Clearly, E =8, d_ =2and a = 4. Since 8 = 2 - 4, the 

u 

ot ly _dy du . 
derivatives relate such that — = W o In other words, rates of change multiply. 

u 
d 

If we think of derivatives as rates of change, the relationship g d—y . il—‘)': can 

be illustrated by a practical example. Consider the pair of levers in Figure 10.6, 

with lever endpoints U and U’ connected by a segment that can shrink and 

stretch but always remains horizontal. Hence, points U and U’ are always the 

same distance, u, from the ground. 

X F u'u B *     
  

Figure 10.6 Two levers with horizontal connection between U and U’ 

As point Y moves down, points U and U’ move up, and point X moves down 

but at different rates. Let dy, du, and dx represent the change in distance from 

the ground for the points Y, U, and X, respectively. Because YF, = 6 and 

UF, = 2, then if point Y moves such that dy = 3, then du = 1. Since UF, = 4 

and XF, = 2, then if point U’ moves so that du = 2, then dx = 1. 

  

   Y ¥ ground 

Figure 10.7 dx, du, and dy represent the change in distance from the ground for X, Uy and Y 
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For the polynomial 
function in 

Example 103, we could 
have differentiated the 

function in expanded 
form by differentiating 

term by term rather than 
differentiating the factored 

form by the chain rule. 

%Zi{léx‘ — 82 +1) 

= 64x3 — 16x 

‘This confirms the result. 

tis not always easier to 
differentiate powers of 

polynomials by expanding 
and then differentiating 

term by term. For 
example, it is far better to 

find the derivative of 
7= (3x + 58 bythe 

chain rule. 
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Combining these two results, we can see that for every 6 units that Y’s distance 

changes, X’s distance will change 1 unit. That is, ay = 6. Therefore, we can 

write — = —— . == = 3.2 = 6. In other words, the rate of change of y with 
dx  du dx 

respect to x is the product of the rate of change of y with respect to u and the 

rate of change of u with respect to x. 

Example 10.3 

The polynomial function y = 16x* — 8x2 + 1 = (4x — 1) is the composite 
d 

of y = u?and u = 4x? — 1. Use the chain rule to find Ey’ the derivative of y 

with respect to x. 

| 

Solution 

:uzzd—yZZM 
y du 

u:4x2*1$d—u:8x 

b b Applying the chain rule: = = = . S = 2.8 pplying the chain ri ed.x "W T u-8x 

=2(4x2—1)-8x 

= 64x3 — 16x 

‘We often write composite functions using nested function notation. For 

example, the notation f{g(x)) denotes a function composed of functions fand 

g such that g is the ‘inside’ function and fis the ‘outside’ function. For the 

composite function y = (4x? — 1)2 in Example 10.3, the inside function is 

g(x) = 4x? — 1 and the outside function is fiu) = u2 Looking again at the 

solution for Example 10.3, we see that we can choose to express and work out 

the chain rule in function notation rather than in Leibniz notation. 
  

  

Leibniz notation Function notation 
& d 
YD du_ e il/[grx);]:f'm)-g(x;:m-sx 
dr du dx dx — B =f(gw)- g = 2(4x2 — 1) - 8x 

=204x?— 1)- 8x e — 16 
= 64x’ — 16x - *       
  

Table 10.2 Leibniz and function notation for using the chain rule to differentiate y = (4x* — 1) 

This leads us to formally state the chain rule in the two different notations. 

Chain rule 

Ify = fiw is a function in terms of u and u = g(x) is a function in terms of x, then the function 
= figtn) is differentiated as follows: 
dy d 
Ey = %% (Leibniz form) 

u 
or, equivalently, 
dy_d — ATy 
3o /i) = flgu) g0 (function notation form)



The chain rule needs to be applied carefully. Consider the function notation 

form for the chain rule %[ fig(x))l = f'(gx)) - g'x). Although it is the product 

of two derivatives, it is important to point out that the first derivative involves 

the function f differentiated at g(x) and the second is function g differentiated at 
dy d 

x. The chain rule written in Leibniz form, oA 4 . d_u, is easily remembered 
u dx 

because it appears to be an obvious statement about fractions - but they are 

dy g du & 
not fractions. The expressions e and — are derivatives or, more precisely, 

u x 
limits, and although du and dx essentially represent very small changes in the 

variables u and x, we cannot guarantee that they are non-zero. 

The function notation form of the chain rule offers a very useful way of saying 

the rule ‘in words’ and thus, a very useful structure for applying it. 

fis outside function gis inside function 

N/ 
a = a[flgm] 7f(gm gx) 

derivative of outside function X derivative of inside function 

with inside function unchanged 

The chain rule in words: 

derivative of _ derivative of outside function « . derivative of 
composite ~ with inside function unchanged ~ inside function 

Although this is taking some liberties with mathematical language, the 

mathematical interpretation of the phrase ‘with inside function unchanged’ is that 

the derivative of the outside function, f, is evaluated at g(x), the inside function. 

Example 10.: 

Differentiate each function by applying the chain rule. Start by decomposing 

the composite function into the outside function and the inside function. 

(a) y = cos2x (b) y=v3x2 + 5x 

_ 1 (c) y=In(1 — 3x) (d)yfm 

e ————————————————— 

Solution 

(a) y = flgl) = cos2x  outside function is fiu) = cosu 

inside function is g(x) = 2x 

dy d 
In Leibniz form: d_il: = é . % = (—sinu) - 2 = —2 sin(2x) 

‘The chain rule is our 

most important rule 

of differentiation. It is 

an indispensable tool 
in differential calculus. 

Forgetting to apply the 
chain rule when it needs 

to be applied, or applying 
it improperly, is a 
«common source of errors 

in calculus computations. 

Itis important to 
understand it, practise it, 

and master it. 
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Alternatively, in function notation form: 

d 
2 — flow) - ¢ = [—sin(2x] - 2 = —2 sin(2x) dx ) 

derivative of outside function D derivative of inside function 
with inside function unchanged 

“ (b) y = flgw) = V3x2 + 5x outside function is flu) =V = u> f'u) = %u" 

inside function is gx) = 3x + 5x 

dy 1 L, 
e =fllgw) - g0 = E(Sx + 5%)7% - (6x + 5) 

(/72 W 1.3 
dx  oBx2+ 50 2/3x7 + 5x 
_ o . b T | (c) y=fig) = In(1 — 3x) outside function is fiu) = Inu for=g 

inside function is gix) = 1 — 3x 

Y~ figony - goo = L -3 dx s 

&y__ 3 3 
= r 
& I35z O w1 

  

    

= R | - ; e L oy (d) y = figwx) AT outside function is fu) =, = u™' f'w) u 

inside function is g(x) = 3x + x 

d: 
ay = flgw) - g = —B3x2 + x)2- (6x + 1) 

dy 6x+1 
A& G+ 

Example 10.5 

Find the derivative of the function y = (2x + 3) by: 

(a) expanding the binomial and differentiating term by term 
(b) using the chain rule. 

Solution 

(@) y=0@x+3)7=@2x+3)2x+ 372 

= (2x + 3)(4x2 + 12x + 9) 

B A E | R R D G2 S 6.8 B4 

= 8x> + 36x2 + 54x + 27 

dy 
— =24x2 + 72x + 54 
dx * 
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(b) y = flgw) = 2x + 3)? 

y=fu =u*=fw=3u? 

u=gx)=2x+3=glx)=2 

= 6(2x + 3)2 

=6(4x2+ 12x + 9) 

=24x2 + 72x + 54 

Example 10.6 

For each function f(x), find f"(x). 

(@) foy =sin2x  (b) f =sinx? (¢) fy = e (d) fioy = V(7 — 527 
e 

Solution 

(a) The expression sin’x is an abbreviated way of writing (sinx)2. 

Hence, if fix) = glh(x)) = (sinx)?, then the outside function is gu) = u?, 

and the inside function is h(x) = sinx. 

By the chain rule, f'(x) = g/(h(x)) - h'(x) 

= 2(sinx)! - cosx 

‘Therefore, f(x) = 2 sinx cosx 

(b) The expression sinx? is equivalent to sin(x2), and is not (sinx). 

Hence, if fix) = glh(x)) = sin(x?), then the outside function is g(u) = sinu, 

and the inside function is h(x) = x2. 

By the chain rule, f'(x) = g'(h(x)) - h'(x) 

= cos(x?) - 2x 

Therefore, fx) = 2x cos(x?) 

(¢) fix) = glh(x)) = e  outside function is g(u) = e* 

inside function is h(x) = sinx 

By the chain rule, f'(x) = g/(h(x)) - h'(x) 

Therefore, ixi=tesz=cosy 

(d) First change from radical form to rational power form. 
foo = Y7 = 5x% = (7 — 50} Endeavour to write 

. . functions in a way that 
fix) = glhx) = (7 — 50° outside function is g(u) = u* eliminates any confusion 

inside function is h(x) = 7 — 5x ::_fi‘;dzgzz:fi::“mt 

By the chain rule, f'(x) = g(h(x)) - h'(x) example, write sin(x) 
2 L rather than sinx% 

= oY Gh) 1 + Inx rather than 
R . Inx + 155 + Vx rather 

Therefore, B e O than VX + 5;1n(4 — x2) 
37 — 50} 37— 5x) rather than Ind — x2, 
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Exercise 10.2 

1. Find the derivative of each function. 

  

(a) y=(3x— 8% b)) y=+vi—x (c) y=Inx2 

dy=2 sin(g) (&) y=2+4)72 ) y=e> 

@7 ®) y=cos’x @) y=e®—2x 
e 1 - - = R == B PO M) y=Inkx>—9) 

. Find the equation of the tangent to the given curve at the specified value 

of x. Express the equation exactly in the form y = mx + c. 

(@) y=0x*—103 b= 

() y=v3x2-2 x=3 

(c) y = sin2x x=a 

. An object moves along a line so that its position, s, relative to a starting 

point at any time ¢ = 0 is given by s(t) = cos(t* — 1). 

(a) Find the velocity of the object as a function of . 

(b) Find the object’s velocity at t = 0. 

(c) In the interval 0 <t < 2.5, find any times (values of t) for which the 

object is stationary. 

(d) Describe the object’s motion during the interval 0 < t < 2.5. 

d; 
. Find ay for each function. Use your GDC to check your answer. 

  

@y=VEtmFl ()= © y=G+vx)’ 

— ecost > 2 S @y=e (e) y = (Inx) ) y Vol 

. Find the equation of (i) the tangent, and (ii) the normal to each curve at 

the given point. 

@) y=   s at(3,2) 

(b) y=V1+4ax at(2,3) 

(c) y=In4x — 3) at(1,0) 

. Consider the trigonometric curve y = si.n(Zx — %T) 

dzy 
7 

(b) Find the exact coordinates of any inflection points for the curve in 

the interval 0 < x < 7. 

Y 
(a) Find -~ and 

dx



The product and quotient rules 

The product rule 

  

With the differentiation rules that we have learned thus far, we can differentiate 

some functions that are products. For example, we can differentiate the 

function fix) = (x> + 3x)(2x — 1) by expanding and then differentiating the 

polynomial term by term. In doing so, we are applying the sum and difference, 

constant multiple, and power rules from the previous chapter. 

Sl =2+ 3x)2x — 1) = 2x3 + 5x2 — 3x 

d d d 
fo= 25(){3) & Sa(xz) — 35(){) 

floo = 6x2+10x— 3 

The sum and difference rule states that the derivative of a sum or difference 

of two functions is the sum or difference of their derivatives. Perhaps the 

derivative of the product of two functions is the product of their derivatives. If 

we try this with the above example we get 

f'(X):%(XZ‘F:ix)'%(ZX*1):(2)(1’3)42:4)(‘*’5. 

However, 4x + 6 # 6x2 + 10x — 3, so this is clearly incorrect. 

The derivative of a product of two functions is not the product of their 

derivatives. However, there are many products, such as y = (4x — 3)%x — 1)* 

and f{x) = xsinx, for which it is either difficult or impossible to write the 

function as a polynomial. In order to differentiate functions like this we need a 

product rule. 

Product rule 

If y is a function in terms of x that can be expressed as the product of two functions, u and v, that 

are also in terms of x, then the product y = uv can be differentiated as follows: 

G Gl Gl g 
Efa(u‘/)*ua‘fva 

Equivalently, if y = fix) - g(x), then 
d 
(Ti = ifix) . g\x}] = fix) - gx) + g0 - fx) 

A formal proof of the product rule is beyond the scope of this book. The 

following examples show how to apply the product rule in a variety of 

situations. 
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Example 10.7 

Use the product rule to compute the derivative of the function 

y =2+ 3x)2x—1). 

Solution 

Let u(x) = x2 + 3xand v(x) = 2x — 1. Then y = u(x) - v(x)or y = uv 

du dv 
== A e 2x + 3and 

By the product rule (in Leibniz form) 

d_d dv , du 
s =u—+v—=x2+ 2SI S @xE i PG v (Zeis) 2x—1)-(2x +3) 

= (2x2 + 6x) + (4x? + 4x — 3) 

=6x2+10x—3 

This result agrees with the derivative we obtained earlier from differentiating 

the expanded polynomial. 

Example 10.8 

~
|
 

Given y = x%sinx, find = 

|¢
 

Solution 

Lety = fix) - gbx) = x?sinx = fix) = x? and g(x) = sinx 

f'tx) = 2x and g'(x) = cosx 

By the product rule (function notation form), 

dy _4q .y o = - + f [fo - g) = fix - gx) + g0 - fx) 

= x2. cosx + (sinx) - 2x 

d 
I x2cosx + 2x sinx 

As with the chain rule, it is helpful to remember the structure of the product 
rule in words. 

first factor second factor 

AN 
& %[flx) - g = flo - g + goo - fx) 

productof two  __ first derivative of + second X derivative of 

functions, i.e. factors ~ factor 7 second factor ' factor first factor 
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Example 10.9 

Find the exact coordinates of any stationary points, and any inflection 

points, for the curve y = xe*. Classify any stationary points as a maximum, 

minimum, or neither. 

Solution 

Recall from Chapter 9 that stationary points occur where the first derivative 

is zero and that inflection points (where concavity changes) may occur 

where the second derivative is zero. 

il—‘f S Li [fo - goo] = fix) - gx) + g - f1x) 
d d d =9 A (X ey epi=tv=(Cr i eie= (V) 

R S e a*xe er=0=e A #a* when x = 

Whenw=I=1ly==el= *% 

Therefore the curve has a stationary point at (* i 7%). 

Fe 
Eyz s %(xex +e)= %(xe‘) + ie" 

= (xe* + ) + e 

8 et 2= 0 et D=0 2 = 0 when x= -2 Pt e =0 = eXx B LA 

An inflection point will occur at x = —2 if the sign of the second derivative 

changes (i.e. concavity changes) at that point. Find the sign of E}; at test 

points x = —3 and x = 0. 

dy 1 Atx=-3,— 2 =e¥-3+2=—-L-<0 
dx? €2 

dzy 
Atx=0,—==¢e%0+2)=2>0 

dx? 

The second derivative undergoes a sign change at x = —2, hence there is an 

inflection point on the curve at that point. 

Whenx = —2,y= —2e2= *% 
e 

Therefore, the curve has an inflection point at (*2, = %) 
e 

‘We can use the second derivative test to classify the stationary point ( S %) 

dy 1 . 
Atx = 71’@ =e(—1+2)==>0= curveis concaveupatx = —1. 

e 

Therefore, the stationary point (7 i, *%) is a minimum point for the curve. 

It's good practice to perform a graphical check of our results on a GDC. 

The graph on the GDC not only visually confirms our results but also 

informs us that (7 i *%) is an absolute minimum. 

  
Yi=Xe (X) 

  

x=-1 ¥=-.3678794   
  
Yi=Xe (X) 

  
X=-2 Y=-.2706706 

178 3678704412 9/l 
2/€ 5706705665 

  
  

      

Figure 10.8 GDC screens for 

solution to Example 10.9 
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The quotient rule 

In part (d) of Example 10.4 in Section 10.2, we used the chain rule to find the 

  derivative of the rational function y = by expressing the function as 
1 

X2+ x 
x+3, 

= 1 

Although we can write the function as y = (x + 3)2x — 1)~' and then apply 

both the product rule and the chain rule, it seems worthwhile to have a quotient 

rule to differentiate such functions more directly. 

  y = (3x2 + x)-1. Can we apply the same approach to differentiating y = 

Quotient rule 
If y s a function in terms of x that can be expressed as the quotient of two functions, u and v, that 

are also in terms of %, then the quotient y = 2 can be differentiated as follows: 
ydu_, dv 

G 1(5) v dx 

. oo _fw Equivlently ify =5 then 

dy d[fn] _ g0 fw — foo- g 

[x'X] T e 

A full proof is beyond the scope of this course. As with the chain rule and the 

product rule, it is helpful to recognise the structure of the quotient rule by 

remembering it in words. 

  

(denominator) X (deri"afi"e Of) - (numerator)( derivative Of) 
(derivative of ) _ numerator denominator. 

quotient (denominator)? 

Example 10.10 

x+3 dy   Gi , find = 1veny dx 

] 

Solution 

5O = T 
e e 1:>u x+3andv=2x—1 

du dv e ) 
dx ddx 

By the quotient rule (Leibniz form), 

Ldu_dv 
d_}':i(g): & dx_x—D-1-(x+3)-2 
dx dx\v vz (P2 

_2x—1-2x-6 
(22 

7 
AR (O E)E



Example 10.11 

\
:
|
 

Given y = fi, find -~ by using: 

  

dx 

(a) the quotient rule (b) the chain rule. 

| 

Solution 

_fo_ _ . (a) y7@7 2x73¢f(x)— land g =2x—3 

f®)=0andgx) =2 

By the quotient rule (function notation form), 

  

  

  

Y_d fix)] _ 8w S0 —fv- g 
dx  dx[gWX). [g)? 

_@2x=3-0-1.0 
(PRS2 

dy_ 2 
dx (= 2P 

(b) y = figw) = 2x17 5= (DXE0 1 outside function is fiu) = u~! 

= flu)=—u? 

inside function is gx) = 2x — 3 

By the chain rule (function notation form), 

d 
Ey ST RS 2,3 ) 

Y2 
dx (EsaIZ 

As Example 10.11 illustrates, when required to differentiate a quotient you can 

choose to rewrite the quotient y = % asy = uv~!, and then the chain rule 

and/or the product rule instead of the quotient rule. 

Example 10.12 

For each function, find its derivative by using 

(i) the quotient rule (ii) another method. 

O 

@ fo=5—%5 
DXl 

Bx2 
    (b) g0 = 

415



v=0x—5"isa 

composite function, so 

we'll need the 

o dv 
h le to find —— chain rule to find = 

Note the use of brackets. 
‘When using the quotient 

rule, it is a good idea to 
enclose all factors and 

derivatives in brackets. 
Also, be extra careful 

with the subtraction in 
the numerator, which 

causes many errors 
when using the quotient 

rule. 
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Solution 

5 S 3= 2 OIOFCEPEEEE= 
du udv 

f,(x):d_y: de _3-5.-3-0Gr-2:0 
dx v? (RXES512 

_6x—15—6x+4 
(Ockib)2 

(L1 
= ey 

(ii) Rewrite fix) as a product and apply the product rule with the chain 

rule. 
PRl ) = et 

fo=y T (B2 0odts) 

=u=3x—2andv=(x— 5" 

O %(uv) e u% + v:—; 

=(Bx—2- %[(2): = S 4 @ = B3R =5 

= (3% — 2)[—(2%x— 5)2. 2]+ 32x— 5)! 

= ((Fa =R a00ke = G AR a{one = S 

= (2x — 52[(—6x + 4) + 32x — 5) 

=(2x— 52—6x + 4 + 6x — 15] 

T 
=G> 

(b) () gm=y= 

    

Apply chain rule 

to %[(ZX = GF| 

Factorise out HCF 

OR(PoEE e 

dy dx _3x2-5—(5x—1)-6x e = o= COMRR Co S ko it o Vit L s O 
gt dx (3x2)? 

_ 15x2 — 30 + 6x 
Ox4 

_3x(=5x+2) 

9xt 

_ —lyar 
g e



(ii) Use algebra to split the numerator: 

Db | 5 G 
BxE BYZES Y2 

  

lez 
3 

  8 = 

_5dy_Lld g 3dx(x ) 3dxbc ) 

S | 3( o) 3( Dxa) 

5 Sl 2 5x SOk R v —n = 
2 85 3 B2 B Bxe 

  

As Example 10.12 demonstrates, before differentiating a quotient, consider 

whether it is worthwhile to perform some algebra that may allow you to 

differentiate more efficiently. 

By 

=1 

(they are reciprocals). However, it is not possible to split the denominator and express as two 

s 323 
2 Sl ey ot ) : 
1" would apply either the quotient rule, or the product rule with the function 

  ‘The function h(x) =   initially looks similar to the function gin Example 10.12 part (b) 

  is not equivalent to Hence, in order to differentiate 

  hix) = 

rewritten as h(x) = 3x(5x — 1), using the chain rule to differentiation the factor (5x — 1)~1. 

|5 G TELR (0K 

1. Find the derivative of each function. 

  

@ y= e 
(c) y=xInx 

() y= e; 

(g) y=0x— 1Dx*+1) 

0 === 

(k) y = (x? — DIn(3x) 

  

  

b)) y=x/T—x 

(d) y = sinx cosx 

_ o il 
® y=r— 

_ sinx 
hy= 

= G 

0 =572 

O y=—t 
sin?x + cos’x 

2. Find the equation of the tangent to the given curve at the specified value 

of x. Express the equation exactly in the form y = mx + c. 

= =2 
P * 
=k = ®) y=23+ x=1 

(©) y=x/x2—3 x=2 
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To find the derivative of 
. sinx 

tanx, express it as—— osx 
and apply the quotient 10, 

rule. 

418 

. Consider the function h(x) = 

. The function h is defined as h(x) = 

. Consider the function fix) = 

) 
e 
  

(a) Find the exact coordinates of any stationary points. 

(b) Determine whether each stationary point is a maximum, minimum, 

or neither. 

(c) What do the function values approach as (i) x — oo (ii) x — —o0? 

(d) Write down the equation of any asymptotes for the graph of h(x). 

(e) Make an accurate sketch of the curve, indicating any extrema and 

points where the graph intersects the x- and y-axes. 

. Find the equation for the tangent and the normal to the graph of 

  1 . 
= at the point where x = —3. 
o 

. A curve has equation y = x(x — 4)%. 

(a) For this curve, find: 

(i) the x-intercepts 

(ii) the coordinates of the maximum point 

(iii) the coordinates of the point of inflection. 

(b) Use your answers to part (a) to sketch a graph of the curve for 

0 < x < 4, clearly indicating the features you have found in part (a). 

. Find the equation of (i) the tangent (ii) the normal to each curve at the 

given point. 

  

(a)y:fi at(3,2) b) y=x/T+x  at(0,0) 

Or=y a(y) 
. The tangent to the graph of y = 3xy/1 + 2x at the point (4, 36) intersects 

the x-axis at point A and intersects the y-axis at point B. Find the exact 

coordinates of A and B. 

2x—4 

—4x+5 

  

(a) Find the derivative of h, h'(x). 

(b) Without using your GDC, find the exact coordinates of any points 

on the graph of i where there is a horizontal tangent. 

(c) Use your GDC to confirm your results for part (b). 

. Find the equation of both the tangent and the normal to the curve 

y = x tanx at the point where x = %r 

  

S| 

(x+1)3 

(c) Does the graph of fhave an inflection point at x = 3.8? 

Give reasons for your answer. 

Sl 02013 8) 

(x+ 14 
  (a) Show thatf'(x) = (b) Show that f"(x) =



Optimisation 

Many problems in science and mathematics involve finding the maximum or 

minimum value (optimum value) of a function over a specified or implied 

domain. The development of calculus in the 17th century was motivated to 

a large extent by maxima and minima (optimisation) problems. One such 

problem led Pierre de Fermat (1601-1665) to develop his principle of least 

time: a ray of light will follow the path that takes the least (or minimum) time. 

The solution to Fermat's principle lead to Snell’s law; or the law of refraction. 

The solution is found by applying techniques of differential calculus, which can 

also be used to solve other optimisation problems involving ideas such as least 

cost, maximum profit, minimum surface area, and greatest volume. 

We have learned the theory of how to use the derivative of a function to locate 

points where the function has a maximum or minimum (i.e. extreme) value. 

It is important to remember that if the derivative of a function is zero at a 

certain point, it does not necessarily follow that the function has an extreme 

value (relative or absolute) at that point - it only means that the function has a 

horizontal tangent (stationary point) at that point. An extreme value may occur 

where the derivative is zero or at the endpoints of the function’s domain. 
  

Figure 10.9 shows the graph of flx) = x* — 8x3 + 18x2 — 16x — 2. 

The derivative of f(x) is f'(x) = 4x* — 24x? + 36x — 16 = 4(x — H(x — D2 

The function has horizontal tangents at both x = 1 and x = 4 since the 

derivative is zero at these points. However, an extreme value (absolute 

minimum) occurs only at x = 4. It is important to confirm — graphically or 

algebraically - the precise nature of a point on a function where the derivative Figure 10.9 GDC screen showing 

is zero. Some different algebraic methods for confirming that a value is a the graph of 

maximum or minimum will be illustrated in the examples that follow. Ja) = xt = 8 + 1852 — 16x — 2 

      

It is also useful to not ignore that one can often find extreme values (extrema) 

without calculus (e.g. using a minimum command on a graphics calculator). 

Calculator or computer technology can be very helpful in modelling, solving 

or confirming solutions to optimisation problems. However, it is important to 

learn how to apply algebraic methods of differentiation to optimisation problems 

because it may be the only efficient way to obtain an accurate solution. 

Let’s start with a relatively straightforward example. We can use the steps in the 

solution to develop a general strategy that can be applied to more sophisticated 

problems. 

Example 10.13 

Find the maximum area of a rectangle inscribed in an isosceles right-angled 

triangle whose hypotenuse is 20 cm long. 
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General strategy for 
solving optimisation 
problems 
Step 1: Draw a diagram 
that accurately illustrates 
the problem. Label all 

Kknown parts of the 
diagram. Using variables, 
label the important 

unknown quantity (or 

quantities), for example, 
xfor base and y for height 
in Example 10.13. 
Step 2: For the quantity 

that is to be optimised 

(area in Example 10.13), 
express this quantity as 

a function in terms of 
a single variable. From 
the diagram and/or 
information provided, 
determine the domain of 

this function. 

Step 3: Find the derivative 
of the function from Step 

2, and determine where 

the derivative is zero. This 

value (or values) of the 
derivative, along with any 
domain endpoints, are the 
critical values to be tested 

~ in Example 10.13: x =0, 
x=10,and x = 20). 
Step 4: Using algebraic 
(e.g. second derivative 
test) or graphical (e.g. 
GDC) methods, analyse 
the nature (maximum, 
‘minimum or neither) of 
the points at the critical 

values for the optimised 
function. Make sure 

‘you answer the precise 
question that was asked in 
the problem. 
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] 

Solution 

Step 1: Draw an accurate 

diagram. Let the base of the   

      

rectangle be x cm and the 
height y cm. y s 

The area of the rectangle is e i |G 

A= xycm? by 
«——20cm 

  

Step 2: Express the area as a function in terms of only one variable. 

It can be deduced from the diagram that y = 10 — %x. 

Therefore, A(x) = x(lO = %x) S0 %xz 

x must be positive; from the diagram it is clear that x must be less than 20. 

Step 3: Find the derivative of the area function and find for what value(s) of 

x it is zero. 

A =10—x 

A'(x) = 0when x = 10 

Step 4: Analyse A(x) at x = 10 and also at the endpoints of the domain, 

x=0andx = 20. 

The second derivative test (Chapter 12) provides information about the 

concavity of a function. The second derivative is A”(x) = —1 and since 

A’(x) is always negative, A(x) is always concave down, indicating that A(x) 

has a maximum at x = 10. 

A(0) = 0 and A(20) = 0. Therefore A(x) has an absolute maximum at x = 10. 

  
Example 10.14 

Two vertical posts, with heights of 7 m and 13 m, are secured by a rope going 

from the top of one post to a point on the ground that is between the posts 

and then to the top of the other post (see diagram). The distance between 

the two posts is 25 m. Where should the point at which the rope touches the 

ground be located so that the least amount of rope is used? 

  

Solution 

Step 1: Draw an accurate diagram. 

Draw the posts as line segments PQ and 

TS and the point where the rope touches P b 

the ground is labeled R. The optimum 

location of point R can be given as a 

distance from the base of the shorter 

post, QR, or from the taller post, SR. Q x R 25— x S 

4————25m——————»



It is decided to give the answer as the distance from the shorter post, and 

this is labeled x. There are two other important unknown quantities — the 

lengths of the two portions of the rope, PR and TR. These are labeled a and 

b, respectively. 

Step 2: The quantity to be minimised is the length L of the rope which 

is the sum of a and b. From Pythagoras’ theorem, a = Vx2 + 49 and 

b= /(25 — x)? + 169. Therefore, the function for length (L) can be 

expressed in terms of the single variable x as 

Loy = Vx? + 49 + /(25 — 07 + 169 

VX2 + 49 + vx? — 50x + 625 + 169 

= Vx2+ 49 + Vx2 — 50x + 794 

From the given information and diagram, the domain of L(x) is 0 < x < 25 

Step 3: To facilitate differentiation, express L(x) using fractional exponents. 
1 1 

L(x) = (x? + 49)% + (x2 — 50x + 794)% 

Apply the chain rule for differentiation: 

A _ L2 4 49) 500 + Lx2 — 50x + 794) 32x — 50) e 3 
dr _ i ds o 25, 

dx  VxZ+49  JxZ—50x+ 794 

By setting g—L = 0, we obtain 
x 

  

xyx%— 50x+ 794 = —(x — 25)Vx% + 49 

x(x? — 50x + 794) = (25 — 0Ax? +49) 

x4 — 50x% + 794x2 = x* — 50x3 + 674x2 — 2450x + 30625 

120x2 + 2450x — 30625 = 0 

5(4x — 35)(6x +175) =0 

R 
4 6 

Step 4: Since x = *% is not in the domain for L(x), then the critical values 

arcE (o %TS and x = 25. Simply evaluate L(x) for these critical values. 

L(0) = 49 + V794 ~ 35.18 

L(25) = V674 + 13 ~ 38.96 

L(%S) = 5/4T ~32.02 

Therefore, the rope should touch the ground at a distance of %TS =8.75m 

from the base of the shorter post to give a minimum rope length of 

approximately 32.02 m. 
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N 72 Actons 
82 View » 
[A3: Graph Enty/Et o +[+2-s0-x0794 
(1% 4 Window'Zoom 
|fu5: Trace 
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655t dyiax   

6: Integral 
[067: Bounded Area 
|©8: Anayse Canics ] 

  

  

  

  

  

  7 
£1(x)VEETII TS0 0 

(8.75,32) 

1 
  
55| 3 23}         

Figure 10.10 GDC screens for 

steps 3 and 4 of the solution to 

Example 10.14 
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The minimum value could also be confirmed from the graph of L(x), but 

it would be difficult to confirm using the second derivative test because of 

the tedious algebra required. From this example, we can see that applied 

optimisation problems can involve a high level of algebra. If you have access 

to suitable graphing technology, you could perform steps 3 and 4 graphically 

rather than algebraically (as shown in Figure 10.10). 

In both Examples 10.13 and 10.14, the extreme value occurred at a point where 

the derivative was zero. Although this often happens, an extreme value may 

occur at the endpoint of the domain. 

Example 10.15 

Four metres of wire is to be used to form a square and a circle. How much of 

the wire should be used to make the square and how much should be used to 

make the circle in order to enclose the greatest amount of total area? 

  

  

Solution 

Step 1: Let x = length of each edge of the 4m 

square, and r = radius of the circle. x 

Step 2: The total area is given by x x 

A = x? + 72 The task is to write the 
area A as a function of a single variable. 

      
B 

Therefore it is necessary to express r in terms of x or vice-versa and perform 

a substitution. 

The perimeter of the square is 4x and the circumference of the circle is 27r. 

The total amount of wire is 4m which gives: 
21 —x) 

4=4x+2mr = 2Ar=4—4x = r= = 

Substitute for r: 
e — P A(x):x2+‘n'[2(lfl x)] :xz+4(1nx) 1! =+ Ot = 8x £ 4] 

Because the square’s perimeter is 4x, then the domain for A(x) is0 = x < 1 

Step 3: Differentiate the function A(x), set equal to zero, and solve. 

d(1 A Ll + 02— 8x 1 41) 

=l = —7—T[2(7T+ Dx—8]=0 

4 S S e el Am+Dx—8=0 x= 2~ 05601 

The critical values are x = 0, x &~ 0.5601, and x = 1 

Step 4: Evaluate A(x): A(0) ~ 1.273, A(0.5601) ~ 0.5601, and A(1) = 1 

Therefore, the maximum area occurs when x = 0 which means all the wire is 

used for the circle.



Example 10.16 

A pipeline needs to be constructed to link an offshore drilling rig to an 

onshore refinery depot. The oil rig is located at a distance (perpendicular 

to the coast) of 140 km from the coast. The depot is located inland at a 

perpendicular distance of 60 km from the coast. For modelling purposes, 

the coastline is assumed to follow a straight line. The rate at which crude 

oil is pumped through the pipeline varies according to several variables, 

including pipe dimensions, materials, temperature, and so on. On average, 

oil flows through the offshore section of the pipeline at a rate of 9kmh~! 

and through the onshore section at a rate of 5km h~'. Assume that both 

sections of pipeline can travel straight from one point to another. At what 

point should the pipeline intersect with the coastline in order for the oil to 

take a minimum amount of time to flow from the rig to the depot? 

| 

Solution 

Step 1: The optimum location of 

the point, C, where the pipeline 

comes ashore will be designated 

by the distance it is from the point 

on the coast that is a minimum 

distance (perpendicular) from the 

rig, R (140 km). 

  

The distance from R to Cis Vx> + 140% and the distance from D (depot) 

to Cis /(160 — x)> + 602. 

Step 2: The quantity to be minimised is time, so it is necessary to express the 

total time it takes the oil to flow from R to D in terms of a single variable. 

   

. _ distance 
hine e e 

rate 
2 

time (offshore) = w 

/x> — 320x + 29 200 
time (onshore) = s 

The function for time T in terms of x is: 

Vx? + 19600 + 320x + 29200 

9 5 

and the domain for T(x) is 0 < x < 160 

  

Tx) = 

  

  Steps 3 and 4: The algebra for finding the derivative of T(x) is similar to that 1RGNS 

of step 3 in Example 10.14. 
100 

o ’ s 
Use a GDC to find the value of x that produces a minimum for T(x).           
Therefore, the optimum point for the pipeline to intersect with the coast is Figure 10,11 GDC screens for 

approximately 134.9 km from the point on the coast nearest to the drilling rig. steps 3 and 4 of the solution to 
Example 10.16 
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Figure 10.12 Diagram for 
question 2 

   (-10) 9 (L0)* 

Figure 10.13 Diagram for 
question 3 

  

Figure 10.14 Diagram for 
question 7 

“—x—>4A 
«—10m—> 

Figure 10.15 Diagram for 
question 8 

-~ 
2m 

Figure 10.16 Diagram for 
question 9 
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13 G R [V 

i 

28 

Find the points on the graph of the equation y = 4 — x2 that are nearest 

to the point (0, 2). 

A window is in the shape of a rectangle with a semicircle on top. Find 

the dimensions of the rectangular section of the window when the 

perimeter of the entire window is 4 metres and the area of the entire 

window is a maximum. 

Find the dimensions of the rectangle with maximum area that is 

inscribed in a semicircle with radius 1 cm. Two vertices of the rectangle 

are on the semicircle and the other two vertices are on the x-axis, as 

shown in Figure 10.13. 

A rectangular piece of aluminium is to be rolled to make a cylinder with 

open ends (a tube). Regardless of the dimensions of the rectangle, the 

perimeter of the rectangle must be 40 cm. Find the dimensions (length and 

width) of the rectangle that gives a maximum volume for the cylinder. 

Find the minimum distance from the graph of the function y = /x 

to the point (%, 0). 

A rectangular box has height /1 cm, width x cm, and length 2x cm. It is 

designed to have a volume equal to 1 litre (1000 cm?). 

(@) Show that 5 = % cm, 
x 

(b) Find an expression for the total surface area, s cm?, of the box in 

terms of x. 

(c) Find the dimensions of the box that produces a minimum surface area, 

giving your answers to 3 significant figures. 

The shape in Figure 10.14 consists of a rectangle ABCD and two 

semicircles on either end. The rectangle has an area of 100 cm?, 

If x represents the length of the rectangle AB, then find the value 

of x that makes the perimeter of the entire figure a minimum. 

Two vertical posts, with heights 12 metres and 8 metres, are 10 metres 

apart on horizontal ground (Figure 10.15). A rope that stretches is 

attached to the top of both posts and is stretched down so that it 

touches the ground at point A between the two posts. The distance 

from the base of the taller post to point A is represented by x and the 

angle between the two sections of rope is . What value of x makes 

6 a maximum? 

A ladder is to be carried horizontally down an L-shaped hallway. 

The first section of the hallway is 2 metres wide and then there is a 

right-angled turn into a 3-metre wide section of the hallway. 

‘What is the longest ladder that can be carried around the corner?



10. Erica is walking from the wildlife observation tower (T) to the Big 

Desert Park office (O). The tower is 7 km due west and 10 km due south 

of the office. There is a road that goes to the office that Erica can get to 

if she walks 10 km due north from the tower. Erica can walk at a rate of 

2km h™! through the sandy terrain of the park, but she can walk at a 

faster rate of 5kmh~! on the road. To what point A on the road should 

Erica walk to in order to take the least time to walk from the tower to 

  

the office? Find the value of d such that point A is d km from the office T 

i i i Figure 10.17 Diagram for 
11. Two vertices of a rectangle are on the x-axis, and the other two vertices question 10 

  are on the curve y = . Find the maximum area of the rectangle. 
x2and 

12. A ship sailing due south at 16 km h~" is 10 kilometres north of a second 

ship going due west at 12 km h™!. Find the minimum distance between 

the two ships. 

13. Find the height, h, and the base radius, r, of the largest right circular 

cylinder that can be made by cutting it away from a sphere with a 

radius of R. 

14. Nadia is standing at point A that is a km away in the countryside from A 

a straight road XY. She wishes to reach the point ¥ where the distance T 

from X to Yis bkm. Her speed on the road is rkmhr~! and her speed L 

travelling across the countryside is ckmhr~?, such that r > c. She wishes l 

to reach Y as quickly as possible. Find the position of point P where she X 

joins the road. 
Figure 10.18 Diagram for 

15. A cone of height & and radius r is constructed from a circle with radius question 14 

10 cm by removing a sector AOC of arc length x cm and then connecting 

the edges OA and OC. What arc length x will produce the cone of 

maximum volume, and what is the volume? 

A     
10cm 

3 ®A X 
NOT TO SCALE 
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Figure 10.19 Diagram for 
question 16 

426 

Differential calculus 2 

16. Point P is a units above the line AB, and point Q is b units below line AB. 

The velocity of light is u units/second above AB and v units/second below 

AB, and u > v. The angles « and S are the angles that a ray of light makes 

with a perpendicular to line AB above and below AB, respectively. Show 

that the following relationship must hold true. 

Chapter 10 practice questions 

1. The diagram shows the graph of y = fix). 

y 

Sketch the graph of y = f'x). 

2. A curve has equation y = —x(x + 5)% 

(a) For this curve find: 

(i) the x-intercepts 

(ii) the exact coordinates of the maximum point 

(iii) the exact coordinates of the point of inflection. 

(b) Use your answers to part (a) to sketch a graph of the curve 

for —5 < x =< 0, clearly indicating the features you have found 

in part (a). 

3. Find the coordinates of the point on the graph of y = 3x2 + 2x at which 

the tangent is parallel to the line y = 4x. 

4. Find the equation of the tangent to the curve of y = sin(3x + 1) at the 

point (*é, 0).



5. The diagram shows part of the graph of the function 

fixs —x3 — 242 + 8x. 

  

  

  

  

  
                

  

The graph intersects the x-axis at (—4, 0), (0, 0), and (2, 0). There is a 

minimum point at C and a maximum point at D. 

(a) The function may also be written in the form 

fix— —x(x — a)(x — b), where a < b. Write down the value of: 

@) a 
(ii) b. 

(b) Find: 

@ fx) 
(ii) the exact values of x at which f(x) = 0 

(iii) the value of the function at D. 

(c) (i) Find the equation of the tangent to the graph of f(x) at (0, 0). 

(ii) This tangent cuts the graph of f(x) at another point. Give the 

x-coordinate of this point. 

6. In a controlled experiment, a tennis ball is dropped from the uppermost 

observation deck (447 metres high) of the CN Tower in Toronto. The 

ball’s velocity is given by 

Wt) = 66 — 66e 015 

where v is in metres per second and  is in seconds. 

(a) Find the value of v when: 

@@ t=0 

(i) = 10. 

(b) (i) Find an expression for the acceleration, a, as a function of t. 

(ii) What is the value of @ when ¢ = 0?7 

(c) (i) Astbecomes large, what value does v approach? 

(ii) As t becomes large, what value does a approach? 

(iii) Explain the relationship between the answers to 

parts (i) and (ii). 
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7. Given the function f(x) = x> + 7x2 + 8x — 3: 

(a) identify any points as a relative maximum or minimum, and find 

their exact coordinates 

(b) find the exact coordinates of any inflection point(s). 

8. Consider the function g(x) = 2 + fi. 

(a) (i) Find g'(x). 

(ii) Explain briefly how this shows that g(x) is a decreasing function 

for all values of x (i.e. that g(x) always decreases in value as x 

increases). 

Let P be the point on the graph of g where x = 7%. 

(b) Find an expression in terms of e for: 

(i) the y-coordinate of P 

(ii) the gradient of the tangent to the curve at P. 

(c) Find the equation of the tangent to the curve at P, giving your 

answer in the form y = mx + c. 

Povall| B i 20) 
9. Consider the function f given by f(x) = 7 " T 

Ol 

(x—1)’ 
The second derivative is given by f”(x) = 

G 

(a) Show that f'(x) =   x#1 

72l 5% 

(x— 1t 

(b) Using values of f'(x) and f"(x), explain why a minimum must occur 

cee | 

At 5 

(c) There is a point of inflection on the graph of f(x). Write down the 

coordinates of this point. 

10. Differentiate with respect to x: 
i sinSx 

@ G blie 
11. The curve with equation y = Ax + B + %, x € R, x # 0, has a minimum 

at P(1, 4) and a maximum at Q(—1, 0). Find the value of each of the 

constants A, B, and C. 

12. (a) Differentiate: 

(i) Inx Gi) L 

(b) The curve C has equation y = lnTx, 0<x<oo. 
d 

(i) Show tha L ) 
(A2 

(ii) Show that y has a maximum value of % and justify that this is a 

maximum value. 

(c) Assumingy — 0 as x — 00, draw a sketch of the graph of the curve C. 

(d) Find the two values of x for which thX = %anA 
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13. Differentiate with respect to x: 
o 

@ Dot 
  (b) e*sin2x 

14. The curve y = ax® — 2x> — x + 7 has a gradient of 3 at the point where 

x = 2. Determine the value of a. 

15. Let y = h(x) be a function of x for 0 < x < 6. The graph of h has an 

inflection point at P, and a maximum point at M. 

Partial sketches of the curves of h'(x) and h"(x) are shown below. 

H(x 

   
Use the above information to answer the following. 

(a) Write down the x-coordinate of P, and justify your answer. 

(b) Write down the x-coordinate of M, and justify your answer. 

(c) Given that h(3) = 0, sketch the graph of h. On the sketch, mark the 

points P and M. 

16. Find the equation of the tangent to the curve y = xe* at the point on the 

curve where x = 1. 

17. A cylinder is to be made with an exact volume of 12877 cm?. Find the 

height, h, of the cylinder and the radius, r, of the cylinder’s base so that 

the cylinder’s surface area is a minimum? 

| 
l 
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18. A rectangle has its base on the x-axis and its upper two vertices on the 

parabola y = 12 — x2. Calculate the largest area that the rectangle can 

have, and the dimensions (length and width) that give this area. 

19. The figure shows the graph of a function y = fix). 

  

State at which one of the five points marked on the graph: 

(a) f'x) and f"(x) are both negative 

(b) f'(x) is negative and f”(x) is positive 

(c) f'x)is positive and f"(x) is negative. 

20. Find the equation of the normal to the curve with equation 

el fran 
y= e at the point (—3, 7).   
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An antiderivative of the 

function f{x) is a function 
F(x) such that 

S Bl 50 =F =fin 

wherever f{x) s defined. 
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Learning objectives 

By the end of this chapter, you should be familiar with... 

« integration as antidifferentiation of functions 

o calculating and applying definite integrals 

« finding areas under curves (between the curve and the x-axis), and 

areas between curves 

« antidifferentiation with a boundary condition 

« solving kinematic problems involving displacement s, velocity v, 

acceleration g, and total distance travelled 

« working with integration of polynomial functions, trigonometric 

functions and their inverses, and exponential functions 

« integration by inspection (reverse chain rule) and integration by 

substitution. 

In Chapters 9 and 10 we learned about the process of differentiation. That is, 

finding the derivative of a given function. In this chapter, we will reverse the 

process. That is, given a function f{x) how can we find a function F(x) whose 

derivative is f{x)? This process is the opposite of differentiation and is therefore 

called antidifferentiation or integration. 

Antiderivative 

For instance, let f{x) = x. It is not difficult to discover an antiderivative of f(x). 

Keep in mind that this is a power function. Since the power rule reduces the 

power of the function by 1, we examine the derivative of x*: di(f) =3x 
x 

This derivative, however, is 3 times f(x). To ‘compensate’ for the ‘extra’ 3 we 

have to multiply by 1 o that the antiderivative is L. Now i(l)fi) =x? 
3 3 dx\3 

and therefore %xJ is an antiderivative of x2 

Table 11.1 shows some examples of functions, each paired with one of its 

antiderivatives. The diagrams show the relationship between the derivative 

and the integral as opposite operations.



x 
£ 
2 
* 
£ 
5 

Figure 111 The relationship between a 
derivative and its integral 

  

Table 11.1 Examples of functions paired to antiderivatives 

Given the function f(x) = 3x2. Find an antiderivative of f{x). 

1 

Solution 

F,(x) = x* is one such antiderivative because %(Fl(x)) = 3x2 

The following functions are also antiderivatives because the derivative of 

each one of them is also 3x2 

  

Fx)=x3+27 Fx)=x*-m Fx)=x*+/5 

Indeed, F(x) = x* + ¢ is an antiderivative of fix) = 3x2 for any constant c. 

This is simply because 

(F(x) + ¢) = F(x) + ¢ = F(x) + 0 = flx) 

Thus we can say that any single function f(x) has many antiderivatives, whereas 

a function has only one derivative. 

If F(x) is an antiderivative of f{x), then so is F(x) + c for any choice of the 

constant c. This statement is an indirect conclusion of one of the results of the 

mean value theorem. Two functions with the same derivative on an interval 

differ only by a constant on that interval. 

Let F(x) and G(x) be any antiderivatives of f(x); that is, F'(x) = G'(x). 

Take H(x) = F(x) — G(x) and any two numbers x, and x, in the interval [a, b] 

such that x, < x,, then 

H(x,) = H(x) = (x, = x)H'(c) = (v, — x1) - (F(e) — G'(0) 
= (% —x)-0=0= Hx) = H(x,) 

‘which means H(x) is a constant function. Hence H(x) = F(x) — G(x) = constant. 

That is, any two antiderivatives of a function differ by a constant.   

‘The mean value theorem 
states that a function 

H(x), continuous over 
aninterval [a, b] and 
differentiable over ], b{ 
satisfies: 
H(b) — H(a) 
=(b— aH () 
for some c € |, b 
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Note that if we differentiate 
an antiderivative of f(x), we 

obtain f(x). Thus 

d a( Jfiodx) = fix) 

The expression [f(x)dx 
is called an indefinite 
integral of f(x). The 

function f(x) is called 
the integrand, and the 
constant cis called the 

constant of integration. 
The integral symbol ['isa 

medieval S, used by Leibniz 
as an abbreviation for the 

Latin word summa (‘su). 
‘We think of the 

combination [ ]dxas 
a single symbol; we fill 

in the blank with the 

formula of the function 

whose antiderivative we 
seek. We may regard the 

differential das specifying 
the independent variable 

xboth in the function f(x) 
and in its antiderivatives. 

“This s true for any 
independent variable, say f, 
with the notation adjusted 

appropriately. Thus 

%(fflt) dt) = fie) 
and 

[fiode =R + ¢ 

are equivalent statements. 

The integral sign and 
differential serve as 

delimiters, adjoining the 
integrand on the left and 

right, respectively. 

In particular we do not 
write [dxf) when we 

mean f [fix)dx 
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The notation 

[ feodx = Foo + ¢ ) 

where ¢ is an arbitrary constant, means that F(x) + c is an antiderivative of f(x). 

Equivalently, F(x) satisfies the condition that 

%F(X) =F'tv) = fln) ) 

for all x in the domain of f{x). 

It is important to note that (1) and (2) are just different notations to express the 

same fact. For example 

   
  

  

1 B = d(1 2dx = =x3 L(1x3) = fx 3% T cis equivalent to 3* ) 

Derivative formula | Equivalent integration formula 
d ()= i g - =3x? 3x2dx=x3+c¢ 
&E J 
  

Jizde=vx+e 

  

  

%(tan ) = sec?t ,'seczrdr =tant+c 

        d(3_3.1 3. _ s E(“)’EV' [3vtav=1i+c 
  

Table 11.2 Derivative formulae and their equivalent integration formulae 

Basic integration formulae 

Many basic integration formulae can be obtained directly from their 

companion differentiation formulae. Some of the most important are 

given in Table 11.3. 
  

  

  

  

  

  

  

  

  

Derivative formula Integration formula 

1 i(x)ZI Jax=x+c 

ey = it (o im0 _ 2| = e -1 .,xdx7n+l+c,ng 1 

d 7 - < = cosxdx =sinx+ ¢ 3 4, (sinx) = cosx ) 

4 4 cos) = —sinv [sinvdv = —cosv+c 
dv ) 

5 %(lan t) = 1/cos?t = sec?t fseczzdz =tant + ¢ 

6 %(ev) =e ferdv=etc 

d 1 ('L 7 Sinl) = [Fdx=ln|x| +¢           
Table 11.3 Many basic integration formulae can be obtained directly from their companion 
differentiation formulae



Formula 7 is a special case of the ‘power’ rule shown in formula 2, but needs 

some modification. 

) 1 s 
If we are asked to integrate ¢, we may attempt to do it using the power rule: 

f%dx = fx’]dx = fix"”“ +c= %x” + ¢, which is undefined. 

However, the solution is found by observing what we learned in Chapter 10: 

d 1 oooao 1 
E(lnx) =px>0 implies f} dx=Inx+ ¢ x>0. 

The function % is differentiable for x < 0 too. So, we must be able to find its 

integral. 

Suppose that f{x) and 
(x) are differentiable 
functions and kisa 
constant. Then: 

The solution lies in the chain rule. A constant factor can be 
‘moved through an integral 

If x < 0, then we can write x = —u where u > 0. Then dx = —du, and sign; that is, 

[ifds = k [f)d 
An antiderivative of a 

sum (difference) is the 
sum (difference) of the 
antiderivatives; i.., 

f%dx:f}u(*du):f%du:lnu+c,u>0 

But u = —x, therefore when x < 0: 

f % dx =Inu + ¢ = In(—x) + ¢, and combining the two results, we have 
Jf) = gwjax 

[rax=Inx +cx=0 =[x+ [t ax 

Evaluate 

(@) [3cosxdx ® [ + x2dx 

Solution 

(a) fScosxdx: 3fcosxdx S SISINEG 

S e[ Db i e (b)f(x x?)dx fxderfxd.x 4+3+c 

Sometimes it is useful to rewrite the integrand in a different form before 

performing the integration. 

Evaluate 

i3t G0 s = CfE 
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| 

Solution 

i3t i il il ot @ [t = [Ram [Par= froa— [sar g 

:*%*3t+e 

®) f%ffldx:f%dx+f5x—"z‘dx:f%dx+fsx2dx 
3 

:ln|x|+%+c 

Integration by simple subst change of variables 

In this section, we will study substitution, a technique that can often be used to 

transform complex integration problems into simpler ones. 

The method of substitution depends on our understanding of the chain rule as 

well as the use of variables in integration. Two facts to recall: 

‘When we find an antiderivative, we can use any other variable. 

‘That s, [f(u) du = F(u) + ¢, where u is a dummy variable in the sense that it 
can be replaced by any other variable. 

Using the chain rule %(F(u(x))) = F'(ux)) - u'(x) 

Which can be written in integral form as f F(u(x)) - u'(x)dx = Fu(x)) + ¢ 

Or equivalently, since F(x) is an antiderivative of f(x), 

Jfueo) - w0 dx = Fu) + ¢ 

For our purposes, it will be useful and simpler to let u(x) = u and to write 

du _ '(x) in its differential form as du = u'(x) dx or simply du = u'dx. 
dx 

‘We can now write the integral as 

[y - e dx = [fandu = Fluto) + ¢ 

Example 11.4 demonstrates how the method works. 

Example 11.4 

Evaluate 

(a) f(x’ it 252 d e (b) ftanxdx (c) fcosSxdx 

(@ [cosx? - xdx (e) [ertidx



1 

Solution 

(a) To integrate this function, it is simplest to make the substitution 

u = x* + 2, and so du = 3x>dx. Now we can write the integral as 

3 1 
f(x3+2)‘“-3xzdx:fu‘°du:u—“+c:—(x+2) SiC 

11 11 

(b) This integrand has to be rewritten first and then we make the 

  

substitution: 

sinx 1 . 
ftanxdx = fcosde = fm - sinxdx 

We now let u = cosx = du = —sinxdx, and 

ftanxdx = ffi-sinxdx: f%»(*du) = *f%du: —Infu| + ¢ 

This last result can be then expressed in two ways: 

ftanxdx = —In|cosx| + ¢, or 

  [tanxdx = ~Infcosx| + ¢ = Inficos x| + ¢ = In 
    (cos x) 

= In|secx| + ¢ 

(c) Weletu = 5x, then du = 5dx = dx = édu, and so 

= | _1. fcosSxdxffcosugdu— fcosudufgsmu+c 

  

Another method can be applied here: 

The substitution u = 5x requires du = 5dx. As there is no factor of 5 

in the integrand, and since 5 is a constant, we can multiply and divide 

by 5 so that we group the 5 and dx to form the du required by the 

substitution: 

fcosSxd.x: Ifcosx-de: lfcosudu:lsi.nu+c 
5 5] 5 

:ésin5x+c 

(d) By letting u = x? du = 2x dx and so 

fcosxz-xd.x: %fcosxz-Zxdx: %fcosudu 

sinu+c:%si.nxz+c 

@ [erride =L e ade = lfe"d'l:%e"Jrc:%e““ oy 
    

‘The main challenge in 
using the substitution 
rule is to think of an 
appropriate substitution. 

You should try to 
select u to be a part of 

the integrand whose 
differential is also 

included (except for the 
constant). In Example 

114 (a), we selected u 
tobe (* + 2) knowing 
that du = 3x2dx. Then 
we compensated for the 

absence of 3. Finding the 
right substitution is a 
subtle art, which you will 
acquire with practice. It 

is often the case that your 
first guess may not work. 

In integration, 
multiplying by a constant 
inside the integral and 
compensating for that 
with the reciprocal 

outside the integral 
depends on formula 2 
from Table 11.3. 

However, we cannot do 
this with a variable. 

For example, 
Jerde= L [eraxdr 

2 

is not valid because 2x is 
not a constant. 
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‘The main challenge in 
using the substitution 
rule s to think of an 

appropriate substitution. 
You should try to 

select u to be a part of 
the integrand whose 

differential is also 
included (except for the 
constant). In Example 
11.4(a), we selected 

tobe (x* + 2) knowing 
that du = 3x>dx. Then 
we compensated for the 

absence of 3. Finding the 
right substitution is a 

subtle art, which you will 
acquire with practice. It 

is often the case that your 
first guess may not work. 
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Evaluate each integral. 

(a) fe’“dx (b) fsinzxcosxdx (c) fZ sin(3x — 5)dx 

(@ [emrd (e) [xvEdxand F(1) =2 

Solution 

(a) Letu = —3x, then du = —3dx 

e | NS iy I fe dx= gfe (E3AVE gfeduf 3¢ +c 

= 71573,( b o 

(b) Let u = sinx = du = cosxdx, and hence 

fsinzxcosxdx = fuldu = %u’ +c= %sin’x SC 

(c) Letu = 3x — 5, then du = 3dx 

[2sinGx = 5)dx=2. 1 [sinGx — 5)3dx = 2 [ sinudu 
3 E 

= *%cosu +c= *%cos(3x*5) (e 

(d) Let u = mx + n, then du = mdx 

Jemnds= L femsnmax = L [erdu=Lous o= Lemuns 
m m m m 

( F(x):fxmdx:fx%dx:’ifl:l %+ ¢, but F(1) = 2 
) 5 

N
y
 

A1) :%1 

Therefore F(x) = %x



Examples 11.4 and 11.5 make it clear that Table 11.3 is limited in scope 

because we cannot use the integrals directly to evaluate composite functions. 

We therefore need to revise some of the derivative formulae. 

  

    

  

  

  

  

  

1 %(u(x)) =W = du=ubodc Jau=u+e 

d(uy_ - wy _ L aum - 
2 En+l)7" u'(x),n# 1=>d(n+1)—u w'(x)dx fu du—m+c,n¢ 1 

3 %[sin(u)) = cos(u)u'(x) = d(sin(u)) = cos(u)u'(x) dx f cosudu =sinu+ ¢ 

4 %(cos(u)) = —sin(w)u’(x) = d(cos(w)) = —sin(uyu’(x)dx fsinudu = —cosu+c 

5 %(lan u) = sec?u u'(t) = ditanu) = sec?u u/(t) dt fsec’-u du=tanu+c 

6 4 (e = emr(x) dx = die®) = ex/(x) dv Jerdu=eute 
dx 

7 i(‘“'“" = Lt = dlinu) = L ax [ du=tnjul +¢         
  

Table 11.4 More advanced derivative and integration formulae. 

Example 11.6 

Evaluate each integral. 

(a) fv6x+11dx (b) f(5x3+2)xxzdx 

D) = dx in4(3 x2) (3x2) (c) fS—waL = (d) fsm (3x2) cos(3x2) x dx 

Solution 

(a) Welet u = 6x + 11 and calculate du: 

u=06x+ 11 = du=6dx 

Since du contains the factor 6, the integral is not in the form f flu) du. 

However, here we can use one of two approaches. 

Introduce the factor 6, as we have done before; that is, 

[VerF s = L[verFir6ax 
6 

:;ffidu:%fu%du 
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Orsinceu = 6x + 11 = du:6dx©dx:ds—u,then 

f¢6x +11dx= fmd?" = %fu%du, then we follow the same steps as 

before. 

(b) Weletu = 5x* + 2, so du = 15x2dx. This means that we need to 

introduce the factor 15 into the integrand 

Jx? + 2x2dx = L [(5x2 + 20 15x2dx 
15 
1 e i g = o 
15 i 159 

1 3 = +2)°+ 135(51 Pare 

(c) Weletu = x* — 8x + 13 = du = (4x® — 8)dx = 4(x® — 2)dx 

©-2 4.1 4(x® — 2)dx 71ffi 

S—sx+13 4 5\/x‘78x+1374 

  

1 us 

Slic 
1 

= iugdu *i 

m|
us
|=
w 

-5 
’16( 

(d) Weletu = sin(3x?) = du = cos (3x?)6x dx using the chain rule. 

4 
CoeE SRR B R C 

f sin%(3x2) cos (3x?) xdx = é f sin®(3x?) cos (3x?) 6x dx 

ipoa lu == =k 6fu du 65 

= %sins(&cz) SC 

1. Find the most general antiderivative of each function. 

@) flry=x+2 (D) 169 = & = i F 1l 

© g =2-2x @ fi) =t — D2t +3) 

(&) g(u) = u —du? ® j(x)—z‘/'fzr 

(g) h(6) = 3sinf + 4cos 0 (h) f(t) = 31> — 2sint 

i) fix) = vx2x —5) (j) g(6) = 3cos 6 — 2sec2 
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() b = e o f=32 
(m) h(u) = fi (1) h(6) = esinocos O 

(0) fix) = (3 + 2x)? 

. Findf. 

(a) f"(x) = 4x — 15x2 

(b) f"(x) = 1 + 3x2 — 4x3,f'(0) = 2, f(1) = 2 

(c) f"(t) =8t —sint 

(d) f'(x) = 12x3 — 8x + 7,/(0) = 3 

(e) f'(6) =2 cos 6 — sin (26) 

. Evaluate each integral. 

@) [x(x2+7)dx (b) Imdx 

  © [2V5x +2dx (@ f(3 7}&)5& 

5 

(@ [p2r=7d () f(z +3) (i)dx 

. sin(260 

(8) [snt7x — 31dx & fcos(za— TE=ad 

(i) f sec2(50 — 2)d6 ) f cos(mx + 3)dx 

) [secartan2edr O [xemidx 

(m) [VFexdt (n) f%(ln 02d6 

. Evaluate each integral. 

@ [t3—5edt () [6sec20°d0 

© [ “2“ flf dt (@) [tan2tsect2tdt 

. © frrn) () [+ ne " dr 

x+3 
(g)fxz+6x+7 (h)faz,axt 

@) [3x/x=Tdx () [VI+ cosgsin6do 

M [a=rdt 

() [ S S 
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Figure 11.2 How do we find 
the area? 

< 

¥ =f0 

of X, X   
Figure 11.3 Dividing the 

base interval into subintervals k 

Figure 11.4 The total area of 
the rectangles can be viewed 
as an approximation L 

Figure 11.5 As n increases, 

the approximations get better R 

Figure 11.6 Underestimation 

of area i 

Figure 11.7 Overestimation 

of area \ 

Figure 11.8 n inscribed 
rectangles 
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Area and the definite integral 

The function f(x) is continuous and non-negative on an interval [a, b]. How do 

we find the area between the graph of f(x) and the interval [a, b] on the x-axis? 

(Figure 11.2) 

‘We divide the base interval [a, b] into n equal subintervals, and over each 

subinterval, we construct a rectangle that extends from the x-axis to any point 

on the curve y = f(x) that is above the subinterval; the particular point does 

not matter - it can be above the centre, above one endpoint, or above any other 

point in the subinterval. In Figure 11.3 it is at the centre. 

For each n, the total area of the rectangles can be viewed as an approximation 

to the exact area in question. As n increases, these approximations will get 

better and better and will eventually approach the exact area as a limit. 

See Figures 11.3-11.5 

A traditional approach would be to study how the choice of where to put the 

rectangular strip does not affect the approximation as the number of intervals 

increases. We can construct inscribed rectangles that, at the start, give us an 

underestimate of the area (Figure 11.6). On the other hand we can construct 

circumscribed rectangles that, at the start, overestimate the area (Figure 11.7). 

As the number of intervals increases, the difference between the overestimates 

and the underestimates will approach 0. 

Figures 11.8 and 11.9 show n inscribed and circumscribed rectangles 

and Figure 11.10 shows the difference between the overestimates and 

underestimates. 

Figure 11.10 shows that as the number n increases, the difference between the 

estimates will approach 0. Because we set up our rectangles by choosing a point 

inside the interval, the areas of the rectangles will lie between the overestimates 

and underestimates, and hence, as the difference between the extremes approaches 

zero, the rectangles we construct will give the area of the region required. 

If we consider the width of each interval to be Ax, then the area of any 

rectangle is given as 

4= fl) 
The total area of the rectangles so constructed is 

n 
> flx)Ax 
=0 

  A,   

  

where x; is an arbitrary point within any subinterval [x;_,, x;], x, = @, and x,, = b.



In the case of a function f(x) that has both positive and negative values on 

[a, b], it is necessary to consider the signs of the areas in the following sense. 

On each subinterval, we have a rectangle with width Ax and height f(x*). 

If f(x*) > 0, then this rectangle is above the x-axis; if f(x*) < 0, then this 

rectangle is below the x-axis. We will consider the sum defined above as the 

sum of the signed areas of these rectangles. That means the total area on the 

interval is the sum of the areas above the x-axis minus the sum of the areas of 

the rectangles below the x-axis. 

We are now ready to look at a loose definition of the definite integral: 

If f(x) is a continuous function defined for a < x < b, we divide the interval 
(b—a) 

n [a, b] into n subintervals of equal width Ax = . We let x, = a, and 

x, = band we choose x{,x;, ..., x, in these subintervals, so that x; lies in the 

ith subinterval [x;_;, x;]. Then the definite integral of f(x) from a to b is 

[ fo0 dx = tim 3= flai) 

b 
In the notation f f(x) dx, a and b are called the limits of integration: a is the 

lower limit and b is the upper limit. 

Because we have assumed that f(x) is continuous, it can be proved that the 

limit definition above always exists and gives the same value no matter how 

we choose the points x;. If we take these points at the centre, at two-thirds the 

distance from the lower endpoint, or at the upper endpoint, the value is the 

same. This why we will state the definition of the integral from now on as 

[y = tim 3 iy v 

For a more rigorous treatment of the definition of definite integrals using Riemann sums, refer to 
university calculus books. Such a treatment is beyond the scope of the IB syllabus and this book. 

Calling the area under the function an integral is no coincidence. To make the 

point, let us take the following example: 

Example 11. 

Find the area A(x) between the graph of the function f(x) = 3 and the 

interval [—1, x], and find the derivative A’(x) of this area function. 

X 

Figure 11.9 n circumscribed 

rectangles 

_Jp-f 
Figure 11.10 difference 

between over- and under- 

estimates 

  

a x*b x 

Figure 11.11 Area of each 

circumscribed rectangle 

Figure 11.12 Areas above 

and below the x-axis 
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Solution 

  

The area in question is 

A6 = 5= (1) = akasr 3 

A'(x) =3 = flx) 

Example 11 

Find the area A(x) between the graph of the function f(x) = 3x + 2 and the 

interval [7%, ], and find the derivative A'(x) of this area function. 

Solution 

    () ——— ¥ 

The area in question is 

=1 6(3x 4= 2P AQr) = %(x s %)(3:: +2) 

since this is the area of a triangle. Hence 

A’(x):éX2(3x+2)X3:3x+2:f(x)



Example 11 

Find the area A(x) between the graph of the function f(x) = x + 2 and the 

interval [—1, x], and find the derivative A’(x) of this area function. 

Solution 

    ——arl—————— 

This is a trapezium, so the area is 

A@) = 0+ e+ 2+ 1) = 262+ 45+ 3), and 

A'(x):%X(2x+4):x+2:j(x) 

Note that in every case, A'(x) = f(x) 

That is, the derivative of the area function A(x) is the function whose graph 

forms the upper boundary of the region. It can be shown that this relation is 

true not only for linear functions but for all continuous functions. Thus, to find 

the area function A(x), we can look instead for a particular function whose 

derivative is f(x). This is, of course, nothing but the antiderivative of f(x). 

So, intuitively, as we have seen above, we define the area function as 

A(x) = f f(t) dt, that is A'(x) = f(x) 

This is the trigger to the fundamental theorem of calculus. 

We will now look at some of the properties of the definite integral. 

  

[ ae = ['fi ax 
b 

When we defined the definite integral f f(x) dx, we implicitly assumed that 
8 —a, la—b 

    a < b. When we reverse a and b, then Ax changes from & o 

Therefore the result above follows. 

[‘feax=0 
When a = b, then Ax = 0, and so, the result above follows. 
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a c b X 

Figure 11.13 A(x) = A, + A, 

Itis important to ’ 
remember that | ()t o 

is a function of x. 
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Integral calculus 

b 
fu cdr=cb—a) 

b b b 
[ s = gl dx = [ ax = [ g ax 

Lbcf(x) dx = cfibf(x) dx, where ¢ is any constant. 

[feode= [ Foax + [ e ax 
This property can be demonstrated as follows. The area from a to b is the sum of 

the two areas, that is A(x) = A, + A, (Figure 11.13). Additionally, even if ¢ > b, 

the relationship holds because the area from c to b in this case will be negative. 

  

GRS 

  

ndamental theorem of integral calculus 

Our understanding of the definite integral as the area under the curve for f(x) 

helps us establish the basis for the fundamental theorem of integral calculus. 

In the definition of definite integral, we'll make the upper limit a variable, say x. 

Then we will call the area between a and x, A(x); that is, 

Ax) = f “fodr 

This equation is stating that 

d = aity= ([ = Law) = a0 = ([ i ar) = ) 

This very powerful statement is called the first fundamental theorem of 

integral calculus. In essence, it says that the processes of integration and 

differentiation are inverses of one another. 

Example 11.10 

Find each derivative. 

dr     N 4 41 
@ dxfs” < (b)dxnl+t‘ © dxfx (RS 

. 

Solution 

(a) This is a direct application of the fundamental theorem: 

L or fs 76dE= 7 

(b) This is also straightforward: 

ol ek 1l 
(AR ORIE R AN s 

 



(c) We need to rewrite the expression before we perform the calculation. 

        L A TR I /N (W PSR N I S 
dxfxuz‘d"dxfn Trad dxfxl+t‘dt 1+ xt 

The second fundamental theorem of integral calculus 

Recall that A(x) = f [f(t)dt. If F(x) is any antiderivative of f(x), then applying 

what we learned earlier 

F(x) = A(x) + ¢ where c is an arbitrary constant. 

Now 

F(b) = A(b) + c = f bf(t) dt + ¢, and 

Fla) = A(@) + c = f:f(t) di + ¢ =0 + ¢, and hence 

b 

Fb) ~ F@) = [ fydt+c—c 

= f "oy dr 

‘The theorem is also known as the evaluation theorem. Also, since we know that F'(x) is the rate 

of change in F(x) with respect to x, and that F(b) — F(a) is the change in y when x changes from a 
to b, we can reformulate the theorem in words to read: 

‘The integral of a rate of change is the total change: 

f“ P dx = F(b) — Fa) 

Here are a few instances where this applies: 

o If V'(t) is the rate at which a liquid flows into or out of a container at time t, 
“ 

then ]; V'(t)dt = V(t,) — V(t;) is the change in the amount of liquid in the 

container between time ¢, and t,. 

L 
« If the rate of growth of a population is n'(t), thenf[ n'(t)dt = n(ty) — n(ty) 

is the increase (or decrease) in population during the period from t, to t,. 

This theorem has many other applications in calculus and several other fields. It 

is a very powerful tool that allows us to deal with problems of area, volume, and 

work. In this book, we will apply it to finding areas between functions, volumes 

of revolution, and in displacement problems. 

‘The second fundamental 

theorem of calculus states: 

fu bj{t)dt = Fb) — Fla) 

Notation 

We will use the following 
notation in evaluating 
definite integrals. If we 
Kknow that F(x) is an 
antiderivative of f(x), 
then we will write 

[ a=reolt 
= Kb - F) 
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Integral calculus 

Evaluate each integral 

@ [ wax ® [ ax 

  
27 24+M7‘ 

© [ cos0do @ [ au 

I 

Solution 

  

@ [eostan=sine[ "=0-0=0 

  Ml S S e (d)fl = du—fl(us+u)du—4~_2+1n|u|l 
2 

=R Ul +lnu| 
1 

=(-2-22+1n2)—(-2-1+1n1) 

il 3 == SRt 5 InDEiD) 2-%-l.nZ 

sing substitution with the definite integral 

In Section 11.1, we discussed the use of substitution to evaluate integrals in 

cases that are not easily recognised. We established that 

At - weo dx = [fiandu = Fu(a) + ¢ 

‘When evaluating definite integrals by substitution, two methods are available. 

« Evaluate the indefinite integral first, revert to the original variable, then use 

the fundamental theorem. For example, to evaluate 

tharfixseczxdx 

we find the indefinite integral 

ftansxseczxdx = fusdu = éus = %tan“x 

then we use the fundamental theorem 

5 3 1 1. 
tan® 2xdx = —tan® - L an® xsec?x an®x| 

  

279 vap=2=2 
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Or we can use the following substitution rule for definite integrals 
b } u(b) 

[ At dx = [ du 
The change of variable is possible because: 

if F(x) is an antiderivative of f(x), then by the fundamental theorem 

b 
[ A x) s = P = Fu) - Futa) 

also 

u(b) 

fu ., ) du = Fw 

therefore, to evaluate 

u(b) 

u(a '~ Flu®) — (@)   

2 
j(; x*(2x3 + 5)'dx 

Letu =2x>+5=du=6x*dx=dx= %,M(Z) =21, u(0) = 5,and so 
X 

_ 2040488 

15 
  

2 21 du 1 w1 
3 132 dy = 4 = ddy =L L(Zx + 5)ix2dx L uszxZ 6]; u'du 30]5 

6 
Evaluate L Vax + 1dx 

1 

Solution 

Let u = 4x + 1, then du = 4dx. The limits of integration are u(2) = 9, 

and u(6) = 25. Therefore 

S it L s ~12 3/2) 9 L4x+ldx—4£ \/;du—4(3u 
2 4 

= —125E=27) === 
9 6 3   

Note that, using this method, we do not return to the original variable of 

integration. We simply evaluate the new integral between the appropriate 

values of u. 

Notice that the substitution u = 4x + 1 stretched the interval [2, 6] by a 

factor of 4, and shifted it by 1 unit to the right. But the areas are the same. 

-
 

o
W
 o

e 
w 

oo
 

Exercise 11.2 

1. Evaluate each integral. 0 123456 7% 

  

1 7 Figure 11.14 The area under the 
(a) f (3x2 — 4x%) dx (b) f 8dx curvey = V4x + I between x = 2 

" Z andx=6 
5 2 

© J %dz @ [ cost — tannde 

72x2=3x+5 i Doiadato k25 £ @ [y, ® [cos 60 
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Area: 16.33 

4 8 1216 20 24 28 ¥ 

Figure 11.15 The area under the 
curvey = %\ W between u = 9 and 
u=25 
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4, (a) Find f 

Integral calculus 

(© f“ "sin 040 

D) 
W [ 

     

] (e 

() () f02|3x|dx (ii) f2|3x|dx 

(o) jfsiandx 

2 

@ [ fer—edx 

2. Evaluate each integral. 

4 3 @ [ 2 
VEZAR T 

“ @l 
© e tint 

smx 

G 
1n2 ezx 

® f—lnzez" & 9dx 

[ sines 
® farz VX & 

®) f“ A esinicos20d6 

  

3. Find the indicated derivative. 

t @ & [snty 

o 
dth-=1+y 

cosy 
(©)   dy 

3x+2 

  (b) Given thatf e 

1 
(h) f} (5% + 3x2) dx 

e 
3 

W f‘(z — V®)dx 

(iii) szl3x\ dx 

() 

m#lnx ) [ Tind 

5 
@ [ xS =xdx 

(€) lnx 

(h) Lw7x cosx2dx 

()] jf(l — sin 3#)cos 3t dt 

Vinm 

) fo 4tersinle”)dr 

  

, giving your answer in terms of k. 

= 1, calculate the value of k.



5. Given that p, g € N, show that 

1 1 

[ 20— 09dx = [ a0 — wpdx 
0 0 

Do not attempt to evaluate the integrals. 

6. Given that k € N, evaluate each integral: 
: 

@ [x(0— xkdx ®) [ *0 - 2ds 

7. LetFn = [ “5ET2dt, find: 

(a) F(3) (b) F'(3) (c) F"(3) 

Areas 

We have seen how the area between a curve defined by y = f(x) and the x-axis 
b 

can be computed by the integral f f(x) dx on an interval [a, b] where f(x) = 0. 

In this section, we shall use integration to find the area of more general regions 

between curves. 

Areas between curves of functions of the form y = f{x) 

and the x-axis 

  

If the function y = f(x) is always above the x-axis, finding the area is a 
b 

straightforward computation of the integral f flx)dx. 

Find the area between the curve f(x) = x> — x + 1 and the x-axis over the 

interval [—1, 2] 

  451



  

2 (-xt1yax L 2 
4 

Figure 11.16 Usinga GDC to 
find the area 

      

  

A= 
3.614515769       

Figure 11.17 Itis best to use 

aGDC 
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] 

Solution 

This area is: 

  

-1 
You can use your GDC to work out the area. The calculation is usually 

straightforward. 

In some cases, we will have to adjust how to work. This is the case when the 

graph intersects the x-axis. Since we are interested in the area bounded by 

the curve and the interval [a, b] on the x-axis, we do not want the two areas 

to cancel each other. This is why we have to split the process into subintervals 

where we take the absolute values of the areas found and add them. 

Example 11.14 

Find the area under the curve 

flx)=x*— x— land the 

x-axis over the interval [—1, 2] 

  

I —————————————————————— 

Solution 

As we see from the diagram, a part of the graph is below the x-axis, and 

its area will be negative. If we try to integrate this function without paying 

attention to the intersection with the x-axis, here is what we get: 
2 2 4 2 e T e Y [o-x-nax=2-2-of —u-2-2-(3-3+1 

_3 

4 

This integration has to be split before we start. However, this is a function 

where we cannot find the intersection point. So, we either use a GDC to find 

the intersection or we just take the absolute values of the different parts of 

the region. This is done by integrating the absolute value of the function: 

Area = Lblf(x)| dx 

As we said earlier, this is not easy to find given the difficulty with the 

x-intercept. It is best if we use a GDC. 

  

2 
Hence, Area = f Jx* — x — 1| dx = 3.6145 

-1



Find the area enclosed by the graph of the function fix) = x* —4x2+ x + 6 

and the x-axis. 

  

Solution 

This function intersects the x-axis at three points, where x = —1, 2, and 3. 

To find the area, we split it into two and then add the absolute values: 

area=[|feolax= [ fodx+ [ (f)ax 
2 3 

:fil(x3*4xz+x+6)dx+£(*x3+4xzfx*6)dx 

xl 4x3 x2 |2 xt 4x3 xZ |3 

=X -2 4Z 4 + a2 ARG 

=y -] 
2 12 

  

(ol 

  

In some practical problems, we may have to compute the area between two 

curves. Let f(x) and g(x) be functions such that f(x) = g(x) on the interval 

[a, b] (Figure 11.18). We do not insist that both functions are non-negative. 

  

Figure 11.18 Area between two curves 
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To find the area of the region R between the curves fromx = atox = b, 

we subtract the area between the lower curve g(x) and the x-axis from the 

area between the upper curve f(x) and the x-axis; that is 

Area of R = f:f(x)dx B ng(x)dx = fab[flx) — g(0)] dx 

  

Figure 11.19 Areas under functions fand g 

1fflx) and g(x) are functions such that f(x) = g(x) on the interval [a, b], then the area between 
b 

the two curves is given by A = >_[flx) — ()] dx 

This fact applies to all functions, not only to positive functions. These facts are 

used to define the area between curves. 

Example 11.16 

Find the area of the region between the curves y = x*and y = x> — x 

on the interval [0, 1]. 

  

| 

Solution 

y = x*appears to be higher than y = x? — x with one intersection at x = 0. 
Thus, the required area is 

  

In some cases, we must be very careful how we calculate the area. This is the 

case where the two functions intersect at more than one point.



Example 11.17 

Find the area of the region bounded by the curves y = x* + 2x2 

andy = x> + 2x. 

  

Solution 

The two curves intersect when: 

PR 0 AR IS S R e T (S G ) (A T ) 

That is, when x = —2,0, or 1 

The area is equal to: 
  

Plotl Plotz Plot3 0 

A= [ e 42— b+ 2nldr [+ 20— 0+ 202 de 
3 0 

0 1 
:f [x3+x2*2x]dx+f[*x2+2x*xj]dx 

— o 

  

  

Dol X 

N P 
  
[{3=abs (Y1-v2) 

   —o—[16_8_ 
D o 

  

[Upper Timits 
x=-2 1 v=0   

This discussion leads us to stating the general expression we should use in   

evaluating areas between curves. 

If f(x) and g(x) are functions that are continuous on the interval [a, b], 

then the area between the two curves is given by 

4= 1760 - gto] ax     S£(x)dx=3.083523 

Figure 11.20 Usinga GDC 
. to find the area between two 

We can do this on our GDC. curves 
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   Areas along the y-axis (of 

  
To find the area enclosed by 7 

y=1l-xandy’=x+1, | 
it is best to treat the region 

between them by regarding 

x as a function of y 

(Figure 11.21). 

  

    
  

The area of the shaded 

region can be calculated 

using the integral: 

      

  

Figure 11.21 Area between two curves expressed by 
regarding x as a function of y 

a0 =[ 0= 7 - v]ay 
1 2 3] 

) ,J‘l zdf‘ 9 =) RP-yrld=p-5-3   -2 
If we used y as a function of x, then the calculation would involve calculating 

the area by dividing the interval into two: [—1, 0] and [0, 3]. 

In the first part, the area is enclosed between y = Vx + 1 and y = —Vx + 1, 

and the area in the second part is enclosed by y = 1 — xandy = —Vx + 1: 

A =2 wF T+ [0 -0 - (AT D)dx = 

1. Find the area of the region bounded by the given curves. Sketch the 

region and then compute the required area. 

W
 + 

ol
 27 

6 

(@R 72 (b)y:cosx,y:x*fi,x:*‘n' 
2 

©) y=2xy=x*—2 dy=x%y=x>—2,x=1 

(e) y=x5y=x2 (B 

(@ y=2x—x%y=x—x> (h) y=sinx,y =2 — sinx (one period) 

i) y=%y= = Byt e @) y=5y=vx.x=9 G) y=Tgy=3%—x 

1 i @ y=3.y=5x=8 
1) y:25inx,)’:‘/§tanx,*%$x€%



(m)y=x*+2x%y=x>—2x,x=—3,andx =2 

) y=x+1y=(x+1? 

©y=x*+xy=3>—x 

2/x+1 

2Vx 

2. Find the area of the shaded region. 

P y=3-vxy= 

     
ErEy 
N 

3. Find the area of the region enclosed by y = e*, x = 0, and the tangent to 

y=¢efatx=1 

  
  

  

    

4. Find the area of the region enclosed by y = (x — 2)2 and y = x(x — 4)* 

5. Find a value for m > 0 such that the area under the graph of y = e>* 

over the interval [0, m] is 3 square units. 

6. Find the area of the region bounded by y = x* — 4x* + 3x and the x-axis. 

Modelling linear motion 

So far, our mathematical models considered the motion of an object only along 

a straight line. For example, projectile motion (e.g. a ball being thrown) is often 

modelled by a position function that simply gives the height (displacement) of 

the object. In this way, we are modelling the motion as if it was restricted to a 

vertical line. 

In this section, we will again analyse the motion of an object as if its motion 

takes place along a straight line in space. This makes sense only if the mass (and 

thus, size) of the object is not taken into account. Hence, the object is modelled 

by a particle whose mass is considered to be zero. This study of motion, without 

reference either to the forces that cause it or to the mass of the object, is known 

as kinematics. 
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Displacement and total distance travelle: 

Recall from Chapter 10 that given time ¢, displacement s, velocity v, and 

acceleration a, we have: 

d(ds) _ s 
dt 

==anda= g,alsoa = — 
dr dr de de? 

It is important to understand the difference between displacement and distance 

travelled. Consider a couple of simple examples of an object moving along the 

X-axis. 

Assume that the object does not change direction during the interval 0 < t < 5. 

If the position of the object at t = 0 is x = 2, and at t = 5 its position is x = —3, 

then its displacement, or change in position, is —5 because the object changed 

its position by 5 units in the negative x-direction. This can be calculated by: 

(final position) — (initial position) = —3 — 2 = —5. 

However, the distance travelled would be the absolute value of displacement, 

calculated by |final position — initial position| = [=3 — 2| = 5. 

Assume that another object’ initial and final positions are the same as in the 

first example; that is, at t = 0 its position is x = 2, and at t = 5 its position is 

x = —3. However, the object changed direction in that it first travelled to the 

left (negative velocity) from x = 2 to x = —5 during the interval 0 < t < 3, 

and then travelled to the right (positive velocity) from x = —5tox = —3. 

The object’s displacement is —5, the same as in the first example because its 

net change in position is just the difference between its final and initial positions. 

However, it’s clear that the object has travelled further than in the first example. 

But, we cannot calculate it the same way as we did in the first example. We 

will have to make a separate calculation for each interval where the direction 

changed. Hence, total distance travelled = | =5 — 2| + |=3 — (=5)| =7 +2     

3<t=5e- 

0=t=3 0« 
—_— 7T T 7> 
-5 -4-3-2-10 1 2 3 4 5% 

  >0 

  

Figure 11.22 Travelled distances 

# Thevelocity v = % of a particle is a measure of how fast it is moving and ofits direction of 
‘motion relative to a fixed point. 

# The speed [v] of a particle is a measure of how fast it is moving that does not indicate direction. 
‘Thus, speed is the magnitude of velocity and is always positive. 

+ Theacceleration a = % of a particleis a measure of how fastits velocity is changing,



Example 11.18 

The displacement s of a particle on the x-axis, relative to the origin, is given by 

the position function s(f) = —# + 6t where s in centimetres and  is in seconds. 

(a) Find a function for the particle’s velocity v(#) in terms of £. Graph the 

functions s(t) and v() on separate axes. 

(b) Find the particle’s position at the following times: t = 0, 1, 3, and 

6 seconds 

(c) Find the particle’s displacement for the following intervals: 0 < t < 1, 

1=st=33=<t<6,and0<t<6 

(b) Find the particle’s total distance travelled for the following intervals: 

0s<t<L1<t<33<t<6,and0<t<6 

I 

Solution 

(@) v = %(—tl (@) = =G 

Position function: s(t) = — + 6t Velocity function: v(t) = s'(t) = =2t + 6 

   
(b) The particle’s position at: 

t=0iss(0) = —(0)> + 6(0) = 0 cm 

t=1liss(l) = —(1)2+ 6(1) = 5cm 

t = 3iss(3) = —(3)2 + 6(3) = 9cm 

t=6iss(6) = —(6)> + 6(6) = 0cm 

(c) The particle’s displacement for the interval: 

0=<t=1: A position = s(1) — 5(0) = 5 — 0 = 5cm 

1 <t=3: Aposition = 5(3) — s(1) =9 — 5= 4cm 

3 <t<6: A position = 5(6) —s3) =0—9 = —9cm 

0 =<t=6: A position = 5(6) — 5(0) = 0 — 0 = Ocm 

This last result makes sense considering the particle moved to the right 

9 cm then, at t = 3, it turned around and moved to the left 9 cm, ending 

where it started - thus, no change in net position. 
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(d) The particle’s total distance travelled for the interval: 

0<t=<lisls(1) —s0)]=15—-0l=5 

1=<t=<3is|s(3) — sl =19 — 51 =4 

3<t<6isls6) —sB)| =10—91=1-91=9 

The object’s motion changed direction (velocity= 0) att = 3 

0=<t=<6is|s(3) — sO) + [s6) — s(3)| =19 — 0] + [0 — 9] 

=959 =8 

Since differentiation of the position function gives the velocity function 

(i.e. y= %), we expect that the inverse of differentiation (integration) will lead 

us in the reverse direction - that is, from velocity to position. When velocity is 

constant, we can find the displacement with the formula: 

displacement = velocity X change in time 

If we drove a car at a constant velocity of 50 km h™! for 3 hours, then our 

displacement (same as distance travelled in this case) is 150 km. If a particle 

travelled to the left on the x-axis at a constant rate of —4 units s ! for 

5 seconds, then the particle’s displacement is —20 units. 

- The velocity-time graph (Figure 11.23) depicts an object’s motion with a 

  

. 
- s5 1 =5 constant velocity of 5cms™! for 0 < t =< 3. Clearly, the object’s displacement is 

5cms™! X 35 = 15cm for this interval. 

_ The area (3 X 5 = 15) under the velocity curve for a certain interval is equal to 

0 12 3¢ the object’s displacement. We can argue that just as the total area can be found 

Figure 11.23 Velocity-time by summing the areas of narrow rectangular strips, the displacement can be 
graph found by summing small displacements (v - At). Consider: 

displacement = velocity X change in time = s = v- At =s=v-dt 

b 
We already know that when fix) = 0, the definite integral f fx) dx gives the 

area between y = f(x) and the x-axis from x = a to x = b. And if f(x) < 0, then 
b 

f flx) dx gives a number that is the opposite of the area between y = f(x) and 

the x-axis from a to b. 

Given that v(# is the velocity function for a particle moving along a line, then: 
b 

[} vindt gives the displacement from ¢ = ato = b 

b 
| w01 dt gives the total distance travelled from £ = ato £ = b ; 
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Let’s apply integration to find the displacement and distance travelled for the 

two intervals 3 < t < 6 and 0 < t < 6 in Example 11.18 

For3=t=é6: 

6 6 

Displacement = [ (=2t + 9t = —2 + stL =0-9=-9 

6      6 
Distance travelled = | [(—2¢ + 6)ldt = |—2 + 61l| = 10— 91 =9 

3 

Foro0=t=6: 

6 6 
Displacement = f (=2t + 6)dt = —t2 + 6[| =0 

o 0 

3 6 
Distance travelled = jl; |(=2t + 6)ldt + j; |(=2t + 6)ldt 

(particle changed direction at t = 3) 
3 

= \—z2+6t|| + |—z2+6tl| =9+9=18 
0 3 

Example 1 

The function v(t) = sin(rt) gives the velocity inm s~ of a particle moving 

along the x-axis. 

(a) Determine when the particle is moving to the right, to the left, and stopped. 

If it stops, determine if it changes direction at that time. 

(b) Find the particle’s displacement for the time interval 0 < t < 3. 

(c) Find the particle’s total distance travelled for the time interval 0 < t < 3. 

—— 

Solution 

(@) v(t) =sin(wt) = 0=sink - m) = 0fork€e Z= mt=kmr=>t=kkeZ 

for0<t=3,t=0,1,2,3. Therefore, the particle is stopped at t = 0, 1, 2, 3. 

Since t = 0 and t = 3 are endpoints of the interval, the particle can 

change direction onlyatt = 1ort = 2. 

A s o) - {3 
= direction changes at t = 1 

A s~ (3 - 
= direction changes again at t = 2 

Note when usinga GDC 
or your computer, you do 
not need to separate the 
integrals as we did here. 
  

[5]-2x+6]ax 
18 

o 

T ) 0 S |       
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] o 1 2 
(b) displacement = jl; sin(7rt) dt = *?cos(‘n't)|o 

*,%_cos(?m) = (7%cos(0)) = %z 0.637 metres 

1 2 3 

(¢) total distance travelled = [ Isin(art|dt + [ Isinartldt + [ lsinaro] e 
0 1 2 

2 _12] ]2 =6 7|?| +| ?| +|7r = 7~ 1.91 metres 

Note that in Example 11.20, the position function is not known precisely. 

The position function can be obtained by finding the antiderivative of the 

velocity function. 

sty = [wtdt = [sinmtdt = —Leostrn + € 

‘We can determine the constant of integration ¢ only if we know the particle’s 

initial position (or position at any other specific time). However, the particle’s 

initial position will not affect displacement or distance travelled for any interval. 

Position and velocity from acceleration 

If we can obtain position from velocity by applying integration, then we can also 

obtain velocity from acceleration by integrating. Consider the next example. 

Example 11.20 

The motion of a falling parachutist is modelled as linear motion by 

considering that the parachutist is a particle moving along a line whose 

positive direction is vertically downwards. The parachute is opened at t = 0, 

at which time the parachutist’s position is s = 0. According to the model, 

the acceleration function for the parachutist’s motion for ¢ > 0 is given by: 

alt) = —54e15t 

(a) At the moment the parachute opens, the parachutist has a velocity of 

42ms~!. Find the velocity function of the parachutist for ¢ > 0. 

‘What does the model say about the parachutist’s velocity as t — 00? 

(b) Find the position function of the parachutist for t > 0. 

| 

  

Solution 

(@) w0 = [atn dt = [(~54e-15) d 

= — 1 =158 54(7L S)e G 

=36e"'%+ C 
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Since v =42 whent = 0,then42 = 36’ + C=42=36+C=C=6 

Therefore, after the parachute opens (¢ > 0), the velocity function is 

wt) = 36e % + 6 

Since lime "% = lim % =0, thenast— 0, limv(t) = 6ms~" ‘The limit of the velocity 
S5 e as t — oo, fora falling 

object, is called the 

  

() st = f vt dt = f (36e 15 + 6) dt terminal velocity of the 
object. While the limit 

= 36( L )e"-“ EHo I E t— 00 s never attained 
- L5 as the parachutist 

= —24e-1% + 6t+C eventually lands on the 
ground, the velocity gets 

Since s = 0 when t = 0, then 0 = —24e% + 6(0) + C= 0= —24 + C dlose to)the tecrninal 
e velocity very quickly. 

For example, after just 
s . 8 ds, the velocity is 

Therefore, after the parachute opens (¢ > 0), the position function is v&f‘;’"m,.i&f 3_06) ® 

s() = —24e "1t + 6t + 24 ~6.0002ms"! 

ormly accelerated moti 

Motion under the effect of gravity in the vicinity of Earth (or other planets) is 

an important case of rectilinear motion. This is called uniformly accelerated 

motion. 

If a particle moves with constant acceleration along the s-axis, and if we know 

the initial speed and position of the particle, then it is possible to have specific 

formulas for the position and speed at any time ¢. 

Assume acceleration is constant; that is, a(t) = a, v(0) = v, and s(0) = s,. 

wt) = fa(t)dt = at + ¢; however, we know that v(0) = v, so 

W0) =vy=a X0+ c=c=v,hencevt) = at + v, 

st = [viodt = [(at + v)dt = %at’ + vyt + ¢, and, as above, substituting 

5(0) = s, into the equation, we have 

s(t) = %atz + vt + 50 

When this is applied to the free-fall model (s-axis vertical), then 

vt) = —gt + voand 

st = —%gzz + vt + 5, where g = 9.8 m s 2 

A ball is hit directly upwards from a point 2 m above the ground with initial 

velocity of 45 m s~!. How high will the ball travel? 
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S 

Solution 

W= —9.8t+ 45 
s = —%(93) {24 456+ 2 = —4.9¢ + 45t + 2 

The ball will rise until v(f) = 0, = 0 = —9.8t + 45, = t = 4.6s 

At this time 

5(4.6) = —4.9(4.6)% + 45(4.6) + 2~ 105.32m 

3 G R R 

1. The velocity of a particle along a rectilinear path is given by each 

equation for v(f) in ms™!. Find both the net distance and the total 

distance it travels between the times f =a and t = b. 

(@) v(t)=t2— 11t +24,a=0,b= 10 

(b) v(t):tft—ll,aZOAl,bZI 

(€) v(t)=sin2t,a=0,b= 77T 

(d) v(t) =sint + cost,a=0,b= 

() v(t)=t>— 82+ 15La=0,b=6 

() v(t) = sin(?) 4t cos(?), a=0b=1 

2. The acceleration of a particle along a rectilinear path is given by each 

equation for a(t) in ms~2 and the initial velocity v, in ms~! is also given. 

Find the velocity of the particle as a function of £, and both the net 

distance and the total distance travelled between times t = a and t = b. 

(@) a(t) =3,v,=0,a=0,b=2 
(b) a(t) =2t —4,v,=3,a=0,b=3 

(© a(t):sint,vl,zo,azo,b:%” 

  @ fl(t):‘/%,vozz,azo,b:z; 

(© a(z):a——(t:l)z,vl,:z,a:o,b:z 

3. The velocity and initial position of an object moving along a coordinate 

line are given. Find the position of the object at time . 

(a) v=9.8t+5,500) = 10 
(b) v=32t—2,5(0.5) =4 

(c) v=sint, s0) =0 

_ 1 e @ v=r15.t> ~2,6=1) 

=
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4. The acceleration, initial velocity, and initial position of an object moving 

on a coordinate line are given. Find the position of the object at time t. 

(a) a= e, v(0)=20,s(0)=5 

(b) a=1938,v(0) = —3,s(0) =0 

(¢) a= —4sin 2t,v(0) = 2,5(0) = —3 

(d) a= %cos%fi,v(O) =0,s0)=—1 
s 

5. An object moves with a speed of v(f) m s~ along the s-axis. Find the 

displacement and the distance travelled by the object during the given 

time interval. 

@ v()=2t—40<t<6 

(b) v(t) =[t—30st=<5 

@ vt)=£—-32+260st<3 

@v)=vi—2,0st<3 

6. An object moves with an acceleration a(t) m s~ along the s-axis. 

Find the displacement and the distance travelled by the object during 

the given time interval. 

(@) a) =t —2,v,=0,1<t<5 

(b)la(0) = D o= =13 
Gt+1 ° 

(©) al) = —2,m=3,1<t<4 

  

7. The velocity of an object moving along the s-axis is v = 9.8t — 3. 

(a) Find the object’s displacement between t = 1 and t = 3 given that 

s(0) =5 

(b) Find the object’s displacement between t = 1 and t = 3 given that 

s(0) = -2 

(c) Find the object’s displacement between t = 1 and t = 3 given that 

s(0) =5 

8. The displacement s metres of a moving object from a fixed point O at 

time ¢ seconds is given by s(f) = 50t — 10£* + 1000. 

(a) Find the velocity of the objectin ms~!. 

(b) Find its maximum displacement from O. 
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9. A particle moves along a line so that its speed v at time ¢ is given by 

st o=t<1 
WEei-1 = 

where ¢ is in seconds and v is in cm s~ . Estimate the time(s) at which 

the particle is 4 cm from its starting position. 

10. A projectile is fired vertically upwards with an initial velocity of 49 ms~! 

from a platform 150 m high. 

(a) How long will it take the projectile to reach its maximum height? 

(b) What is the maximum height of the projectile? 

(c) How long will it take the projectile to pass its starting point on the 

way down? 

(d) What is the velocity of the projectile when it passes the starting 

point on the way down? 

(e) How long will it take the projectile to hit the ground? 

(f) What will its speed be at impact? 

Chapter 11 practice questions 

1. The graph in Figure 11.24 represents the function 

  

fix—pcosx,peN. 

Figure 11.24 Graph for Find: 
question 1 

(a) the value of p 

(b) the area of the shaded region. 

2 2. The diagram in Figure 11.25 shows part of the graph of y = e*. 

(a) Find the coordinates of the point P, where the graph meets the 

  

y-axis. 

Figure 11.25 Diagram for (b) Find the exact value of the area of the shaded region between the 

question 2 graph and the x-axis, bounded by x = 0 and x = In 2. 

¥ 

3. The diagram in Figure 11.26 shows part of the graph of y = % B 

The area of the shaded region is 2 units. 

Find the exact value of a. 

  

Figure 11.26 Diagram for 
question 3 
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4. (a) Find the equation of the tangent to the curve y = In x at the point 

(e, 1), and verify that the origin is on this line. 

(b) Show that (xInx — x)' =Inx 

(c) The graph in Figurel1.27 shows the region enclosed by the curve 

» = In x, the tangent in part (a), and the line y = 0. 

  

Figure 11.27 Graph for 
question 4 Use the result of part (b) to show that the area of this region is % g=1l 

5. The main runway at Concordville airport is 2 km long. An aeroplane 

landing at Concordyville touches down at point T and immediately starts 

to slow down. The point A is at the southern end of the runway. 

A marker is located at point P on the runway. 

  

  

2km   

Not to scale 

As the aeroplane slows down, its distance, s, from A, is given by 

s=c+ 100t — 4 

‘where t is the time in seconds after touchdown, and ¢ metres is the 

distance of T from A. 

(a) The aeroplane touches down 800 m from A, (i.e. ¢ = 800). 

(i) Find the distance travelled by the aeroplane in the first 

5 seconds after touchdown. 

(ii) Write down an expression for the velocity of the aeroplane at 

time ¢ seconds after touchdown, and hence find the velocity 

after 5 seconds. 

The aeroplane passes the marker at P with a velocity of 36 ms~. 

Find: 

(iii) how many seconds after touchdown it passes the marker 

(iv) the distance from P to A. 

(b) Show that if the aeroplane touches down before reaching point P, 

it can stop before reaching the northern end, B, of the runway. 

6. (a) Sketch the graph of y = wsinx — x, —3 < x < 3, on millimetre 

square paper, using a scale of 2 cm per unit on each axis. 

Label and number both axes and indicate clearly the approximate 

positions of the x-intercepts and the local maximum and minimum 

points. 

(b) Find the solution of the equation 7sinx — x = 0, x > 0. 

(c) Find the indefinite integral f (77 sin x — x)dx and hence, or 

otherwise, calculate the area of the region enclosed by the graph, 

the x-axis, and the line x = 1. 
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0 1 2 3 4% 

Figure 11.28 Diagram for 
question 7 

  

Figure 11.29 Diagram for 
question 9 
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7. Figure 1128 shows the graph of the function y = 1 + 1,0 <x<4. 
Find the exact value of the area of the shaded region. 

8. Note that radians are used throughout this question. 

(a) (i) Sketch the graph of y = x? cos x, for 0 < x < 2, making clear the 

approximate positions of the positive intercept, the maximum 

point, and the endpoints. 

(ii) Write down the approximate coordinates of the positive 

x-intercept, the maximum point and the endpoints. 

(b) Find the exact value of the positive x-intercept for 0 < x < 2. 

Let R be the region in the first quadrant enclosed by the graph and the 

X-axis. 

(c) (i) Shade R on your sketch. 

(ii) Write down an integral which represents the area of R. 

(d) Evaluate the integral in part (c) (i), either by using a graphic display 

calculator or by using: 

&y (x?sinx + 2x cos x— 2 sinx) = x?cos x. 

9. Note that radians are used throughout this question. 

The function fis given by f(x) = (sin x)? cos x 

Figure 11.29 shows part of the graph of y = f(x). 

The point A is a maximum point, the point B lies on the x-axis, and the 

point C is a point of inflection. 

(a) Give the period of f. 

(b) From consideration of the graph of y = f(x), find the range of f, 

accurate to 1 significant figure. 

() (i) Findf'(x) 
(ii) Hence, show that at the point A, cosx = \/% 

(iii) Find the exact maximum value. 

(d) Find the exact value of the x-coordinate at the point B. 

() () Find [fiodx 
(ii) Find the area of the shaded region in the diagram. 

(f) Given that f"(x) = 9(cos x)* — 7 cos x, find the x-coordinate at the 

point C.



10. 

s 

12. 

Note that radians are used throughout this question. 

(a) Draw the graph of y = 7 + x cos x, 0 < x < 5, on millimetre square 

graph paper, using a scale of 2 cm per unit. Make clear: 

(i) the integer values of x and y on each axis 

(ii) the approximate positions of the x-intercepts and the turning 

points. 

(b) Without the use of a calculator, show that 7 is a solution of the 

equation 77 + x cosx = 0 

(c) Find another solution of the equation 7 + x cos x = 0 

for 0 < x < 5, giving your answer to 6 significant figures. 

(d) Let R be the region enclosed by the graph and the axes for 

0 < x < 7. Shade R on your diagram, and write down an integral 

which represents the area of R. 

(e) Evaluate the integral in part (d) to an accuracy of 6 significant 

figures. If considered necessary, you can make use of the result 

d 
—(xsinx + cosx) = x cos x 
dx 

Figure 11.30 shows the graphs of flx) = 1 + e* and g(x) = 10x + 2, 

0= =5 

(a) (i) Write down an expression for the vertical distance p between 

the graphs of fand g. 

(ii) Given that p has a maximum value for 0 < x < 1.5, find the 

value of x at which this occurs. 

The graph of y = f(x) only is shown Figure 11.31. 

Whenx =a,y =5. 

(b) (i) Findf~'(x) 
(ii) Hence, show thata = In2 

(c) The region shaded in Figure 11.31 is rotated through 360° about the 

x-axis. Write down an expression for the volume obtained. 

The area of the enclosed region shown in Figure 11.32 is defined by 

y=x>+2,y<ax+2 wherea>0 

Find, in terms of a, the area of the region. 

  

0 0.5 1 15% 

Figure 11.30 Diagram for 
question 11 

  

o 05% 1 15% 

Figure 11.31 Second diagram for 
question 11 

  

Figure 11.32 Diagram for 
question 12 
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0 x 

y=a-x 

Figure 11.33 Diagram for 
question 18 

  

Figure 11.34 Diagram for 
question 19 
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Integral calculus 

13 

14. 

5% 

16. 

n7z: 

18. 

16, 

. Using the substitution u = %x + 1, or otherwise, find the integral 

1 
f x|5* S td: 

. A particle moves along a straight line. When it is a distance s from a 

fixed point, where s > 1, the velocity v is given by v = % = 
Find the acceleration when s = 2. 

The area between the graph of y = xe* and the x-axis from x = 0 to 

x = k (k> 0) is equal to 1. Find the exact value of k. 

k 

- Find the real number k > 1 for which [*(1+ )ds =2 
X 

The acceleration, a(f) m s—2 

motion is given by 

, of a fast train during the first 80 seconds of 

1 )] 
2 20 

where ¢ is the time in seconds. If the train starts from rest at t = 0, 

find the distance travelled by the train in the first minute. 

In Figure 11.33, PTQ is an arc of the parabola y = a> — x? where aisa 

positive constant and PQRS is a rectangle. The area of rectangle PQRS 

is equal to the area between the arc PTQ of the parabola and the x-axis. 

Find, in terms of a, the dimensions of the rectangle. 

lnfeEs =20 
Consider the function f;(x) = { 0 Zo where k € N 

(a) Find the derivative of fi(x), x > 0. 

(b) Find the interval over which f(x) is increasing. 

The graph of the function f(x) is shown in Figure 11.34. 

(c) (i) Show that the stationary point of f,(x) is at x = ek, 

(ii) One x-intercept is at (0, 0). Find the coordinates of the other 

x-intercept. 

(d) Find the area enclosed by the curve and the x-axis. 

(e) Find the equation of the tangent to the curve at A.



20. 

21. 

22. 

23. 

(f) Show that the area of the triangular region created by the tangent 

and the coordinate axes is twice the area enclosed by the curve and 

the x-axis. 

(g) Show that the x-intercepts of f,(x) for consecutive values of k form a 

geometric sequence. 

Consider the graphs of the functions f(x) = a — |x — a| and 

g(x) = |x — a|, where a > 0. Find the value of a if the two graphs 

enclose an area of 12.5 square units. 

The equation of motion of a particle with mass m subjected to a 

force kx can be written as kx = mv%, where x is the displacement and 

v is the velocity. When x = 0, v = v,. Find v, in terms of v, k, and m, 

when x = 2. 

(a) Sketch and label the graphs of fix) = e ~**and g(x) = e * — 1 for 

0 =< x =< 1, and shade the region A that is bounded by the graphs 

and the y-axis. 

(b) Let the x-coordinate of the point of intersection of the curves 

y = f(x) and y = g(x) be p. Without finding the value of p, 

show that% < area of region A < p. 

(c) Find the value of p correct to 4 decimal places. 

(d) Express the area of region A as a definite integral and calculate its value. 

Let f(x) = x cos 3x 

(a) Use integration by parts to show that 

[fede= §xsin3x o %cos3x 15 

(b) Use your answer to part (a) to calculate the exact area enclosed by 

f(x) and the x-axis in each of the following cases. Give your answers 

in terms of 7. 

® T<x<3T @) T<x<3T ) M<x<IT 

(c) Given that the above areas are the first three terms of an arithmetic 

sequence, find an expression for the total area enclosed by f(x) and 
- Q2n+ )m 

the x-axis for 7 < - exaxlsore X 5 where n € Z. Give your answers 

in terms of n and 7. 
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24. 

25. 

M y=umViie 26. 

  

Figure 11.35 Diagram for 
question 26 

27. 

28. 

29. 
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A particle is moving along a straight line so that ¢ seconds after passing 

through a fixed point O on the line, its velocity v(t) m s~ is given by 

= tsin(T v(t) = tsm(3 t)A 

(a) Find the values of t for which v(t) = 0, given that 0 < t < 6. 

(b) (i) Write down a mathematical expression for the total distance 

travelled by the particle in the first six seconds after passing 

through O. 

(ii) Find this distance. 

A particle is projected along a straight-line path. After ¢ seconds, 

its velocity v in metres per second is given by v = o 

(a) Find the distance travelled in the first second. 

(b) Find an expression for the acceleration at time ¢. 

Figure 11.35 shows the shaded region R enclosed by the graph of 

y = 2xV1 + x2, the x-axis, and the vertical line x = k. 

b 
a) Find — (a) Fing o 

(b) Using the substitution u = 1 + x? or otherwise, show that 

JoTHaar =20+ 29+ ¢ 

(c) Given that the area of R equals 1, find the value of k. 

A particle moves in a straight line with velocity vm s ™!, at time 

t seconds, given by v(t) = 6t — 6t,t = 0. 

Calculate the total distance travelled by the particle in the first two 

seconds of motion. 

A particle moves in a straight line. Its velocity v m s~! after t seconds is 

givenby v = e sint. 

Find the total distance travelled in the time interval [0, 277]. 

The temperature T °C of an object in a room after t minutes satisfies the 

differential equation ‘31—1; = k(T — 22), where k is a constant. 

(a) Show that T = Ae* + 22, where A is a constant.



(b) When t = 0, T = 100, and when t = 15, T = 70. 

(i) Use this information to find the values of A and k. 

(ii) Hence, find the value of t when T' = 40. 

1 
30. Consider the function f(x) = ——— 

Ze S xa i 

(a) Sketch the graph of the function, indicating the equations of the 

asymptotes, intercepts, and extreme values. 

1 
(b) Find j; f(x) dx and express it in the form In k. 

(c) Sketch the graph of f(|x|) and hence determine the area of the region 

between this graph, the x-axis, and the lines x = —1,and x = 1. 

  
3 

31. Use the substitution u = x + 2 to find f (Xx +d;)2 

32. (a) On the same axes, sketch the graphs of the functions, f(x) and g(x), 

where 

flx)=4—(1 —x2for—2<x<4 

gx)=In(x+3)=2,for—3=x<5 

(b) (i) Write down the equation of any vertical asymptotes. 

(ii) State the x-intercept and y-intercept of g(x). 

(c) Find the values of x for which f(x) = g(x). 

(d) Let A be the region where f(x) = g(x) and x = 0. 

(i) On your graph, shade the region A. 

(ii) Write down an integral that represents the area of A. 

(iii) Evaluate this integral. 

(e) In the region A, find the maximum vertical distance between 

f(x) and g(x). 

  33. Consider the functions f(x) = and g(x) = x> where x = 0. 
B 

Gtz 2 

(a) Sketch the graphs of fand g on the same set of axes. 

(b) Find the point of intersection of the two graphs. 

(c) Find the equation of the tangent to g(x) at the point of intersection 

as well as the normal to f(x) at the same point. 

(d) Find the area of the region bounded by the two lines in (c) and the 

X-axis. 
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A random variable 

isa variable that takes 

on numerical values 

determined by the 
outcome of a random 

experiment. 

Random variables are 
customarily denoted 
by 

such 

upper case letters, 

as Xand Y. Lower 
case letters are used to 

represent particular 

values of the random 

variable. That is, if X 

represents the numbers 

resulting from the throw 
ofa dice, then x =2, 

represents the case when 
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the outcome is 2. 

Probability distributions 

Learning objectives 

By the end of this chapter, you should be familiar with... 

o discrete random variables and their probability distributions 

o the effect of linear transformations of X on the values of its parameters 

o the normal distribution: properties, normal probability calculations, 

and inverse normal calculations 

« standardising normal variables (z-values) 

« inverse normal calculations where mean and standard deviation 

are unknown 

o the binomial distribution including its mean and variance. 

Investing in securities, calculating premiums for insurance policies, or 

overbooking policies used in the airline industry are only a few of the many 

applications of probability and statistics. Actuaries, for example, calculate the 

expected claims that an insurance company will incur and decide on how 

high the premiums should be. These applications depend mainly on what 

we call probability distributions. A probability distribution describes the 

behaviour of a population in that it lists the distribution of possible outcomes 

to an event, along with the probability of each potential outcome. This can be 

done by a table of values with their corresponding probabilities, or by using a 

mathematical model. 

In this chapter, we will get an understanding of the basic ideas of distributions 

and will study two specific ones: the binomial and normal distributions. 

Random variables 

In Chapter 7, variables were defined as characteristics that change or vary over 

time and/or for different objects under consideration. A numerically valued 

variable x will vary or change depending on the outcome of the experiment 

we are performing. For example, suppose we are counting the number of 

smartphones owned by families in a certain city. The variable of interest, X, can 

take any of the values 0, 1, 2, 3, and so on, depending on the random outcome 

of the experiment. For this reason, we call the variable X a random variable. 

‘When a probability experiment is performed, we are often not interested in all 

the details of the outcomes, but only in the value of some numerical quantity 

determined by the result. For instance, in tossing two dice (used in plenty of 

games), we care often only about their sum and not the values on the individual 

dice. A sample space for which the points are equally likely is given in Table 

12.1. It consists of 36 ordered pairs (a, b) where a is the number on the first 

dice, and b is the number on the second dice. For each sample point, we can let 

the random variable X stand for the sum of the numbers. The resulting values 

of x are also presented in the table.



  

  

  

  

  

(LSkx=6 |(25:x=7 [(3,55x=8 |[(455x=9 |(55;x=10(65;x=11 
  

(L1sx=2 |2 15x=3 |G Dix=4 |(415x=5 |(5,15x=6 [(61);x=7 

(L2sx=3 [22sx=4 |(3,2ix=5 |(42s5x=6 |[(5.2:5x=7 |(6,25x=8 

(L3jx=4 [(23%5x=5 |(3.3)sx=6 |(43%x=7 [(53%5x=8 [(6.3)sx=9 

(Ldyx=5 |[(245x=6 |(3.45x=7 |(44)x=8 |(5.45x=9 [(64)sx=10 

( 

(   
) 

) 

) 

) (L6sx=7 [(265x=8 |(3,65x=9 |(465x=10](56sx=11[(66)x=12             
  

Table 12.1 Sample space and the values of the random variable X in the two-dice experiment. 

Notice that events can be more accurately and concisely defined in terms of 

the random variable X; for example, the event of getting a sum greater than or 

equal to 5 but less than 9 can be replaced by 5 =< x < 9. 

We can think of many examples of random variables: 

¢ X = the number of calls received by a household on a Friday night 

e X = the number of beds available at hotels in a large city 

¢ X = the number of customers a sales person contacts on a working day 

o X = the length of a metal bar produced by a certain machine 

o X = the weight of newborn babies in a large hospital. 

As you have seen in Chapter 7, these variables are classified into discrete or 

continuous, according to the values that X can assume. In the examples above, 

the first three are discrete and the last two are continuous. A random variable is 

discrete if its set of possible values is isolated points on the number line; that is, 

there is a countable number of possible values for the variable. The variable is 

continuous if its set of possible values is an entire interval on the number line; 

that is, it can take any value in an interval. Consider the number of times you 

flip a coin until the head side appears. The possible values are x = 1,2, 3, ... 

This is a discrete variable, even though the number of times may be infinite. 

On the other hand, consider the time it takes a student at your school to eat 

lunch. This can be anywhere between zero and the length of the lunch period 

at your school. 

State whether each of the following is a discrete or a continuous 

random variable. 

  

(a) The number of hairs on a Scottish terrier 

(b) The height of a building 

(c) The amount of fat in a steak 

(d) A high school student’s grade on a history test 

(e) The number of fish in the Atlantic Ocean 

(f) The temperature of an electric kettle 

\f 
discrete’ 

0 \ 50 

continuous 
Figure 12.1 Discrete and 
continuous varables 
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Probability distributions 

I 

Solution 

(a) Even though the number of hairs is incredibly large, it is countable. 

So, it is a discrete random variable. 

(b) This can be any real number. Even when we say this building is 15 m high, 

the number could be 15.1 m, 15.02 m, and so on. So, it is continuous. 

(c) This is continuous as the amount of fat could be zero up to the 

maximum amount of fat that can be held in one piece. 

(d) Grades are discrete. No matter how detailed a score the teacher gives, 

the grades are isolated points on a scale. 

(e) This is unfathomably large, but still theoretically countable, 

hence discrete. 

(f) This is continuous, as the temperature can take any value from room 

temperature up to 100 degrees Celsius. 

    Discrete probability distributiol 

In Chapter 7, we learned how to work with the frequency distribution 

and relative or percentage frequency distribution for a set of numerical 

measurements on a variable X. The distribution gave the following information 

about X: 

« what value of X occurred 

« how often each value occurred 

‘We also learned how to use the mean and standard deviation to measure the 

centre and variability of the data set. 

Here is an example of the frequency distribution of 25 families in Lower 

Austria that were polled in a marketing survey to list the number of litres of 

milk consumed during a particular week. Table 12.2 lists the number of litres 

consumed, to the nearest litre, along with the relative frequency that number is 

observed. One of the interpretations of probability is that it is understood to be 

  

  

  

  

  

  

  

‘The probability : 
b the long-term relative frequency of the event. 

et randon Jarisble Number of litres to the nearest litre | _Relative frequency i a table, graph, or 
formula that gives the 0 0.08 

possible values of x, 1 020 
and the probability 

P(x) = P(X= ) 2 036 
associated with each 3 0.20 

value of x. This is also 

called the probability 4 0.12 
‘nmass function 5 0.04         

(PMF) and in many 
sources it s called the 

probability distribution A table like this, where we replace the relative frequency with probability, 
e ey is called a probability distribution of the random variable. 
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Table 12.2 Number of litres of milk consumed by families during a particular week



Note: we write P(X = x) 
as P(x) for convenience. the probability mass function specifies the probability of observing 

In other words, for every possible value x of the random variable X, I 

that value when the experiment is performed. 

If X is the number of litres of milk (to the nearest litre) consumed 

by a family, the probability distribution of X is as follows: 
  

i 0 1 2 3 4 5 
P(x) | 008 | 020 | 036 | 020 | 012 | 0.04 

Table 123 Probability distribution of milk consumption 

  

                  

  The other way of representing the probability 

distribution is with a histogram, as shown in 

Figure 12.2. Every bar corresponds to the probability 

of the associated value of x. The values of x naturally 

represent mutually exclusive events. Summing 

P(x) over all values of X is equivalent to adding the 

probabilities of all simple events in the sample space, 
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and hence the total is 1.   

  

This result can be generalised for all probability b i 
Litres of mil 

distributions. i g 
Figure 12.2 Milk consumption probability distribution 

Probability distribution functions of discrete 

random variables 

  

Let X be a discrete random variable with probability distribution function P(x). 

Then 

¢ 0=P(x) =< 1 for any value x 

« The individual probabilities sum to 1; that is ZP(X) = 1, where the notation 

indicates summation over all possible values of x. ‘The notation in CDF 
indicates that summation 

  

  

  

  

  

  

          

For some value x of the random variable X, we often wish to compute the is over all possible values 

probability that the observed value of X is at most x. This gives rise to the S 
T g equal to.x. The choice of 

Cumulative Distribution Function (CDF). the variable name to be y 
is arbitrary — we can use 

‘The cumulative distribution function (CDF) of a random variable X expresses the probability amyletter 
that X does not exceed the value x as a function of x. That is 

Fx) =PX<x)= y;le’(r) p Fx) 

It is also known as the cumulative probability function F(x) 0 0.08 

B = . : . 1 0.28 
For example, in the milk consumption case, the CDF will look like Table 12.4. 

2 0.64 

So, F(3) = 0.84 is the probability of a family consuming up to 3 litres of milk. 3 0.84 

This result can be achieved by adding the probabilities corresponding to x = 0, 2 096 

1,2,and 3. 5 100 

In many cases, we use the cumulative distribution to find individual probabilities, ‘Table 12.4 CDF for milk 
consumption 

PX=x=PX<x-PX<x) 
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x 0 1 

4 4 
PR | 3 9       

Table 12.5 Probability 

distribution table for 

Example 12.2 

  

3 5 
z 5 
1 
3 
0 

Figure 12.3 Probability 
distribution graph for 
Example 12.2 
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0 

Number of houses 

  

1 

  

Probability distributions 

For example, to find the probability that x = 3, we can use Table 12.4 

P(x = 3) = P(x < 3) — P(x < 3) = 0.84 — 0.64 = 0.20 

This property is of great value when studying the binomial and Poisson 

distributions. 

Radon is a major cause of lung cancer. It is a radioactive gas produced by the 

natural decay of radium in rocks that contain small amounts of uranium. 

Studies in areas with high levels of radon revealed that one third of houses 

in these areas have dangerous levels of radon. Suppose that two houses are 

randomly selected and we define the random variable X to be the number 

of houses with dangerous levels. Find the probability distribution of X by a 

table, a graph, and a formula. 

eSS 

Solution 

Since two houses are selected, the possible values of X are 0, 1, or 2. 

The assumption here is that we are choosing the houses randomly and 

independently of each other. 

plx = 2) = p(2) = p(1st house with dangerous levels and 2nd house with 

dangerous levels) 

= p(Ist house with dangerous levels) X p(2nd house with 

dangerous levels) 

=Ll 1 
3RS0 

plx = 0) = p(0) = p(1st house without dangerous levels and 2nd house 

without dangerous levels) 

= p(1st house without dangerous levels) X p(2nd house without 

dangerous levels) 

2,2_4 —Lhae = 
SISO 

plr=1=1-[p0) +p@d] =1~ [s+2] =2 (1. 

  

Any type of graph can be used to give the probability distribution as long 

as it shows the possible values of X and the corresponding probabilities. 

The probability here is graphically displayed as the height of a rectangle. 

Moreover, the rectangle corresponding to each value of X has an area equal 

to the probability P(x). The histogram is the preferred tool because of its 

connection to the continuous distributions discussed later in the chapter.



The probability distribution of x can also be given by Don't be concerned now 
. 4 with how we came up 

e 1 PN with this formula as we 
EOERC (3) i (3) will discuss it later in 

the chapter. The only 
where (2) = 2C, represents the binomial coefficient (see Chapter 3). reason we are looking at 

X, it now is to illustrate the 
fact that a formula/rule 

Note that when x is replaced by 0, 1, or 2, we obtain the results we are can sometimes be used 
looking for to give the probability 

o 0 distribution. 

1 2\ 4_4 0) = 2 (_)(_) =qeles == 
PO="G-(3) -(3 979 

12\t 1080 =" (_)(_) = oS 
O R 33 9 

= 3 @1 413 

Many universities have a policy of posting the grade distributions for their 

courses. Several of the universities have a grade-point average that codes 

the grades in the following manner: A = 4,B =3,C=2,D = 1,and 

F = 0. During the spring term at a certain large university, 13% of the 

students in an introductory Statistics course received grade A, 37% B, 

45% C, 4% D, and 1% F. A student is chosen at random and the grade noted. 

The student’s grade on the 4-point scale is a random variable X. 

Here is the probability distribution of X: 
  

x 0 1 2 5 4 

P(x) 0.01 | 0.04 | 045 | 037 | 0.13 

  

                

(a) Is this a probability distribution? 

(b) What is the probability that a randomly chosen student receives 

a grade B or better? 

| 

Solution 

(a) Yes, it is. Each probability is between 0 and 1, and the sum of all 

probabilities is 1. 

(b) plx=3) = p(x =3) + p(x = 4) = 0.37 + 0.13 = 0.40 
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Probability distributions 

Example 1 

When people choose codes for their smartphones, the first digits follow a 

probability distribution similar to the one below. 
  

First digit 0 1 2] 3 4 5 6 7 8 ) 

Probability | 0.009 | 0.300 | 0.174 | 0.122 | 0.096 | 0.078 | 0.067 | 0.058 [ 0.051 | 0.045 
  

                        
  

Here, X represents the first digit chosen. 

What is the probability that you pick a first digit that is more than 5? 

Show a probability histogram for the distribution. 

N 

Solution 

B(x > 5) = p(x = 6) + p(x=7) + p(x = 8) + p(x = 9) = 0.221 

Note that the height of each L2 

bar shows the probability of 

the outcome at its base. 

The heights add up to 1, 

of course. The bars have the 

same width, namely 1. So the 

areas also display the probability 

assignments of the outcomes. o R R AR 

Think of such histograms First digit of a smartphone code 

(probability histograms) as idealised 

pictures of the results of very many repeated trials. 

Expected values 

The probability distribution for a random variable looks very similar to the 

relative frequency distribution discussed in Chapter 7. The difference is that the 

relative frequency distribution describes a sample of measurements, whereas 

the probability distribution is constructed as a model for the entire population. 

Just as the mean and standard deviation give us measures for the centre and 

spread of the sample data, we can calculate similar measures to describe the 

Pr
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0.05   

    

centre and spread of the population. 

The population mean, which measures the average value of X in the population, 

is also called the expected value of the random variable X. It is the value that 

we would expect to observe on average if we repeated the experiment an 

infinite number of times. The formula we use to determine the expected value 

can be simply understood with an example. 

Let’s revisit the milk consumption example. Here is the table of probabilities: 

  

                P(x) 0.08 | 0.20 | 0.36 | 0.20 | 0.12 | 0.04 
  

Table 12.6 Milk consumption probabilities



Suppose we choose a large number of families, say 100 000. Intuitively, using 

the relative frequency concept of probability, we would expect to observe 8000 

families consuming no milk, 20 000 consuming 1 litre, and the rest consuming: 

36000, 20 000, 12 000, and 4000. 

The average (mean) value of X as defined in Chapter 7 would then be equal to 

Sum of all measurements _ 0 - 8000 + 1-20000 + 2 - 36000 + 3 - 20000 + 4 - 12000 + 5 - 4000 

n 100 000 
  

=0-0.08+1-020+2-036+3-020+4-0.12+5-0.04 

=0-p(0)+1-p(1) +2-p2) +3-p(3) +4-p(4) +5-p(5) =22 

That is, we expect to see families, on average, consuming 2.2 litres of milk. 
. % Let X be a discrete 

This does not mean that we know what a family will consume, but we can say random variable with 

what we expect to happen. probability distribution 
P(x). The mean or 

Insurance companies make extensive use of expected value calculations. expected value of X is 
given by 

Here is a simplified example. = EQ)=>xP(x) 
  An insurance company offers a policy that pays you €10,000 when your car is 

  

  

  

          

damaged beyond r.epair or €5000 for major damages (50%). They charge you :‘Zg;::' A;:?;:( P;"E;‘:iii;y 

€50 per year for this service. Can they make a profit? 
Total 10000 1 

Suppose in any year that 1 out of every 1000 cars is damaged beyond damage 1000 
repair, and that another 2 out of 1000 will have serious damage. 

: o i Major 2 Then we can display the probability model for this policy in a table. drr 5000 S 

The expected amount the insurance company pays is given by 
Minor or 0 997 

1 5 997 no damage 1000 = =Y "xP(x) = €10,000(——) + —= ) qep(22L 
1= E() = XaP() = €10 000( 1000) €5°00( 1000) eo( 1000) 

Table 12.7 Probability table for car 
insurance policy = €20 

This means that the insurance company expects to pay, on average, an amount 

of €20 per insured car. Since it is charging people €50 for the policy, the 

company expects to make a profit of €30 per car. Thinking about the problem 

from a different perspective, suppose they insure 1000 cars. Then the company 

would expect to pay €10,000 for 1 car, and €5000 to each of two cars with major 

damage. This is a total of €20,000 for all cars, or an average of €20 per car. 

Of course, this expected value is not what actually happens to any particular 

policy. No individual policy actually costs the insurance company €20. We are 

dealing with random events, so a few car owners may require a payment of 

€10,000 or €5000, while most of the others receive nothing. Because of the need 

to anticipate such variability, the insurance company needs to know a measure 

of this variability; this is the standard deviation. 
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Let X be a discrete 

random variable with 

probability distribution 
P(x) and mean p. The 
variance of X, Var(X), 

given by 

o2 = B((X — p) 
=Y — 2P 

‘This is sometimes called 

Var(X), or V(X). 
‘The standard deviation 

o of arandom variable 

xis equal to the positive 
square root of its. 

variance. 

    Tist s   st 1[List 2]iist 3 
508 Consum [unber.   

      
  
  

  

      

Figure 12.4 GDC output 
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Variance and standard deviatiol 

In Chapter 7, we calculated the variance by computing the deviation from the 

mean, x — i, and then squaring it. We do that with random variables as well. 

‘We can use similar arguments to justify the formulas for the population 

variance o? and consequently the population standard deviation o- These 

measures describe the spread of the values of the random variable around the 

centre. We similarly use the idea of the average or expected value of the squared 

deviations of the x-values from the mean p or E(X). 

It can also be shown that there is another formula for the variance: 

2= — w2 P = 3x2 - Pl — p? = 3 a2 Plx) — [EX0]2 
=Y E0) — [EX0)2 = Yx2 - P(x) — [SxPwn)? 

Let’s go back to the milk consumption example. We calculated the expected 

mean value to be 2.2 litres. To calculate the variance, we can tabulate our work 

to make the manual calculation simple. 
  

x | P(x) | Deviation (x — p) | Squared deviation (x — p)? | (x— p)?-P(x) 
  

  

  

    
  

  

0.08 22 4.84 03872 
1 | 020 -12 144 0.2880 

5 | 004 2.8 7.84 03136 

Total S — w2 P(x) 1.52               

‘Table 12.8 Calculating variance for milk consumption 

So, the variance of the milk consumption is 1.52 litres?, or the standard 

deviation is 1.233 litres. 

GDC notes 

You can do these calculations using your GDC. The method will depend on 

which GDC you are using; some may require that you store your data in lists 

and perform the calculations as described by the formulas above, and some 

may give you the results after you enter your data in lists, making sure that the 

probability is given as a frequency. For discrete random variable calculations, 

take the ox values and not the sx values. Figure 12.4 shows a sample of a 

GDC output. 

You can also do the calculation using a spreadsheet. 

X P(x) XPR) | x—p =2 | (x—w2Pk) 

0 0.08 0 —2.2 4.84 0.3872 

1 0.2 0.2 -12 1.44 0.288 

Totals 1 2.2 1.52 

  
Figure 12.5 Spreadsheet calculations



A computer store sells a particular type of laptop. The number of laptops 

sold each day is given in the table; x is the number of laptops sold each day. 

The store has only four laptops left in stock and would like to know how 

well they are prepared for all eventualities. Find the expected value of the 

demand as well as the standard deviation. 

  

Solution 

E(X) = Y xP(x) = 0 X 0.08 + 1 X 0.40 + 2 X 0.24 + 3 X 0.15 + 4 X 0.08 
+5 % 0.05 = 1.90 

VarX) = 02 = Y _(x — )’ P(x) 

=(0—1.92-0.08 + (1 — 1.9+ 0.40 + (2 — 1.9)2-0.24 
+(3—1.92-0.15+ (4 — 1.9)- 0.08 + (5 — 1.9)2- 0.05 

  

=163 

o= 128 

The graph of the 

probability distribution D 

is given. As an = 
. . 0.35 

approximation, we can 
oo Z 03 use the empirical rule = 

to see where most of g 022 

the demand is expected & 02 

to be. Recall that the ) 

empirical rule tells us ot 

that about 95% of the o 

values would lie within U 1 2 3 i 5 

2 standard deviations Number of laptops 

of the mean. 

In this case u = 20 = 1.9 * 2 X 1.28 = (—0.66, 4.46). This interval does 

not contain the 5 units sold in a day. We can say that it is unlikely that 5 or 

more customers of this shop will want to buy a laptop today. 
  

  

  

Using a GDC, enter the demand in L1 sum(LixL2) 

and the probabilities in L2. 1.9 

‘We then find the sum of their product. 

For the variance, we follow the same Ti*L2o13 

procedure as described in Example 12.4 (0 .4 .48 .45 ... 
(L1-1.9)2%L2-Ls 

Notice here that we combined several (.2888 .324 .00..   sum(Ls) steps in one. 1.63   
  

  

P(X=2x) 
  

0.08 
  

0.40 
  

0.24 
  

0.15 
  

0.08 
  

G
l
e
|
w
|
v
|
=
l
o
|
x
 

0.05         

Table 12.9 Table for 
Example 12.5 
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Probability distributions 

1. Classify each of the following as discrete or continuous random variables. 

(a) The number of words spelled correctly by a student on a spelling test 

(b) The volume of water flowing through the Niagara Falls per year 

(c) The length of time a student is late to class 

(d) The number of bacteria per ml of drinking water in Geneva 

(e) The amount of carbon dioxide produced per litre of fuel 

(f) The amount of a flu vaccine in a syringe 

(g) The heart rate of a lab mouse 

(h) The barometric pressure at the top of Mount Everest 

(i) The distance travelled by a taxi driver per day 

(j) The total score of football teams in national leagues 

(k) The height of ocean tides on the shores of Portugal 

(I) The tensile breaking strength (in newtons per square metre) of a 

5-cm diameter steel cable 

(m) The number of overdue books at a public library 

2. A random variable Y has this probability distribution: 
  

y 0 1 2 3 4 5 
PG | 01 | 03 01 | 005 | 0.05 

(a) Find P(2). 

(b) Construct a probability histogram for this distribution. 

  

                  

(c) Find pand o. 

(d) Locate the interval u = o as well as u = 20 on the histogram. 

(e) We create another random variable Z = Y + 1. Find p and o of Z. 

(f) Compare your results for (c) and (e) and generalise for Z = Y + b, 

where b is a constant. 

3. A discrete random variable X can assume five possible values: 

12,13, 15, 18, and 20. Its probability distribution is shown below. 
  

x 2 | 3] 15 18] 2 
P&) | 014 | 011 026 | 023 

(a) What is P(15)? 

(b) What is the probability that x equals 12 or 202 

(c) What is p(X < 18)? 

(d) Find E(X). 

(e) Find V(X). 

(f) Let Y = 0.5X — 4. Find E(Y) and V(Y). 

(g) Compare your results in (d), (e) and (f) and generalise for 

Y = aX + b, where a and b are constants. 
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4. Medical research has shown that a certain type of chemotherapy is 

successful 70% of the time when used to treat skin cancer. In a study 

to check the validity of such a claim, researchers chose different 

treatment centres and selected five of their patients at random. Here is 

the probability distribution of the number of successful treatments for 

groups of five: 
  

52 0 1 2 3 4 5 

P(x) | 0.002 | 0.029 | 0.132 | 0.309 | 0.360 | 0.168 

  

                  

(a) Find the probability that at least two patients would benefit from the 

treatment. 

(b) Find the probability that the majority of the group does not benefit 

from the treatment. 

(c) Find E(X) and interpret the result. 

(d) Show that o(X) = 1.02 

(e) Graph P(x). Locate u, s = 03 and u =+ 20 on the graph. Use the 

empirical rule to approximate the probability that X falls in this 

interval. Compare this with the actual probability. 

5. The probability function of a discrete random variable X is given by 

PX=x)= %forx =12,14,16,18 

Set up a table showing the probability distribution and find the value of k. 

6. X has probability distribution as shown in the table. 
  

  
X = 10 15 20 25 

3 7 3 13 

PO | % || ¥ | 0| &                 

(a) Find the value of k 

(b) Find p(X > 10) 

(c) Find p(5 < X =<20) 

(d) Find the expected value and the standard deviation. 

(e) Let Y = %x — 1. Find E(Y) and V(Y). 

7. The discrete random variable Y has a probability density function 

p(Y=y) =k(16 —y*) fory=0,1,2,3,4 

(a) Find the value of the constant k. 

(b) Draw a histogram to illustrate the distribution. 

(c) Findp(l < Y=<3) 

(d) Find the mean and variance. 
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Probability distributions 

8. The probability distribution of students categorised by age who visit a 

certain cinema on weekends is given in Figure 12.6. The probabilities 

for 18-year-olds and 19-year-olds are missing. We know that: 

P(X = 18) = 2P(X = 19) 
(a) Complete the graph and describe the distribution. 

  

(b) Find the expected value and the variance. 
0 

15 16 17 18 19 
g 9. In a small town, a computer store sells laptops to the local residents. 

Figure 12.6 Probability 
distribution for question 8 However, because of low demand, they like to keep their stock at a 

manageable level. The data they have indicate that the weekly demand 

for the laptops they sell follows a distribution given in the table below. 
  

x:laptopssold | 0 [0 2 3 4 5 
P(x) 0.10 | 040 | 020 [ 015 | 0.0 | 0.05 
  

                  

(a) Find the mean and standard deviation of this distribution. 

(b) Use the empirical rule to find the approximate number of computers 

sold about 95% of the time. 

10. The discrete random variable X has probability function given by 

jat 
(5)  x=23456 

P(x) = 
k x=7 
0 otherwise 

where k is a constant. 

Determine the value of k and the expected value of X. 

11. The following is a probability distribution for a random variable Y. 
  

y 0 1 2 3 
P(y=y| 01 o040 | k |*k-12 

      

              

(a) Find the value of k. 

(b) Find the expected value. 

12. A closed box contains 8 red balls and four white ones. A ball is taken out 

at random, its colour noted, and it is then returned. This is done three 

times. Let X represent the number of red balls drawn. 

(a) Set up a table to show the probability distribution of X. 

(b) What is the expected number of red balls drawn in this experiment? 

13. A discrete random variable Y has the following probability distribution 

function: 

P(Y=y) = k(4 —y)fory=0,1,2,3,and 4 

(a) Find the value of k 

(b) Find P(1 <y <3) 
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14. 

158 

16. 

Airlines sometimes overbook flights. Suppose, for a 50-seat plane, that 

55 tickets were sold. Let X represent the number of ticketed passengers 

that show up for the flight. From records, the airline has the following 

PMEF for this flight. 
  

] 45 46 47 48 49 50 51 o2 53 54 55 

P(x) | 0.05 | 0.08 | 0.12 | 0.15 | 0.25 | 0.20 | 0.05 | 0.04 | 0.03 | 0.02 | 0.01 

  

                            

(a) Construct a CDF table for this distribution. 

(b) What is the probability that the flight will accommodate all ticket 

holders that show up? 

(c) What is the probability that not all ticket holders will have a seat on 

the flight? 

(d) Calculate the expected number of passengers who will show up. 

(e) Calculate the standard deviation of the number of passengers who 

will show up. 

(f) Calculate the probability that the number of passengers showing up 

will be within one standard deviation of the expected number. 

A small internet provider has 6 telephone service lines operating 24 

hours daily. Defining X as the number of lines in use at any specific 

10-minute period of the day, the PMF of X is given in the table. 
  

&z 0 1 2 B 4 5 6 

P(x) | 0.08 | 0.15 | 0.22 | 0.27 | 0.20 | 0.05 | 0.03 

  

                    

(a) Constructa CDF table. 

(b) Calculate the probability that at most three lines are in use. 

(c) Calculate the probability that a customer calling for service 

will have a free line. 

(d) Calculate the expected number of lines in use. 

(e) Calculate the standard deviation of the number of lines in use. 

Some torches use one AA-type battery to work. The voltage in any new 

battery is considered acceptable if it is at least 1.3 volts. 90% of the AA 

batteries from a specific supplier have an acceptable voltage. Batteries are 

usually tested until an acceptable one is found, then it is installed in the 

torch. Let X represent the number of batteries that must be tested. 

(a) Find P(1), i.e, P(X = 1) 

(b) Find P(2) 

(c) Find P(3) 

(d) To have X = 5, what must be true of the 

(i) fourth battery tested 

(ii) fifth battery tested? 

(e) Use your observations above to obtain a general model for P(x). 
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Probability distributions 

17. Repeat question 16 for a torch that needs two batteries. 

18. A biased dice with four faces is used in a game. A player pays 10 counters 

to roll the dice. The table below shows the possible scores on the dice, the 

probability of each score, and the number of counters the player receives 

in return for each score. 
  

  

  

Score 1 2 3 4 
s 1 1 1 Probability > : : = 

Number of counters player receives 4 4 15 n               

Find the value of 7 in order for the player to get an expected return of 

9 counters per roll. 

19. Two children, Alan and Belle, each throw two fair six-sided dice 

simultaneously. The score for each child is the sum of the two numbers 

shown on their respective dice. 

(a) (i) Calculate the probability that Alan obtains a score of 9. 

(i) Calculate the probability that Alan and Belle both obtain a score 

of 9. 

(b) (i) Calculate the probability that Alan and Belle obtain the same 

score. 

(ii) Deduce the probability that Alan’s score exceeds Belle’s score. 

(c) Let X represent the largest number shown on the four dice. 
X 4 

) ShowlhatP(X&x):(g),forx:1,2,m 6 
  

(ii) Copy and complete the following probability distribution table. 
  

  

                

x 1 B 3 4 5 6 
» 1 15 671 

PX=2| T | 2% 1296   

(ii) Calculate E(X) 

20. Consider the 10 data items x,, X, ..., X,,. Given that gf = 1341 and 
[ 

the standard deviation is 6.9, find the value of x. 

The binomial distribution 

  

Examples of discrete random variables are abundant in everyday situations. 

However, there are a few discrete probability distributions that are widely 

applied and serve as models for a great number of the applications. One of 

them is the binomial distribution. 
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The binomial distribution 

We start with an example. 

Example 12.6 

A cereal company puts miniature figures in boxes of cornflakes to make 

them attractive for children and thus boost sales. The manufacturer claims 

that 20% of the boxes contain a figure. You buy three boxes of this cereal. 

(a) Find the probability that you will get 

(i) exactly three figures 

(ii) exactly 2 figures. 

(b) If you bought five boxes, what is the probability that you will get exactly 

2 figures? 

E—————SRS$S6BMS"S$SaA_——_—_—n—n—nNn8nNn<n—nnNNn8NnnNn—nn—n—YnYYYnYY—YSYnmfm™n, 

Solution 

(a) (i) To get three figures means that the first box contains a figure (0.20 

chance), as does the second (also 0.20), and the third (0.20). We 

want three figures, so this is the intersection of three events and the 

probability is simply 0.20° = 0.008. 

(ii) To get exactly 2 figures, the situation becomes more complicated. 

A tree diagram can help us to visualise it better. 

box 1 box 2 box 3 

0.008 o 

0032 i 

fof 0.032 

0128 fun 

0032 M 

0128 nfn 

0128 nnf 

  

0.512 nnn 

Let f stand for figure, and n for no figure. There are three events of 

interest to us. Since we are interested in two figures, we want to see 

fn, which has a probability of 

0.2 X 0.2 X 0.8 =0.22% 0.8 = 0.032, 

the other events of interest are fuf and nff, both with probabilities 

0.2 X 0.8 X 0.2=10.032and 0.8 X 0.2 X 0.2 = 0.032 
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A binomial experiment 
has the characteristics: 
+ The experiment 

consists of # identical 

trials. 

Each trial has one 

of two outcomes. 
‘We call one of them 

success, S, and the 

other failure, F. 

‘The probability of 
success on a single 
trial, p, is constant 
throughout the whole 
experiment. The 
probability of failure 
is1 — p, whichis 
sometimes denoted 

byg. Thatisp +q=1. 
‘The trials are 
independent. 
We are interested 
in the number of 

successes x that are 
possible during the 
ntrials. That is: 

x=0,1,2,...,n. 

Suppose that a random 

experiment can 
result in two possible 

mutually exclusive and 
collectively exhaustive 
outcomes: success and 

failure, and that p is the 
probability of a success 

from a single trial. 
When independent 
trials are carried out, 

the distribution of the 
number of successes x 

is called the binomial 

distribution. The 

probability distribution 
function for the binomial 

random variable x is: 

P(x successes in 1 
independent trials) = 

P@) ="Cpr(1 = p)" 
="C prqn, 

forx= 01,2, 2505 

‘The notation used 
to indicate that a 

variable has a binomial 

probability distribution 
with # trials and success 

probability of p is: 
X~B(n,p) 
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Since the order of multiplication is not important, the three 

probabilities are the same. These three events are disjoint, as can be 

seen from the tree diagram, so the probability of exactly two figures 

is the sum of the three numbers, 0.032 + 0.032 + 0.032. Of course 

you may realise that it would be much simpler if we wrote 3(0.032), 

since there are three events with the same probability. 

(b) The situation is similar, of course. However, a tree diagram would not be 

useful in this case as there is too much information to construct to see 

the solution. No matter how we succeed in finding a figure, whether it is 

in the first box, the second, or the third, it has the same probability, 0.2. 

So, to have two successes (finding figures) in the five boxes, we need the 

other three to be failures (no figures) with a probability of 0.8 for each 

failure. Therefore the chance of having a case like ffinnn is 0.22X0.8 

However, this can happen in several disjoint ways. There are 10 

possibilities: ffunn, fufnn, funfn, fannf, nffnn, nnffn, nnnff, nfafn, nnfnf, 

nfunf. Which means the probability of having exactly two figures in five 

boxes is 

  

10 X 0.22 X 0.8% = 0.2048 

The number 10 is the binomial coefficient (Pascal’s entry) that you saw in 

Chapter 3. This is also the combination of three events out of five. 

The previous result can be written as (;)0 22.0.83 where (;) is the binomial 

coefficient. 

You can find experiments like this one in many situations. Coin flipping is 

one simple example of this. Another very common example is opinion polling 

that is conducted before elections and used to predict voter preferences. Each 

sampled person can be compared to a coin - but a biased coin. A voter you 

sample who is in favour of a candidate can correspond to either a head or a 

tail on a coin. Such experiments all exhibit the typical characteristics of the 

binomial experiment. 

In the cereal company’s example, we started with n = 3, p = 0.2, and asked 

for the probability of two successes; that is, x = 2. In the second part we have 

n=>5. 

Imagine repeating a binomial experiment 7 times. If the probability of success 

is p, then the probability of having x successes is pppp..., x times, (p*), because 

the order is not important. However, in order to have exactly x successes, the 

other (n — x) trials must be failures - that is, with probability of gqqq..., 

(n — x) times, (g" ~ %). This is only one order (combination) where the successes 

happen the first x times and the rest are failures. We have to count the number 

of orders (combinations) possible. This is given by the binomial coefficient 

(x)="c



Example 12.7 

A computer shop orders its notebooks from a supplier that has a rate of 

defective items of 10%. The shop usually takes a sample of 10 computers and 

checks them for defects. If they find two computers defective, they return the 

shipment. What is the probability that their random sample will contain two 

defective computers? 

e 

Solution 

‘We will consider this to be a random sample and the shipment large enough 

to render the trials independent of each other. The probability of finding two 

defective computers in a sample of 10 is given by 

P(x = 2) = 1°C,(0.1)%(0.9)!9-2 = 45 X 0.01 X 0.43047 = 0.194 

Of course it is a daunting task to do all the calculations by hand. A GDC can 

do this calculation for you. You need to learn how your GDC performs such 

calculations. Figure 12.7 shows a sample from one GDC. 

Using a spreadsheet, we can also produce this result or even a set of 

probabilities covering all the possible values. The formula used for this example 

for Excel is =BINOMDIST(B1:G1,10,0.1,FALSE). 

Similarly, a GDC can also give us a list of the probabilities (see Figure 12.8). 

Like other distributions, when we look at the binomial distribution, we want to 

look at its expected value and standard deviation. 

Using the formula we developed for the expected value, > xP(x), we can, of 

course, add xP(x) for all the values involved in the experiment. The process 

would be long and tedious for something we intuitively know. For example, 

in the defective items sample, if we know that the defect rate of the computer 

manufacturer is 10%, then it is natural to expect to have 10 X 0.1 = 1 defective 

computer. If we have 100 computers with a defective rate of 10%, how many 

would you expect to be defective? Can you think of a reason why it would 

not be 10? 

The expected value of the successes in the binomial is the number of trials n 

multiplied by the probability of success, np. 

So, in the defective notebooks case, the expected number of defective items in 

the sample of 10is np = 10 X 0.1 = 1 

  And the standard deviation is o = \/npg = V10 X 0.1 X 0.9 = 0.949 

How do we know that the binomial distribution is a probability distribution? 

We can easily verify that the binomial distribution as developed satisfies the 

probability distribution conditions. 

  
Binomial P.D 
Data :Variable 

12 x : 
Numtrial:10 
D z 

  

  

  
Binomial P.D 

p=0.19371024 

      

Figure 12.7 A GDC can do this 

calculation for you 

  
[Binomial P.D 

1[ O 
2[0.3874 
3[0:1937 

[ 0.0573 
sLoso111 

0.3486784401       

Figure 12.8 GDC list of 

probabilities 

‘The binomial 
probability model 
= number of trials 
= probability of success 
=1~ pprobability 
of failure 
x=number of successes 
in n trials 

P() = "Cyp*(1 — p)"* 
= "C,pq™% fur 

x=0,12..n 
Expected value = p = np 

Variance = 0 = npq 

o =g 
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Binomial P.D 
p=0.0746470195 

      

Figure 12,9 GDC solution to 

Example 12.8 (b) 
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1. 

1 

0=Px) =1 2. ZjP(x) =1 

Since p > 0 by definition, then p* > 0, for x = 0, 1, 2, .... Similarly, g"~* > 0. 

We also know that "C, > 0. Therefore 

P(x) = "C,p*q"*>0 

P(x) = 1 will be a natural result of proving the second condition. If the sum 

of n positive parts is equal to 1, none of the parts can be greater than 1. 

2 YR =Y Cprgrs 

The binomial theorem states 

o+ ar =Yy = 

  

Since p + q = 1, then (p + ¢)" = 1, and therefore 

P =3rCpr = (p g = 1 

Example 12.8 

A study to examine the effectiveness of advertising on the internet reported 

that 4 out of 10 users remember advertisement banners after seeing them. 

(a) 20 users are chosen at random and shown an advertisement. What is the 

expected number of users who will remember the advertisement? 

(b) What is the chance that 5 of those 20 will remember the advertisement? 

(c) What is the probability that at most 1 user will remember the 

advertisement? 

(d) What is the chance that at least two users will remember the 

advertisement? 

Solution 

(2) X~ B(20,0.4). The expected number is simply 20 X 0.4 = 8. 
‘We expect 8 of the users to remember the advertisement. 

Notice that on the histogram, the area in red corresponds to the 

expected value 8. 

(b) PG) = (250)(&4)5(0‘6)‘5 = 0.0746, or see the output from a GDC. 

This area is shown as the green area above 5 in the histogram. 

() P(x=<1) = P(x = 0) + P(x = 1)= 0.000524



(d) Px=2)=1-P(x=1) 
=1 —0.000524 = 0.999475 

Histogram of web users     
Pr

ob
ab

il
it

y 

0.0746 

0 3 6 2 12 15 18 

Number of users 

The cumulative binomial distribution function 

The cumulative distribution function F(x) of a random variable X expresses the 

probability that X does not exceed the value x. That is 

Fx) =PX<x = y;}’(y) 

So, for the binomial distribution, the cumulative distribution function (CDF) is 

given by 

Fx) =PX=x = Y p(y) 
yiyEx 

- S Gpe ¥Es 

The cumulative distribution is very helpful when we need to find the 

probability that a binomial variable assumes values over a certain interval. 

Example 12.9 

A large shipment of light bulbs contains 4% defective bulbs. In a sample of 

20 randomly selected bulbs from the shipment, find the probability that 

(a) there are at most 3 defective bulbs 

(b) there are at least 6 defective bulbs. 

| 

Solution 

(a) This can be considered as a binomial distribution with 7 = 20 and p = 0.04 

We need P(x < 3), which we can calculate either by finding the 

probabilities for x = 0, 1, 2, and 3, and adding them, or by using the 

cumulative function. In both cases, we can use a GDC. 

Using the CDF is a much more straightforward procedure. 

You will not be required 
to perform calculations 
manually. A GDC can 
produce the values 
requested. 

  

Binomial C.D 
Data :Variable 
Lower  :0 
Upper :3 
NBRtrializo 

  

  

  

Binomial C.D 
p=0.99258706 

      
Figure 12.10(a) GDC solution 
to Example 12.9(a) 
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Bimomial .0 (b) Here we need P(X = 6). The first approach is not feasible at all as we 

fi;;:: " need to calculate 15 individual probabilities and add them. However, 

setting the problem as a complement and then using the cumulative 

B vaifies Sofi; distribution is much more efficient. i.e., 
  

PX=6=1—PX<6=1—-PX=<5   
Binomial C.D 

p=9.7654£-05 

    
Figure 12.10(b) GDC solution 1. Consider the binomial distribution 
to Example 12.9.(b) 

  

P(x) = °C(0.6)*(0.4°%x=0,1,...,5 

(a) Make a table for this distribution. 

(b) Graph this distribution. 

(c) Find the mean and standard deviation: 

(i) usinga formula 

(i) by using the table of values you created in part (a). 

(d) Locate the mean u and the two intervals i = oand p + 20 on the 

graph. 

(e) Find the actual probabilities for x to lie within each of the intervals 

p * oand p = 20 and compare them to the empirical rule. 

2. A poll of 20 adults is taken in a large city. The purpose is to determine 

whether they support banning smoking in restaurants. It is known that 

approximately 60% of the population supports the decision. 

Let X represent the number of respondents in favour of the decision. 

(a) What is the probability that 5 respondents support the decision? 

(b) What is the probability that none of the 20 support the decision? 

(c) What is the probability that at least 1 supports the decision? 

(d) What is the probability that at least 2 respondents support 

the decision? 

(e) Find the mean and standard deviation of the distribution. 

3. Consider the binomial random variable with n = 6 and p = 0.3 

(a) Copy the table and fill in the probabilities. 
  

k 0 i 2 3 4 5 6 

P(x<k) 
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(b) Copy and complete the table. Some cells have been filled to guide you. 
  

  

  

  

Number of List the Write the | Explain it, if | Find the 
successes x values of x | probability | needed required 

statement probability 

At most 3 

Atleast 3 

More than 3 4,56 px>3) [1-px=3)| 007047 
  

Fewer than 3 
  

Between 3 and 

5 (inclusive) 

Exactly 3 
                

4. Repeat question 3 withn =7 and p = 0.4 

5. A box contains eight balls: five are green, one is white, one red, and one 

yellow. Three balls are chosen at random without replacement, and the 

number of green balls y is recorded. 

(a) Explain why y is not a binomial random variable. 

(b) Explain why, when we repeat the experiment with replacement, then 

 is a binomial random variable. 

(c) Give the values of n and p and display the probability distribution in 

tabular form. 

(d) What is the probability that at most two green balls are drawn? 

(e) What is the expected number of green balls drawn? 

(f) What is the variance of the number of balls drawn? 

(g) What is the probability that some green balls will be drawn? 

6. On a multiple-choice test, there are 10 questions, each with 5 possible 

answers, one of which is correct. Nick is unaware of the content of the 

material and so he guesses on all questions. Find the probability that: 

(a) Nick does not answer any question correctly 

(b) Nick answers at most half of the questions correctly 

(c) Nick answers at least one question correctly. 

(d) How many questions should Nick expect to answer correctly? 

7. Houses in a large city are equipped with alarm systems to protect them 

from burglary. A company claims their system to be 98% reliable. That is, 

it will trigger an alarm in 98% of the cases. In a certain neighbourhood, 

10 houses equipped with this system experience an attempted burglary. 

(a) Find the probability that all the alarms work properly. 

(b) Find the probability that at least half of the alarms are triggered. 

(c) Find the probability that at most 8 alarms will work properly. 
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Probability distributions 

8. Graphic novels are purchased by readers of all ages. 40% of graphic 

novels were purchased by readers who were 30 years of age or older. 

Fifteen readers are chosen at random. Find the probability that 

(a) atleast 10 of them are 30 years or older 

(b) exactly 10 of them are 30 or older 

(c) at most 10 of them are younger than 30. 

9. A factory makes computer hard disks. Over a long period, 1.5% of them 

are found to be defective. A random sample of 50 hard disks is tested. 

(a) Write down the expected number of defective hard disks in the sample. 

(b) Find the probability that three hard disks are defective. 

(c) Find the probability that more than one hard disk is defective. 

10. Car colour preferences change over time and according to the area the 

customer lives in and the car model they are interested in. In a certain 

city, a car dealer noticed that 10% of the cars he sells are metallic grey. 

Twenty of his customers are selected at random and their car orders are 

checked for colour. 

Find the probability that: 

(a) atleast 5 cars are metallic grey 

(b) at most 6 cars are metallic grey 

(c) more than 5 cars are metallic grey 

(d) between 4 and 6 cars are metallic grey 

(e) more than 15 cars are not metallic grey. 

In a sample of 100 customer records, find: 

(f) the expected number of metallic grey car orders 

(g) the standard deviation of metallic grey car orders. 

According to the empirical rule, 95% of the orders of metallic grey 

orders are between a and b. 

(h) Find a and b. 

11. Dog owners in many countries buy health insurance for their dogs. 

3% of all dogs have health insurance. In a random sample of 100 dogs 

in a large city, find: 

(a) the expected number of dogs with health insurance 

(b) the probability that 5 of the dogs have health insurance 

(c) the probability that more than 10 dogs have health insurance. 

12. A balanced coin is flipped five times. Let x be the number of 

heads observed. 

(a) Using a table, construct the probability distribution of x. 

(b) What is the probability that no heads are observed? 
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(c) What is the probability that all observations are heads? 

(d) What is the probability that at least one head is observed? 

(e) What is the probability that at least one tail is observed? 

(f) Another coin is unbalanced so that it shows 2 heads in every 10 

flips. Repeat parts (a) to (e) for this coin. 

13. On a television channel, the news is shown at the same time each day. 

The probability that Alice watches the news on a given day is 0.4. 

Calculate the probability that on five consecutive days, she watches the 

news on at most three days. 

14. A satellite relies on solar cells for its power and will operate provided that 

at least one of the cells is working. Cells fail independently of each other, 

and the probability that an individual cell fails within one year is 0.8. 

(a) For a satellite with ten solar cells, find the probability that all ten 

cells fail within one year. 

(b) For a satellite with ten solar cells, find the probability that the 

satellite is still operating at the end of one year. 

(c) For a satellite with 7 solar cells, write down the probability that 

the satellite is still operating at the end of one year. Hence, find the 

smallest number of solar cells required so that the probability of the 

satellite still operating at the end of one year is at least 0.95. 

Continuous distributions - The normal 

distribution 

When a random variable X is discrete, we assign a positive probability to each 

value that X can take and get the probability distribution for X. The sum of all 

the probabilities associated with the different values of X'is 1. 

We have seen, in the discrete variable case, that we can graphically represent 

the probabilities corresponding to the different values of the random variable X 

with a probability histogram (relative frequency histogram), where the area of 

each bar corresponds to the probability of the specific value it represents. 

Consider now a continuous random variable X, such as height, weight, or 

length of life of a particular product - a TV set, for example. Because it is 

continuous, the possible values of X are over an interval. Moreover, there are 

an infinite number of possible values of X. Hence, we cannot find a probability 

distribution function for X by listing all the possible values of x along with 

their probabilities. If we try to assign probabilities to each of these uncountable 

values, the probabilities will no longer sum to 1. Thus we must use a different 

approach to generate the probability distribution for such random variables. 
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Probability distributions 

Suppose that we have a set of measurements on a continuous random variable, 

and we create a relative frequency histogram to describe their distribution. 

For a small number of measurements, we can use a small number of classes, 

but as more and more measurements are collected, we can use more classes and 

reduce the class width. 
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Figure 12.11 Relative frequency histogram 

The histogram will slightly change as the class width becomes smaller and 

smaller as shown in Figure 12.12. As the number of measurements becomes 

very large and the class width becomes very narrow, the relative frequency 

histogram appears more and more like the smooth curve we see in Figure 12.13. 

This is what happens in the continuous case, and the smooth curve describing 

the probability distribution of the continuous random variable becomes the 

probability density function of X, represented by a curve y = f(x). This curve 

is such that the entire area under the curve is 1 and the area between any two 

points is the probability that x falls between those 2 points. 
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Figure 12.12 As the number of measurements increases, Figure 12.13 Smooth curve 

class width becomes narrower 

  

Probability density functi 

Let X be a continuous random variable. The probability density function, f(x), 

of the random variable is a function with the properties: 

o flx) > 0 for all values of X. 

« The area under the probability density function f(x) over all values of the 

random variable x is equal to 1.0; that is, ffiflx)dx =1.



o A graph is drawn of the density function (Figure 12.14). Let a and b be two 

possible values of the random variable X, with a < b. The probability that 

x lies between a and b [p(a<<x<'b)] is the area under the density function 

between these points, i.e., p(a < x < b) = lbflx)dx. 

fx). For example, Figure 12.15 shows the graph 

of a model for the PDF f of a random 

variable X defined to be the height, in cm, 

of an adult female in Spain. The probability 

that the height of a female chosen at 

random from this population is between 

160 and 175 is equal to the area under the 

curve between 160 and 175. 

    
Pla<x<b)= 
Pla<x=b) 

Figure 12.14 Density function graph 

The function represented here is 

    (x—165)* 

_ e 5 T e1on )7 50)) . 
x) = 2 _dx [ )+(5/ 

K Jeo 5V2m . 0.8185946141       

This is not an integral you can calculate exactly. 

So, we use a GDC to approximate it. 

Figure 12.16 Approximating 
usinga GDC 

So, the chance to choose a female at random with a height between 160 cm and 

175 cm is approximately 81.9%. 

Continuous probability distributions can assume a variety of shapes. However, 

for reasons of staying within (with some extensions) the boundaries of the IB 

syllabus, we will focus on one distribution. In fact, a large number of random 

variables observed in our surroundings possess a frequency distribution that 

is approximately bell-shaped. We call that distribution the normal probability 

distribution. 

The normal distributiol 

  

The most important type of continuous random variable is the normal random 

variable. The probability density function of a normal random variable x is 

determined by two parameters: the mean or expected value u, and the standard 

deviation o of the variable. 

The normal probability density function is a bell-shaped density curve that 

is symmetric about the mean . Its variability is measured by o. The larger 

the value of o, the more variability there is in the curve - that is, the higher 

the probability of finding values of the random variable further away from 

the mean. Figure 12.17 represents three different normal density functions 

with the same mean but different standard deviations. Note how the curves 

flatten as o increases. This is because the area under the curve has to stay 

equal to 1. 

160 175 x 

Figure 12.15 Green area = 

probability that a female has 
a height between 160 and 
175cm 

Based on this definition 

of a continuous PDE, the 
probability that x equals 

any point a, is 0. This 
is so because the area 
above a value, say 4, is a 

rectangle of width 0, or 

equivalently 

pX=a) = [ a 
=0 

So, for the continuous 
case, regardless of 
whether the endpoints 
aand b are themselves 

included, the area 

included between a and b 

is the same. 

pla<x<b) 
—pla<=x=<b) 

(a<x<b) 
=pla<x<b) 

  

  
  

Figure 12.17 Three different 

normal density functions with 
the same mean but different 
standard deviations 
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Area to the left Area to the right 
of the mean is 0.5 of the mean is 0. 

1 

Figure 12.18 Normal probability distribution 

  

n—o u Ato 

Figure 12.19 One o to the right or left of the 
mean p marks the point where the curvature of 

the curve changes. 

‘The empirical rule for 
the normal distribution 

« Approximately 68% of 
the observations fall 

within o of the mean 
« Approximately 95% of 

the observations fall 
within 20 of the mean 

« Approximately 99.7% 
of the observations fall 
within 3¢ of the mean. 

bability distributions 

‘The probability density function for a normally distributed random variable x is 

fl = e 
a2 a2m 
     I for —co<x< oo     

  

where p1 and o2 are any number such that —00 < p < 00 and 0 < 02 < 00 and where e and 7 
are the constants, e = 2.71828.....and 7= 3.14159.... 

  

‘When a variable is normally distributed, we write: 
X ~ N, o) 

Although we will not make direct use of the formula, it is interesting 

to note its properties because they help us understand how the 

normal distribution works. 

2 The graph of a normal probability distribution is shown in 

Figure 12.18. The mean or expected value locates the centre of the 

distribution and the distribution is symmetric about this mean. 

Since the total area under the curve is 1, the symmetry of the 

curve implies that the area to the right of the mean and the area 

to the left are both equal to 0.5. Large values of o tend to reduce 

the height of the curve and increase the spread, and small values 

of o increase the height to compensate for the narrowness of the 

distribution. 

So, the normal distribution is fully determined by its mean u and 

its standard deviation, 0. Changing u without changing o- moves 

the normal curve along the horizontal axis without changing its 

spread. The standard deviation o controls the spread of the curve. 

You can also locate the standard deviation by eye on the curve. 

One o to the right or left of the mean u marks the point where the 

curvature of the curve changes. That is, as you move right from 

the mean, at the point where x = 41 + 0, the curve changes its 
curvature from downwards to upwards, and similarly as you move 

one o to the left from the mean. 

Although there are many normal curves, they all have common properties. 

Figure 12.20 illustrates this rule. Later in this section, you will learn how to 

find these areas from a table or from your GDC. 

  

Figure 12.20 Empirical rule 
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Example 12.10 

Heights of young German men between 18 and 19 years of age follow 

a distribution that is approximately normal, with mean 181 cm and a 

standard deviation of approximately 8 cm. Describe this population of 

young men. 

Solution 

According to the empirical rule, we find that approximately 68% of those 

young men have a height between 173 cm and 189 cm, 95% of them between 

165 cm and 197 cm, and 99.7% between 157 cm and 205 cm. You can say that 

only 0.15% are taller than 205 cm or shorter than 157 cm. 

As the empirical rule suggests, all normal distributions are the same if we 

measure in units of size o about the mean  as centre. Changing to these 

units is called standardising. To standardise a value, measure how far it is 

from the mean and express that distance in terms of o 

The quantity x — w tells us how far a value is from the mean; dividing by 

o then tells us how many standard deviations that distance is equal to. 

The standardising process is a transformation of the normal curve. 

For discussion purposes, assume the mean y to be positive. The 

transformation x — p shifts the graph back . units. So, the new centre is 

shifted from p back u units. That is, the new centre is 0. 

Dividing by o is going to scale the distances from the mean and express 

everything in terms of 0. So, a point that is one standard deviation 

from the mean is going to be 1 unit above the new mean; that is, it will 

be represented by + 1. Now, if you look at the empirical rule discussed 

earlier, points that are within one standard deviation from the mean 

will be within a distance of 1 in the new distribution. Instead of being at 

u+ oand p — o, they will be at 0 + 1 and 0 — 1 respectively; that is, 

—land +1. 

The new distribution created by this transformation is called the standard 

normal distribution. It has a mean of 0 and a standard deviation of 1. 

It is a very helpful distribution because it will enable us to read the areas 

under any normal distribution through the standardisation process. 

Since linear transformations can transform all normal functions to 

standard, this becomes a very convenient and efficient way of finding 

the area under any normal distribution. 

The proof that the mean and the variance of the standard normal 

variable are 0 and 1 respectively is straightforward. 

If xis a normal random 
variable, with mean 2 and 
standard deviation o 
the standardised value 

- p 
- 

A standardised value is also 
called the z-score. 

ofxisz=   

  

“   
T 

Figure 12.21 Transformation of the 

normal curve 

‘The probability density 
function for the standard 
normal distribution is 

1 g 
2) = —=e f@) Vo 

for —co <z< oo 

  

+3 

  

Figure 12.22 The standard normal 
distribution 
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normalcdf (175,19 
2,181,8) 

.6888069418   
  
normalcdf(-.75,1 
.375) 

.6888069418       

Figure 12.23 GDC output 
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Probability distributions 

—p   be the standard variable corresponding to a normal variable x. 

  

Using the data in Example 12.10, work out the z-score of a young German 

man with a height of 

(a) 192cm (b) 175cm. 

1 

Solution 

(a) z-score: 

P LSO 1B 

or 1.375 standard deviations above the mean. 

)zt E 175181 o 

or 0.75 standard deviations below the mean. 

To find the probability that a normal variable x lies in the interval a to b, 

we need to find the area under the normal curve N(u, 0%) between the 

points a and b. However, there is an infinitely large number of normal 

curves — one for each mean and standard deviation. A separate table of 

areas for each of these curves is obviously not practical. Instead, we use one 

table for the standard normal distribution that gives us the required areas. 

When we standardise a and b, we get two standard numbers z, and z, such 

that the area between z, and z, is the same as the area we need. 

In this example, we are interested in the proportion of young German men 

whose height is between 175 cm and 192 cm. 

To find the required area, we can use software or a GDC as shown in 

Figure 12.23. 

With a GDC, we do not need to standardise our variables. However, there 

are cases where we need to understand standardisation in order to use it in 

solving some problems where the mean or the standard deviation, or both, 

are not given. 

If we want to use the standard normal, our commands will be the same, but we 

do not need to include the mean and standard deviation. They are the default. 

If we need the probability that a young man is taller than 175 cm, we can 

also read it either by looking at the distribution with the original data or by 

standardising.



The age of graduate students in engineering programmes throughout the USA 

is normally distributed with mean = 24.5 and standard deviation o = 2.5 

A student is chosen at random. 

(a) What is the probability that the student is younger than 26 years old? 

(b) What proportion of students are older than 23.7 years? 

(c) What percentage of students are between 22 and 28 years old? 

(d) What percentage of the ages falls within 

(i) 1 standard deviation of the mean 

(ii) 2 standard deviations of the mean 

(iii) 3 standard deviations of the mean? 

Solution 

Let X = age of students, then X ~ N(u = 24.5, 0= 6.25) 

(a) We can either standardise and then read the table for the area left of 0.6 

oruse a GDC: 

26 — 245 Pz < 202243 — iz <09 = 0257 

Notice here that we put 0 as a lower limit. We can put a number as a 

lower limit far enough from the mean to make sure we are receiving the 

correct cumulative distribution. 

(b) This can be done in a similar way: 

23.7 — 24, 
>237)= > Plx>23.7) P(z = 

  

= —0.32, so by symmetry we know 

B(z> —0.32) = P(z < 0.32) = 0.6255 

222415 28 —245 E PRI ip (e (c) P2 <X <28) P( 5 z ¥ )=P-1<z<14 

Find the area to the left of 1.4 and to the left of —1 and subtract them. 

P(—1<z<14)=09192 — 0.1587 = 0.7606 = 76.06% 

(d) This is the empirical rule. Find what percentage of the approximately 

normal data will lie within 1, 2, and 3 standard deviations. 

(i) P(-1<z<1=06826 

(i) P(—2<z<2) =09544 

(iii) P(—3 <z<3) = 09973 

These are the exact values corresponding to the empirical rule’s 68%, 

95% and 99.7%. 

  
Normal C.D 
p =0.72574688 
z:Low=-9.8 
z:Up =0.6 

  

      

Figure 12.24 GDC screen for 
Example 12.12 (a) 

  
Normal C.D 
p =0.62551583 
z:Low=-0.32 
z:Up =30.2 
  

Figure 12.25 GDC screen for 
Example 12.12 (b) 

  
Normal C.D 
p =0.76058808 
z:Low=-1 
z:Up =1.4       

Figure 12.26 GDC screen for 
Example 12.12 () 
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p=PZ=2) 

%= 

Figure 12.27 The z-score 
corresponding to Qy is 0.6745 

0915 

"oz 

Figure 12.28 
P(Z< 13722) = 0915 
  

Inverse Normal 
1 
2| 1.3722 
3l 0.674a 

  

  

Inverse Normal 
xInv=194.158829 

      

Figure 12.29 Using invNorm 
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The inverse normal distribu 

Another type of problem arises when we are given a cumulative probability 

and would like to find the value in our data that has this cumulative probability. 

For example, what age marks the 95th percentile? That is, what age is higher 

than or equal to 95% of the population? To answer this question, we need 

to reverse our steps. So far, we are given a value and then we look for the 

area corresponding to it. Now, we are given the area and we have to look 

for the number. That is why this is called the inverse normal distribution. 

Again, the approach is to find the standard inverse normal number and then 

to de-standardise it. That is, to find the value from the original data that 

corresponds to the z-value at hand. 

For example, if we need to know what z-score the third quartile Qs is, we need 

to look up 0.75. The z-score corresponding to Qs is 0.6745 (Figure 12.27). 

Suppose we want to find the z-score that leaves an area of 0.915 below it. 

The z-score corresponding to 0.915 is 1.3722. That is 

P(Z < 1.3722) = 0.915 (Figure 12.28) 

‘We could also use a GDC. The process is similar to the normal calculation, 

but choosing invNorm instead. 

S0, 95% of the young German men are shorter than 194.16 cm. 

The average time it takes fast trains to travel between London and Paris is 

2 hours 15 minutes with a standard deviation of 4 minutes. Assume a 

normal distribution. 

(a) What is the probability that a randomly chosen trip will take longer than 

2 hours 20 minutes? 

(b) What is the probability that a randomly chosen trip will take less than 

2 hours 10 minutes? 

(c) What is the IQR of the length of a trip? 

Solution 

We will do each problem using a GDC. 

(a) w=225and o= 0.0667 

2 hours 20 minutes = 2.333, using our GDC. (We use z here for 

demonstration only. We don't need to standardise when using a GDC.) 

2133315205, 
=) = = P(x > 2.333) P(z 0.0667 ) = P(z > 1.244) = 0.1067



(b) 2 hours 10 minutes = 2.167 

20675225 

0.067 

To find the IQR, we need to find Q, and Q,. 

Plx < 2.167) = P(z = ) = Plz < —1.244) = 0.106718 

(c 

Q, is the number that leaves 25% of the data before it. Q; is the number 

that leaves 75% of the data before it. So, we need to find the inverse 

normal variable that has an area of 0.25 or 0.75 before it. 

Using a GDC and the inverse normal, we find Q, = 2.205 and Q; = 2.295. 

IQR = 2.295 — 2.205 = 0.090 of an hour (5.4 minutes) 

Example 12.14 
  

The age at which babies develop the ability to walk can be described by a 

normal distribution model. It is known that 5% of the babies learn how to 

walk by the age of 10 months, while 25% need more than 13 months. Find 

the mean and standard deviation of the distribution. 

  

Solution 

There are several approaches to this problem. Here is one. 

Look at the distance between 

10 and 13 months in two 

different ways. First, 10 and 

13 months are 3 months apart. 
‘When standardised, the 25% 

respective z-scores are —1.645 5% 

and 0.674. The z-scores are 

2.319 standard deviations apart. 10 w13 

So, 3 months must be the same z=—L645 z=10674 

as 2.319 standard deviations. 

   Walking age 
(months) 

To find the z-score for the lowest 5% and the highest 25%, we can use a GDC. 

Here is the calculation: 

2319 0 = 3, 0 = 1.294, and 

3— 
1.294 
  

- 1 o5 Tfl = 0.674 = = u = 12.128, or alternatively 

oS! 
—1.645 = e L 1.6450 = 10 

3—p 
o 

1 
0.674 =   = w+0.6740 =13 

Solving the system of two equations in w and o will give the same result. 
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1. The time it takes to change the batteries of your GDC is approximately 

normal with mean 50 hours and standard deviation of 7.5 hours. 

Find the probability that your newly equipped GDC will last 

(a) atleast 50 hours (b) between 50 and 75 hours 

(c) less than 42.5 hours (d) between 42.5 and 57.5 hours 

(e) more than 65 hours (f) 47.5 hours. 

2. Find each of the following probabilities. 

(a) pll <1.2) 

(b) pllz > 1.4) 

(c) pX < 3.7), where X ~ N(3, 3) 

(d) pX > —3.7), where X ~ N(3, 3) 

3. A car manufacturer introduces a new model that has a fuel consumption 

of 11.4 litres per 100 km in urban areas. Tests show that this model has a 

standard deviation of 1.26. The distribution is assumed to be normal. 

A car is chosen at random from this model. 

(a) What is the probability that it will have consumption less than 

8.4 litres per 100 km? 

(b) What is the probability that the consumption is between 8.4 and 

14.4 litres per 100 km? 

4. Find the value of z that will be exceeded only 10% of the time. 

5. Find the value of z = z, such that 95% of the values of z lie between 

S Zglanditoo 

6. The scores on a public school’s examination are normally distributed 

with a mean of 550 and a standard deviation of 100. 

(a) What is the probability that a randomly chosen student from this 

population scores below 400? 

(b) What is the probability that a student will score between 450 and 650? 

(c) What score should you have in order to be in the 90th percentile? 

(d) Find the IQR of this distribution. 

7. A company producing and packaging sugar for home consumption put 

labels on their sugar bags noting the weight to be 500 g. Their machines 

are known to fill the bags with weights that are normally distributed 

with a standard deviation of 5.7 g. A bag that contains less than 500 g is 

considered to be underweight. 
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DS 

12. 

113}, 

14. 

153 

(a) The company decides to set their machines to fill the bags with a 

mean of 512 g. What fraction will be underweight? 

(b) The company wants the percentage of underweight bags to be a 

maximum of 4%. What should the mean be? 

(c) The company decides that they do not want to set the mean as high 

as 512 g, but instead at 510 g. What standard deviation gives them a 

maximum of 4% underweight bags? 

. In a large school, heights of students who are 13 years old are normally 

distributed with a mean of 151 cm and a standard deviation of 8 cm. 

Find the probability that a randomly chosen child is: 

(a) shorter than 166 cm 

(b) within 6 cm of the average. 

. The time it takes Kevin to get to school every day is normally distributed 

with a mean of 12 minutes and a standard deviation of 2 minutes. 

Estimate the number of days when Kevin takes: 

(a) longer than 17 minutes 

(b) less than 10 minutes 

(c) between 9 and 13 minutes. 

There are 180 school days in Kevin's school year. 

X has a normal distribution with mean 16. Given that the probability 

that X is less than 16.56 is 64%, find the standard deviation o of 

this distribution. 

X has a normal distribution with mean 91. Given that the probability 

that X is larger than 104 is 24.6%, find the standard deviation o of 

this distribution. 

X has a normal distribution with variance of 9. Given that the 

probability that X is more than 36.5 is 2.9%, find the mean u of 

this distribution. 

X has a normal distribution with standard deviation of 32. Given that 

the probability that X is more than 63 is 87.8%, find the mean w of 

this distribution. 

X has a normal distribution with variance of 25. Given that the 

probability that X is less than 27.5 is 0.312, find the mean w of 

this distribution. 

X has a normal distribution such that the probability that X is larger 

than 14.6 is 93.5% and P(x > 29.6) = 2.2%. Find the mean p and the 

standard deviation o of this distribution. 
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16. 

17 

18. 

9% 

20. 

X ~ N(g, 0?). P(X > 19.6) = 0.16 and P(X < 17.6) = 0.012. 
Find pand o. 

X ~N(g, 0?). P(X > 162) = 0.122 and P(X < 56) = 0.0276. 
Find pand o. 

‘Wooden poles produced for electricity networks in rural areas have 

lengths that are normally distributed. 

2% of the poles are rejected because they are considered too short, and 

5% are rejected because they are too long. 

(a) Find the mean and standard deviation of these poles if the 

acceptable range is between 6.3 m and 7.5 m. 

(b) In a randomly selected sample of 20 poles, find the probability of 

finding 2 rejected poles. 

Bottles of mineral water sold by a company are advertised to contain 

1 litre of water. The company adjusts its filling process to fill the bottles 

with an average of 1012 ml to ensure that there is a minimum of 1 litre. 

The process follows a normal distribution with standard deviation of 5 ml. 

(a) Find the probability that a randomly chosen bottle contains more 

than 1010 ml. 

(b) Find the probability that a bottle contains less than the advertised 

volume. 

(c) In a shipment of 10 000 bottles, what is the expected number of 

under-filled bottles? 

Cholesterol plays a major role in a person’s heart health. High blood 

cholesterol is a major risk factor for coronary heart disease and stroke. 

The level of cholesterol in the blood is measured in milligrams per 

decilitre (mg/dL). According to the WHO, in general, less than 

200 mg/dL is a desirable level, 200 to 239 is borderline high, and above 

240 is a high risk level and the person with this level has more than 

twice the risk of heart disease as a person with less than 200 mg/dL. 

In a certain country, it is known that the average cholesterol level of the 

adult population is 184 mg/dL with a standard deviation of 22 mg/dL. 

It can be modelled by a normal distribution. 

(a) What percentage do you expect to be borderline high? 

(b) What percentage do you consider are high risk? 

(c) Estimate the interquartile range of the cholesterol levels in this 

country. 

(d) Above what value are the highest 2% of adults cholesterol levels in 

this country?



21. A manufacturer of car tyres claims that its winter tyres can be described 

by a normal model with an average life of 52 000 km and a standard 

deviation of 4000 km. 

(a) If you buy a set of tyres from this manufacturer, is it reasonable for 

you to hope they last more than 64 000 km? 

(b) What percentage of these tyres do you expect to last less than 

48000 km? 

(c) What percentage of these tyres do you expect to last between 

48000 km and 56 000 km? 

(d) What is the IQR of the life of this type of tyre? 

(e) The company wants to guarantee a minimum life for these tyres. 

They will refund customers whose tyres last less than a specific 

distance. What should their minimum life guarantee be so that they 

do not end up refunding more than 2% of their customers? 

22. Chicken eggs are graded by size for the purpose of sales. In Europe, 

modern egg sizes are defined as follows: very large eggs have a mass 

of 73 g or more, large eggs are between 63 and 73 g, medium eggs are 

between 53 g and 63 g, and small eggs are less than 53 g. 

(a) Mature hens (older than 1 year) produce eggs with an average 

mass of 67 g. 98% of the eggs produced by mature hens are 53 g or 

above. What is the standard deviation if the egg production can be 

modelled by a normal distribution? 

(b) Young hens produce eggs with a mean of 51 g. Only 28% of their 

eggs exceed 53 g. What is the standard deviation? 

(c) A farmer finds that 7% of his farm’s eggs are small, and 12% are very 

large. Estimate the mean and standard deviation of these eggs. 

23. A machine produces bearings with diameters that are normally 

distributed with mean 3.0005 cm and standard deviation 0.0010 cm. 

Specifications require the bearing diameters to lie in the interval 

3.000 * 0.0020 cm. Those outside the interval are considered scrap and 

must be disposed of. What percentage of the production will be scrap? 

24. A soft-drink machine can be regulated so that it discharges an average 

wml per bottle. The amount of fill is normally distributed with a 

standard deviation 9 ml. 

(a) Give the setting for w so that 237 ml bottles will overflow only 1% of 

the time. 

(b) The standard deviation o of the machine can be adjusted to the 

required levels when needed. What is the largest value of o that will 

allow the actual amount dispensed to fall within 30 ml of the mean 

with probability at least 95%2 
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25. The speeds of cars on a main highway are approximately normal. 

Data collected at a certain point show that 95% of the cars travel at a speed 

less than 140kmh™!, and 10% travel at a speed less than 90 kmh . 

(a) Find the average speed and the standard deviation for the cars 

travelling on that specific stretch of the highway. 

(b) Find the proportion of cars that travel at speeds exceeding 110kmh™". 

26. The random variable X is normally distributed and 

P(X < 10) = 0.670; P(X < 12) = 0.937 

Find E(X). 

27. A machine is set to produce bags of salt, whose weights are distributed 

normally, with a mean of 110 g and standard deviation of 1.142 g. If the 

weight of a bag of salt is less than 108 g, the bag is rejected. With these 

settings, 4% of the bags are rejected. 

The settings of the machine are altered, and it is found that 7% of the 

bags are rejected. 

(a) (i) If the mean has not changed, find the new standard deviation, 

correct to 3 decimal places. 

The machine is adjusted to operate with this new value of the 

standard deviation. 

(ii) Find the value, correct to 2 decimal places, at which the mean 

should be set so that only 4% of the bags are rejected. 

(b) With the new settings from part (a), it is found that 80% of the bags 

of salt have a weight that lies between A g and Bg, where A and B 

are symmetric about the mean. Find the values of A and B, giving 

your answers correct to 2 decimal places. 

Chapter 12 practice questions 

1. Residents of a small town have savings that are normally distributed 

with a mean of $3000 and a standard deviation of $500. 

(a) What percentage of townspeople have savings greater than $32002 

(b) Two townspeople are chosen at random. What is the probability that 

both of them have savings between $2300 and $3300? 

(c) The percentage of townspeople with savings less than d dollars is 

74.22%. Find the value of d.



2. A box contains 35 red discs and 5 black discs. A disc is selected at 

random and its colour noted. The disc is then replaced in the box. 

(a) In eight such selections, find the probability that a black disc is 

selected: 

(i) exactly once (ii) atleast once. 

(b) The process of selecting and replacing is carried out 400 times. 

What is the expected number of black discs that would be drawn? 

3. The graph shows a normal curve . 

for the random variable X, with 

mean g and standard deviation o. 

It is known that P(X = 12) = 0.1 1 % 

(a) The shaded region A is the region under the curve where X = 12. 

‘Write down the area of the shaded region A. 

It is also known that P(X < 8) = 0.1 

(b) Find the value of u, explaining your method in full. 

(c) Show that o = 1.56, correct to 3 significant figures. 

(d) Find P(X < 11). 

4. A fair coin is tossed eight times. Calculate 

(a) the probability of obtaining exactly 4 heads 

(b) the probability of obtaining exactly 3 heads 

(c) the probability of obtaining 3, 4, or 5 heads. 

5. The lifespan of a particular species of insect is normally distributed with 

amean of 57 hours and a standard deviation of 4.4 hours. 

The probability that the lifespan of ” 

an insect of this species lies between 

55 and 60 hours is represented by 

the shaded area in the diagram. This 

diagram represents the standard 

normal curve. 

(a) Write down the values of a and b. 

(b) Find the probability that the lifespan of an insect of this species is: 

(i) more than 55 hours (ii) between 55 and 60 hours. 

90% of the insects die after  hours. 

(c) Represent this information on a standard normal curve diagram, 

similar to the one given in part (a), indicating clearly the area 

representing 90%. 

(d) Find the value of t. 
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6. Intelligence quotient (IQ) in a certain population is normally distributed 

with a mean of 100 and a standard deviation of 15. 

(a) What percentage of the population has an IQ between 90 and 125? 

(b) If two people are chosen at random from the population, what is the 

probability that both have an IQ greater than 1252 

7. Bags of cement are labelled as weighing 25 kg. The bags are filled by a 

machine and the actual weights are normally distributed with mean 

25.7 kg and standard deviation 0.50 kg. 

(a) What is the probability a bag selected at random will weigh less than 

25.0kg? 

In order to reduce the number of underweight bags (bags weighing less 

than 25kg) to 2.5% of the total, the mean is increased without changing 

the standard deviation. 

(b) Show that the increased mean is 26.0 kg. 

It is decided to purchase a more accurate machine for filling the bags. 

The requirements for this machine are that only 2.5% of bags be under 

25kg and that only 2.5% of bags be over 26 kg. 

(c) Calculate the mean and standard deviation that satisfy these 

requirements. 

The cost of the new machine is $5000. Cement sells for $0.80 per kg. 

(d) Compared to the cost of operating with a 26 kg mean, how many bags 

must be filled in order to recover the cost of the new equipment? 

8. The mass of packets of a breakfast cereal is normally distributed with a 

mean of 750 g and standard deviation of 25 g. 

(a) Find the probability that a packet chosen at random has mass: 

(i) lessthan740g 

(ii) atleast780g 

(iii) between 740 g and 780 g. 

(b) Two packets are chosen at random. What is the probability that both 

packets have a mass that is less than 740 g? 

(c) The mass of 70% of the packets is more than x g. Find the value of x. 

9. In a village in Wales, the height of adults is normally distributed with a 

mean of 187.5 cm and a standard deviation of 9.5 cm. 

(a) What percentage of adults in this village are taller than than 197 cm? 

(b) A standard doorway in the village is designed so that 99% of adults 

have a space of at least 17 cm over their heads when going through 

the doorway. Find the height of a standard doorway in the village. 

Give your answer to the nearest cm. 
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Tt is claimed that the masses of a population of lions are normally 

distributed with a mean mass of 310 kg and a standard deviation 

of 30 kg. 

(a) Calculate the probability that a lion selected at random will have a 

mass of 350 kg or more. 

(b) The probability that the mass of a lion lies between a and b is 0.95, 

where a and b are symmetric about the mean. Find the values of a 

and b. 

Reaction times of human beings are normally distributed with a mean of 

0.76 seconds and a standard deviation of 0.06 seconds. 

The graph is that of the standard i 

normal curve. The shaded area 

represents the probability that 

the reaction time of a person 

chosen at random is between 

0.70 and 0.79 seconds. 2 0 b e 

(a) Write down the values of a and b. 

(b) Calculate the probability that the reaction time of a person chosen 

at random is: 

(i) greater than 0.70 seconds 

(ii) between 0.70 and 0.79 seconds. 

Three per cent of the population have a reaction time less than ¢ seconds. 

(c) (i) Represent this information on a diagram similar to the one 

above. Indicate clearly the area representing 3%. 

(ii) Find c. 

A factory makes calculators. Over a long period, 2% of them are found 

to be faulty. A random sample of 100 calculators is tested. 

(a) Write down the expected number of faulty calculators in the sample. 

(b) Find the probability that three calculators are faulty. 

(c) Find the probability that more than one calculator is faulty. 

The speeds of cars at a certain point on a straight road are normally 

distributed with mean u and standard deviation o. 15% of the cars 

travelled at speeds greater than 90 km h ™!, and 12% of them at speeds 

less than 40 kmh~!. Find w and o 
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14. Bag A contains 2 red balls and 3 green balls. Two balls are chosen at 

random from the bag without replacement. Let X denote the number of 

red balls chosen. The table shows the probability distribution for X. 
  

  

          

x 0 1 B 
= 5 6 L 

RS2 10 10 10   

(a) Calculate E(X), the mean number of red balls chosen. 

Bag B contains 4 red balls and 2 green balls. Two balls are chosen at 

random from bag B. 

(b) (i) Draw a tree diagram to represent this information, including 

the probability of each event. 

(ii) Hence find the probability distribution for Y, where Y is the 

number of red balls chosen. 

A standard dice with six faces is rolled. If a 1 or 6 is obtained, two balls 

are chosen from bag A, otherwise two balls are chosen from bag B. 

(c) Calculate the probability that two red balls are chosen. 

(d) Given that two red balls are obtained, find the conditional 

probability that a 1 or 6 was rolled on the dice. 

15. Ball bearings are used in engines in large quantities. A car manufacturer 

buys these bearings from a factory. They agree on the following terms: 

The car company chooses a sample of 50 ball bearings from the 

shipment. If they find more than 2 defective bearings, the shipment is 

rejected. It is a fact that the factory produces 4% defective bearings. 

(a) What is the probability that the sample is free of defects? 

(b) What is the probability that the shipment is accepted? 

(c) What is the expected number of defective bearings in the sample of 502 

16. Each DVD produced by a certain company is guaranteed to function 

properly with a probability of 98%. The company sells these DVDs in 

packs of 10 and offers a money-back guarantee that all the DVDs in a 

package will function. 

(a) What is the probability that a package is returned? 

(b) You buy three packages. What is the probability that exactly 1 of 

them must be returned? 

17. Tt is estimated that 2.3% of the cherry tomato fruits produced at 

a certain farm are considered to be small and cannot be sold for 

commercial purposes. The farmers have to separate such fruits 

and use them for domestic consumption instead. 

516



18. 

9% 

20. 

(a) 12 tomatoes are randomly selected from the produce. 

(i) Calculate the probability that 3 are not fit for selling. 

(ii) Calculate the probability that at least 4 are not fit for selling. 

(b) Itis known that the sizes of such tomatoes are normally distributed 

with a mean of 3 cm and a standard deviation of 0.5 cm. Tomatoes 

that are categorised as large will have to be larger than 2.5 cm. 

‘What proportion of the produce is large? 

A factory has a machine designed to produce 1kg bags of sugar. It is 

found that the average weight of sugar in the bags is 1.02 kg. Assuming 

that the weights of the bags are normally distributed, find the standard 

deviation if 1.7% of the bags weigh below 1kg. 

Give your answer correct to the nearest 0.1 gram. 

Tan and Karl have been chosen to represent their countries in the 

Olympic discus throw. Assume that the distance thrown by each athlete 

is normally distributed. The mean distance thrown by Ian in the past 

year was 60.33 m with a standard deviation of 1.95 m. 

(a) In the past year, 80% of Tan’s throws have been longer than x metres. 

Find x, correct to two decimal places. 

(b) In the past year, 80% of Karl’s throws have been longer than 56.52 m. 

If the mean distance of his throws was 59.39 m, find the standard 

deviation of his throws, correct to two decimal places. 

(c) This year, Karl’s throws have a mean of 59.50m and a standard 

deviation of 3.00 m. Tan’s throws still have a mean of 60.33 m and 

standard deviation 1.95m. In a competition, an athlete must have at 

least one throw of 65 m or more in the first round to qualify for the 

final round. Each athlete is allowed three throws in the first round. 

(i) Determine which of these two athletes is more likely to qualify 

for the final on their first throw. 

(ii) Find the probability that both athletes qualify for the final. 

A company buys 44% of its stock of bolts from manufacturer A and the 

rest from manufacturer B. The diameters of the bolts produced by each 

manufacturer follow a normal distribution with a standard deviation of 

0.16 mm. 

The mean diameter of the bolts produced by manufacturer A is 

1.56 mm. 24.2% of the bolts produced by manufacturer B have a 

diameter less than 1.52 mm. 

(a) Find the mean diameter of the bolts produced by manufacturer B. 
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A bolt is chosen at random from the company’s stock. 

(b) Show that the probability that the diameter is less than 1.52 mm is 

0.312, to 3 significant figures. 

(c) The diameter of the bolt is found to be less than 1.52 mm. Find the 

probability that the bolt was produced by manufacturer B. 

(d) Manufacturer B makes 8000 bolts in one day. It makes a profit of 

$1.50 on each bolt sold, on condition that its diameter measures 
between 1.52 mm and 1.83 mm. Bolts whose diameters measure less 

than 1.52 mm must be discarded at a loss of $0.85 per bolt. 

Bolts whose diameters measure over 1.83 mm are sold at a reduced 

profit of $0.50 per bolt. 

Find the expected profit for manufacturer B. 
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Internal assessment 

Internal assessment (IA) is an important component of the Analysis and 

Approaches SL course and contributes 20% to your final grade. It is a significant 

part of the overall assessment for the course and should be taken seriously. It 

should also be pointed out that your work in completing the IA component 

differs in important ways from the written exams (external assessment) for the 

course. 

 Unlike written examinations, you do not perform IA work under strict time 

constraints. 

« You have some freedom to decide which mathematical topic you wish to 

explore. 

« Your IA work involves writing about mathematics, not just using 

mathematical procedures. 

 Regular discussion with, and feedback from, your teacher will be essential. 

« You should endeavour to explore a topic in which you have a genuine 

personal interest. 

« You will be rewarded for evidence of creativity, curiosity, and independent 

thinking. 

athematical explorati 

To satisfy the IA component, you are required to complete a piece of written 

work on a mathematical topic that you choose in consultation with your 

teacher. This piece of written work is formally referred to as the mathematical 

exploration. It will be referred to simply as the ‘exploration’ throughout this 

chapter. Your primary objective is to explore a mathematical topic in which 

you are genuinely interested and that is at an appropriate level for the course. 

A fundamental aspect of your exploration must be the use of mathematics in a 

manner that clearly demonstrates your knowledge and understanding of the 

relevant mathematics. Your teacher may provide you with a list of ideas (or 

‘stimuli’) to help you in the process of finding a suitable topic. 

It is your responsibility to determine whether or not you are sufficiently ) . 
- ¢ 4 5 Spd 4 it v See the list of 200 ideas 
interested in a particular topic - and it is your teacher’s responsibility to e 

determine if an exploration of the topic can be conducted at a mathematical You may find a suitable 

level that is suitable for the course. Your teacher will help you determine if an l‘f"[’" - ‘:‘“1 list °'fi(hj 
ist may help you find or 

exploration of a certain topic can potentially address the five assessment criteria develu;) yuupr:an s 
satisfactorily. Your exploration should be approximately 12 to 20 pages long for a mathematical topic 

with double line spacing. to explore. 
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Internal assessment criteria 

Your exploration will be assessed by your teacher according to the following 

five criteria. 

A Presentation 

This criterion assesses the organisation and coherence of the exploration. 

A well-organised exploration has an introduction, a rationale (which includes a 

brief explanation of why the topic was chosen), a description of the aim of the 

exploration, and a conclusion. 

B Mathematical communication 

This criterion assesses to what extent you are able to: 

« use appropriate mathematical language (notation, symbols, terminology) 

o clearly define key terms, variables, and parameters 

« use multiple forms of mathematical representation, such as formulae, 

diagrams, tables, charts, graphs, and models 

« apply a deductive approach in general, and present any proofs in a logical 

manner. 

C Personal engagement 

This criterion assesses the extent to which you engage with the exploration and 

present it in such a way that clearly shows your own personal approach. Personal 

engagement may be recognised in several different ways. These may include - 

but are not limited to - thinking independently and/or creatively, addressing 

personal interest, presenting mathematical ideas in your own words and diagrams, 

developing your own ideas and testing them, and creating your own examples 

to illustrate important results. 

D Reflection 

This criterion assesses how well you review, analyse, and evaluate the 

exploration. Although reflection may be seen in the conclusion to the 

exploration, you should also give evidence of reflective thought throughout the 

exploration. Reflection can be demonstrated by consideration of limitations 

and/or extensions, commenting on what you've learned, or comparing different 

mathematical methods and approaches. 

E Use of mathematics 

This criterion assesses to what extent and how well you use mathematics in 

your exploration. The mathematical working in your exploration needs to 

be sufficiently sophisticated and rigorous. The chosen topic should involve 

mathematics in the Analysis and Approaches SL syllabus or at a similar level. 

Sophistication and rigour can include understanding and use of challenging 

mathematical concepts, looking at a problem from different perspectives, 

mathematical arguments expressed clearly in a logical manner, or seeing 

underlying structures to link different areas of mathematics.



Your exploration will earn a score out of a total of 20 possible marks. The five 

criteria do not contribute equally to the overall score for your exploration. For 

example, criterion E (Use of mathematics) is 30% of the overall score, whereas 

crtieria C (Personal engagement) and D (Reflection) contribute 15% each. 

It is very important that you familiarise yourself with the assessment criteria 

for the Analysis and Approaches SL exploration and refer to them while you 

are writing your exploration. The achievement levels for each criteria and 

associated descriptors are as follows: 

  

A Presentation 
  

The exploration does not reach the standard described by the descriptors below. 
  

The exploration has some coherence or some organisation. 
  

‘The exploration has some coherence and shows some organisation. 
  

‘The exploration is coherent and well organised. 
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‘The exploration is coherent, well organised, and concise. 
  

  

B Mathematical communication 
  

0 | The exploration does not reach the standard described by the descriptors below. 
  

The exploration contains some relevant mathematical communication that is 
partially appropriate. 
  

2 | The exploration contains some relevant appropriate mathematical communication. 
  

3 | The mathematical communication is relevant, appropriate, and is mostly consistent. 
  

‘The mathematical communication is relevant, appropriate, and consistent 
throughout. 
  

  

C Personal engagement 
  

  

  

  

  

  

0 | The exploration does not reach the standard described by the descriptors below. 

1 | There is evidence of some personal engagement. 
2 | There is evidence of significant personal engagement. 

3 | There is evidence of outstanding personal engagement. 

D Reflection 
  

0 | The exploration does not reach the standard described by the descriptors below. 
  

There is evidence of limited reflection. 
  

  

1 

2 | There s evidence of meaningful reflection. 
3 There is substantial evidence of critical reflection. 
  

  

E Use of mathematics 
  

0 | The exploration does not reach the standard described by the descriptors below. 
  

Some relevant mathematics is used. 
  

  

1 

2 | Some relevant mathematics is used. Limited understanding is demonstrated. 

3 Relevant mathematics commensurate with the level of the course is used. 
‘The mathematics explored is correct. Limited understanding is demonstrated.       
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Your teacher will provide 
oral and/or written 

advice on a draft of your 
exploration pertaining to 

how it can be improved. 
Your teacher will also 

write thorough and 
descriptive comments 

on the final version 

of your exploration to 

assist IB moderators in 
confirming the criteria 
scores theyve awarded. 

  

Failure to 
properly cite any text, 

diagrams, images, 
‘mathematical working, 

or ideas that are not 
‘your own may result in 
your exploration being 

reviewed for malpractice, 
which could have serious 

consequences. 

If you are uncertain 
about the formatting 
and style of citations 

and a bibliography (not 
the same thing), then 

you should consult with 
teacher(s) at your school 

who have expertise 

in this area - such as 
an English teacher or 

librarian. A bibliography 
is required but it does 

not replace the need for 

appropriate citations 
(inline or footnotes) at 

the pertinent location in 

the exploration. 

522 

Internal assessment 

  

4 | Relevant mathematics commensurate with the level of the course is used. 
The mathematics is partially correct. Some knowledge and understanding are 
demonstrated. 
  

5 | Relevant mathematics commensurate with the level of the course is used. 
The mathematics explored is mostly correct. Good knowledge and understanding 
are demonstrated. 
  

6 | Relevant mathematics commensurate with the level of the course is used. 
The mathematics explored is correct. Thorough knowledge and understanding 
are demonstrated.         

Guidance 

Conducting an in-depth individual exploration into the mathematics of a 

particular topic can be an interesting and very rewarding experience. It is 

important to take all stages of your work on the exploration seriously - not 

only because it is worth 20% of your final grade for the course but also because 

of the opportunity to pursue your own personal interests without the pressure 

of examination conditions. The exploration should rot be approached as simply 

an extended homework assignment. The task of writing the exploration will 

require you to analyse, think, write, edit, and use mathematics in a readable and 

focused manner. Hopefully, it will also be enjoyable, thought-provoking, and 

satisfying, and it should give you the opportunity to gain a deeper appreciation 

for the beauty, power, and usefulness of mathematics. 

Although it is required that your exploration is completely your own work, you 

should consult with your teacher on a regular basis. You are allowed to work 

collaboratively with fellow students, but this should be limited to the following: 

selecting a topic, finding resources, understanding relevant mathematical 

knowledge and skills, and receiving peer feedback on your writing. While you are 

encouraged to talk through your ideas with others, it is not appropriate for you to 

work with others on your exploration. Your teacher should provide support and 

advice during the planning and writing stages of your exploration. Both you and 

your teacher will need to verify the authenticity of your exploration. 

Any text, diagrams, images, mathematical working, or ideas that are not your 

own must be cited where they appear in your exploration. Otherwise, all of the 

work connected with your exploration must be your own. Your exploration 

must provide the reader with the exact sources of quotations, ideas, and points 

of view with a complete and accurate bibliography. There are a number of 

acceptable bibliographic styles. Whichever style you choose, it must include 

all relevant source information and be applied consistently. Group work is not 

allowed. Also, if you are writing an extended essay for mathematics, you are not 

allowed to submit the same or similar piece of work for the exploration - and 

you should not write about the same mathematical topic for both. 

In organising a successful exploration, consider the following suggestions: 

1. Select a topic in which you are genuinely interested. Include a brief 

explanation in the early part of your exploration about why you 

chose your topic - including why you find it interesting.



. Consult with your teacher to confirm that the topic is at the appropriate 

level of mathematics - namely, that it is at the same or similar level of the 

mathematics in the SL syllabus. 

Find as much information about the topic as possible. Although information 

found on websites can be very helpful, try to also find information in books, 

journals, textbooks, and other printed material. 

. Although there is no requirement that you present your exploration to your 

classmates, it should be written so that they can follow it without trouble. 

Your exploration needs to be logically organised and use appropriate 

mathematical terminology and notation. 

. The most important aspects of your exploration should be about 

mathematical communication and using mathematics. Although other 

aspects of your topic - for example, historical, personal, cultural - can be 

discussed, be careful to keep focus on the mathematical features. 

. Two of the assessment criteria - Personal engagement and Reflection - are 

about what you think about the topic you are exploring. Don't hesitate to 

pose your own relevant and insightful questions as part of your exploration 

- and then to address these questions using mathematics at a suitably 

sophisticated level along with sufficient written commentary. 

. Although your teacher will expect and require you to work independently, 

you are allowed to consult with your teacher — and your teacher is allowed to 

give you advice and feedback to a certain extent while you are working on 

your exploration. It is especially important to check with your teacher that 

any mathematics in your exploration is correct. Your teacher will not give 

mathematical answers or corrections but can indicate where any errors have 

been made or where improvement is needed. 
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Warning: Although you 
will need to conduct 

some research, your 
exploration is not a 

research paper where 
you simply report 

what you've learned 
about a mathematical 

topic. You must discuss 
your thoughts about 
the mathematics and 

you must apply the 
‘mathematics in a way 

that clearly demonstrates 
your knowledge and 
understanding of the 

‘mathematics. 

Keep in mind that 
you should write your 
exploration so thata 

student in your Analysis 
and Approaches SL class 
can understand it. That 
is, your audience is your 

Sfellow students. 
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Internal assessment 

Mathematical exploration - SL student checklist 

= Is your exploration written entirely by yourself? 

Have you avoided simply replicating work and 

ideas from sources you found? 

= Have you strived to apply your personal interest, 

develop your own ideas, and use critical thinking 

skills during your exploration? 

= Did you refer to the five assessment criteria while 

writing your exploration? 

= Does your exploration focus on good mathematical 

communication - and does it read like an article 

from a mathematical journal? 

= Does your exploration have a clearly identified 

introduction and conclusion? 

= Have you provided appropriate citation for any ideas, 

mathematical working, images, graphs, etc. that are not 

your own at the point they appear in your exploration? 

= Not including the bibliography, is your exploration 

12 to 20 pages? 

= Are graphs, tables, and diagrams sufficiently described 

and labelled? 

= To the best of your knowledge, have you used 

mathematics that is at the same level, or similar, 

to that studied in Analysis and Approaches SL? 

= Have you attempted to discuss mathematical ideas, and 

use mathematics, with a sufficient level of sophistication 

and rigour? 

= Are formulae, graphs, tables, and diagrams in the main 

body of text? (Preferably no full-page graphs, and no 

separate appendices.) 

= Have you used technology - such as a GDC, spreadsheet, 

mathematics software, drawing and word-processing 

software - to enhance mathematical communication? 

= Have you used appropriate mathematical language 

(notation, symbols, terminology) and defined key terms? 

= Is the mathematics in your exploration performed 

precisely and accurately? 

= Has calculator/computer notation and terminology 

been used? (y = x2, not y = xA2; m, not <pi>; 

~, not approximately equal to; |x|, not abs(x); etc) 

= Have you included reflective and explanatory comments 

about the topic being explored throughout your 

exploration? 

[ Yes [] No 

[ Yes [] No 

[ Yes [] No 

[ Yes [] No 

[ Yes [] No 

[ Yes [] No 

[ Yes [] No 

[ Yes [] No 

[ Yes [] No 

[ Yes [] No 

[ Yes [] No 

[ Yes [] No 

[ Yes [] No 

[ Yes [] No 

[ Yes [] No 

[ Yes [] No



Finding, developing, and choosing a topic for your exploration 

It is fair to say that the most important stage of completing your exploration 

is determining the mathematical topic you are going to investigate, write 

about, and apply. Your exploration is much more likely to be successful - 

and gratifying - if it focuses on a mathematical topic in which you have a 

genuine interest, is at a suitable level for the Analysis and Approaches SL 

course, and for which you are confident that you can discuss and use the 

relevant mathematics in a manner that demonstrates thorough knowledge and 

understanding. There is no single approach for determining an exploration 

topic that is guaranteed to be successful for all students. Your teacher will 

provide helpful advice and support. Your teacher may supply you with a short 

list of some broad stimuli to start the process of finding a much narrower topic. 

Many teachers have found that starting with a sufficiently narrow topic is often 

  

more successful than starting with a very broad topic that requires a significant Avoid choosing a topic 
effort to reduce to the extent that it can be explored in less than 20 pages thatis too broad and/or 

too complicated. 
(double spaced). 

In the eBook for this textbook you will find a list of 200 mathematical topics. 

Some of the topics in the list are broad but many are already quite narrow 

in scope. It is possible that some of these 200 topics could be the focus of an 

exploration, while others will require you to investigate further to develop 

a narrower focus to explore. Do not restrict yourself to the topics in the list. 

This list is only the tip of the iceberg with regard to potential topics for your 

exploration. Reading through this list may stimulate you to think of some 

other topic(s) that you may find interesting to explore. Many of the items in 

the list may be unfamiliar to you. A quick search on the internet should give 

you a better idea what each is about and help you determine if you're interested 

enough to investigate further - and to see if it might be a suitable topic for your 

exploration. 
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Theory of knowledge 

Theory of knowledge 

At the start of his wonderful book Nature’s Numbers, the mathematician 

Tan Stewart writes: 

“‘We live in a universe of patterns. Every night the stars move in circles 

across the sky. The seasons cycle at yearly intervals. No two snowflakes 

are ever exactly the same, but they all have sixfold symmetry. Tigers and 

zebras are covered in patterns of stripes, leopards and hyenas are covered 

in patterns of spots. Intricate trains of waves march across the oceans; 

very similar trains of sand dunes march across the desert. Coloured arcs 

of light adorn the sky in the form of rainbows, and a bright circular halo 

sometimes surrounds the moon on winter nights. Spherical drops of water 

fall from clouds. 

‘We could add to Stewart’s list. Wallpaper is patterned (there are surprisingly 

only 17 different distinct groups of possible patterns); buildings often exhibit 

mirror symmetry and their structure is carefully proportioned; the digital 

traces on memory sticks or hard drives are patterned in a way that makes them 

suitable for storing data; mechanical devices such as clocks and engines depend 

on symmetry and patterning for their smooth movement; the day is divided 

into equal parts that are represented using angles or digits; music possesses 

horizontal and vertical symmetries — and human behaviour is patterned. 

It is no accident that the world is full of patterns. Symmetry in a building is 

not only easy on the eye but it ensures that the design is simple. Pattern is 

a labour-saving strategy. The same plan can be used for each window, or the 

plan for one side of a building can be used in reverse for the other side. 

These informational shortcuts can be found both in the man-made world 

and in nature. The same blueprint for generating twig patterns can be used 

for bigger branches, or one plan can be used for all the petals in a flower. 

It is a sort of design efficiency. The wealth of patterns in the world is a series 

of cost-effective solutions to problems - and that is why these patterns are 

worth studying. 

Mathematics is one way in which human beings formally study patterns. 

‘While the natural sciences study patterns by going out into the world, 

collecting examples and analysing them, mathematics studies patterns in 

the abstract. Mathematics in its purest form is not fieldwork or experiment. 

Its raw materials are abstract structures specified by symbols, and 

mathematicians arrive at conclusions through their manipulation. In this sense, 

mathematics is a little ‘other-wordly’ - a characteristic that makes it interesting 

from a ToK perspective. It means that in some sense, mathematics is more 

like an art than a science. There is in this suggestion more than a hint of a 

deep reliance on creativity and imagination. A comparison with the arts and 

the sciences is instructive and reveals the truly special place that mathematics 

  

occupies in human knowledge.



In this chapter, we will investigate mathematics using the basic structure of the 

knowledge framework: Perspectives, methods and tools, and the link to the 

individual. 

Under ‘Perspectives, we will look at the orientation of mathematics within the 

academy. There are a number of key questions to be answered here: 

o What is mathematics about? 

o How should we think of mathematics: as a human construction or 

something in the world? 

o Why is mathematics useful? 

Under ‘Methods and Tools’ we will discuss exactly what mathematicians do - 

how they arrive at mathematical knowledge and what counts as facts and truth 

in mathematics. This is where we unpack the key conceptual building blocks of 

mathematical thought. 

The final section deals with mathematics and the individual. What is the link 

between mathematics and supposedly subjective phenomena such as beauty? 

How reliable are our mathematical intuitions? Is mathematics a personal 

journey or is it something that we collaborate on? 

On the way, we will have fun with infinite numbers, self-similar patterns and . 
What role does 

security codes. While it might be removed from the physical world, the world mathematics play 
of mathematics is just as fascinating, if not more so. Enjoy! in your life? 

Perspectives 

Mathematics and number 

As a first definition, let’s say that mathematics is the formal study of patterns. 

In this section we will see how far this basic idea takes us. 

Imagine a simple pattern in the world - a set of similar objects, for example, 

a field of animals. Let’s say that the animals are of the same kind - they are 

cows. To recognise that a group of different things all belong to the same 

kind is already remarkable. It means ignoring all the things that mark out 

individual animals and focusing only on what they have in common. 

Grouping a set of things together by common characteristics is a powerful 

technique in the sciences. If such a classification is effective, it might yield 

understanding, generalisations and predictions. We call groups that have these 

properties natural kinds - it is something that might be expected to happen in 

biology. But mathematics goes one step further. Suppose that we make a mark 

‘T on a clay tablet for every cow in the field. We end up with a mark ‘TIIIIIIT. 

What we have done now is to abstract away everything about the animals in 

the field: the fact that they are animals, that they are cows, that they are eating 

grass. What is left is their number. 
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So, the simplest pattern that we can deal with abstractly is number. In a 

somewhat magical way, the inscriptions of the tablet represent the cows in the 

field. They are a convenient stand-in for the real world. If we want to find 

out what happens when we remove III" cows from the field. We can either 

move them physically or we simply separate the ‘cow’ symbols: “IIIIIT  IIT. 

Manipulating the symbols is clearly easier to perform. Mathematics 

manipulates representations rather than the real world because it is easier. 

‘We do not know if something like this story is accurate at the beginning of the 

long history of mathematics. But we do know that imprints on a Sumerian clay 

tablet led eventually to the astounding sophistication of the proof of Fermat’s 

last theorem and to modern algebra, analysis, and geometry. Mathematics has 

been shaped by the job it is expected to perform and through countless quirks 

of culture. Improvised methods designed to deliver a temporary solution to an 

unforeseen problem become permanent. If they work well, they get passed on 

and take on a life of their own. Less good solutions eventually fall into disuse 

in a sort of Darwinian selection of competing ideas. We could call histories like 

this cultural evolution. 

But has the counting of cows in a field really got anything to do with modern 

mathematics? Let’s examine the example more closely. We add an T’ on the 

tablet for each cow in the field, subject to two strict rules: no cow should be 

‘counted” more than once and all the cows in the field are counted. Although 

these rules are quite natural to us, they are mathematically sophisticated. 

Mathematically, we are establishing a mapping between the marks on the tablet 

and the cows in the field that is a one-to-one correspondence. This means 

a mapping links a mark to a unique cow (injective) and that all cows in the 

field are linked (surjective). While these early users of mathematics might 

not have understood it quite in these terms, they nonetheless needed to use 

these properties when counting. But there is something else at work here. The 

compound symbol ‘IIIIIIIT stands for the whole field of cows. It is a property of 

the whole set. It expresses the size of the set or its cardinality. The counting of 

cows in a field has a lot to do with the deep nature of mathematics itself. 

Indeed, there are three more ideas illustrated by this simple example. The first is 

the power of numbers to create ordering: I II III IIII is such an ordering. This 

is called the ordinal property of number. Second, it illustrates the special place 

of sets and mappings in mathematics. We focused on the set of cows and the set 

of marks on the tablet. Third, we counted the first set by establishing a one-to- 

one correspondence with the second. This is a technique that works with any 

sets, including those that have infinitely many members. Mathematics is truly 

about sets and the mappings between them. 

By representing the real world by marks bearing a special relation to their 

targets, human beings initiated perhaps the most extraordinary technical 

advance in their history: the invention of symbolic representation. 

Manipulating symbols is easier than manipulating objects in the world. 

Moreover, symbols allow this information to be communicated over distance



and time. But the most powerful feature of symbols is that they can be used to 

represent states of affairs that are not physically present. Symbols can represent 

past worlds, possible worlds, and desired future worlds. Symbols allow us 

to tell stories, write histories, and make plans. Symbols that do not actually 

correspond with the world are called counterfactuals. They describe ‘what if” 

situations. What if the Allies had lost World War I1? What if we add sulfuric 

acid to copper? What if we wake up one morning to discover that we have been 

transformed into a giant insect? What if parallel lines could actually meet? 

What if there was a solution to the equation x> = —12 The power of symbolic 

representation is that it allows us to build abstract worlds - virtual realities 

where the ‘what if” conditions are true. 

There is a sense in which the world of mathematics is one such virtual universe, 

containing all manner of exciting and weird things. Mathematicians discuss 

11-dimensional hypercubes, infinite sets of numbers, infinite numbers, surfaces 

that turn you from being right-handed to left-handed as you traverse them, 

spaces where the angles of a triangle add up to more than 180 degrees, spaces 

where parallel lines diverge, systems where the order of the operation matters 

(where A * B is not the same as B * A), vectors in infinite-dimensional space, 

series that go on forever, and geometric figures that are self-similar called 

fractals (where you can take a small piece of the original figure then enlarge 

it and it looks identical - truly identical - to the original). And all this started 

with the making of a simple mark on a clay tablet. 

Mathematics uses symbols to describe these amazing structures in the basic 

language of sets and the mappings between them. Because symbols are abstract 

and not limited to representing things in the world, mathematicians can use 

their imaginations to create a virtual reality following its own rule system 

unhindered by what the world is really like, a counterfactual world. In this 

world, mathematicians can explore the patterns they encounter. 

Yet mathematics is remarkably useful in this world. From building bridges to 

controlling strategy in football, mathematics lies at the heart of the modern I symbolic representation 

world. If mathematics really is so other-worldy, how come it has so much to is the most significant 
o2 technical advance in 

say about this one? history, what would you 

This is an important question that motivates much of what follows. prineslighed 

Purpose: mathematics for its own sake 

ToK uses the map metaphor; knowledge is taken to be like a map that is used 

for a particular purpose, such as solving a particular problem or answering a 

question. The map is a simplified picture of the world and its simplicity is its 

strength. It ensures that we get the job done with the least cognitive cost. If 

this is right, then it is natural to ask about the purpose of this particular map. 

What problems does it solve or what questions does it answer? There seem to 

be two categories: those questions that occur strictly within the virtual reality 

of mathematics itself (mathematics for its own sake) and those that occur in 
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the world outside (mathematics as a tool). These categories broadly correspond 

to two subdivisions of mathematics that are often two different departments 

within a university: pure mathematics and applied mathematics. 

Let’s start with pure mathematics. A typical example of a problem in this 

category is how to solve a particular type of equation. 

An example of a problem in pure mathematics might be how to solve the 

equation 

(1) ¥—22—x+2=0 

The task is to find a value for x that satisfies the equation. In books like this, 

there are many such equations and, in this context, they often have simple 

integer solutions. An initial strategy might be to try a value for x to see if it fits. 

If we try x = 0, then equation (1) gives us: 

0°—2:02—0+2=0,ie.2=0 

which is clearly not true. So, we can say that x = 0 is not a solution to the 

equation. 

But if we try x = 1, then equation (1) gives us: 

P-2-12-1+2=0 

In other words, 1 —2 — 1 + 2 = 0 is true. So, x = 1 is a solution to the 

equation. 

The trick now, as you know; is to factor out (x — 1) from equation (1) to give: 

2) x—Dx2—x-2)=0 

‘We can now try to find values of x that make the second bracket in (2) equal 

to 0. This can be done either by trying out hopeful values of x (2 seems to be a 

good bet, for example) or using the quadratic formula. We end up with x = 2 

orx=—1 

The equation therefore has three solutions: x = lorx = —lorx =2 

The history of these problems illustrates the great attraction of pure 

mathematics. Certainly, these problems were of interest from the 7th century 

in what is now the Middle East — the home of algebra. The great 11th century 

Persian mathematician and poet Omar Khayyam wrote a treatise about similar 

so-called cubic equations and realised they could have more than one solution. 

By the 16th century, cubic equations were of public interest. In Italy, contests 

were held to showcase the ability of mathematicians to solve cubic equations, 

often with a great deal of money at stake. One such contest took place in 

1635 between Antonio Fior and Niccolo Tartaglia. Fior was a student of 

Scipione del Ferro, who had found a method for solving equations of the type 

x* + ax = b, which is known as the ‘unknowns and cubes problem’ (where a 

and b are given numbers).



Del Ferro kept his method secret until just before his death when he passed 

the method on to his student. Fior began to boast that he knew how to solve 

cubics. Tartaglia also announced that he had been able to solve a number of 

cubic equations successfully. Fior immediately challenged Tartaglia to a contest. 

Each was to give the other a set of 30 problems and put up a sum of money. 

The person who had solved the most after 30 days would take all the money. 

Tartaglia had produced a method to solve a different type of cubic 

x* + ax? = b. Fior was confident that his ability to solve cubic equations would 

defeat Tartaglia and submitted 30 problems of the ‘unknowns and cubes’ type, 

but Tartaglia submitted a variety of different problems. Although Tartaglia 

could not initially solve the ‘unknowns and cubes’ type of equation, he worked 

hard and discovered a method to solve this type of problem. He then managed 

to solve all of Fior’s problems in less than two hours. In the meantime, Fior had 

made little progress with Tartaglia’s problems and it was obvious who was the 

winner. Tartaglia did not take Fior’s money though; the honour of winning was 

enough. 

Tartaglia represents the essence of the pure mathematician: someone who is What other knowledge 

intrigued by puzzles and has a deep desire to solve them. It is the problem itself is worth pursuing for its 
that is the motivation, not possible real-world applications. own sake? 

A modern example is the solution of Fermat’s conjecture by Andrew Wiles. 

The French mathematician Pierre de Fermat wrote the conjecture in 1627 

as a short observation in his copy of The Arithmetics of Diophantus. 

The conjecture is that the equation 

A"+ Br=Cn 

where A, B, C are positive integers and n > 2 has no solution. Despite a large 
number of attempts to prove it, the conjecture remained unproved for 358 years 

until Wiles published his successful proof in 1995. The proof is way beyond 

the scope of this book, but there have been a number of interesting books and 

TV programmes made about it, including Simon Singh Fermat’s Last Theorem 

(1997) and the BBC Horizon programme Fermat’s Last Theorem (1996). 

As mathematician Roger Penrose remarked, ‘QED: how to solve the greatest 

mathematical puzzle of your age. Lock self in room. Emerge 7 years later’. 

[RUlgele} M agF- il tical models 

Unlike pure mathematics, which is about the solution of exclusively 

mathematical puzzles, applied mathematics is about solving real-world 

problems. The mathematics it produces can be just as interesting from an 

insider’s viewpoint as the problems of pure mathematics (and often the two are 

inseparable), but a piece of applied mathematics is judged by whether it can be 

usefully applied in the world. 
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Here is an example of applied mathematics at work. This is a problem that 

could have been posed in this book or, indeed (and this is the point), in a 

physics course. 

A stone is dropped down a 30 m well. How long will it take the stone to reach the 

bottom of the well, neglecting the effect of air resistance? 

The typical way to solve this type of problem is to use what we call a 

mathematical model. The essence of mathematical modelling is to produce a 

description of the problem where the main physical features become variables 

in an equation which is then solved and translated back into the real world. 

To model the situation above: 

‘We know that the acceleration due to gravity is 9.8 m s 2, and we also know that 

the distance travelled s is given by the equation: 

s= —Zl-utz, where a = acceleration and ¢ = time 

So we substitute the known values into the equation and get: 

30 = L(9.8)2 
2 

Rearranging the equation gives us: 

—= = 2.47 seconds (3 s.f.) 
60 _ 

t5sot 98 . 

  

There are a number of points to make about the process here that are typical of 

mathematical models. 

(1) The model neglects factors that are known to operate in the real-world 

situation. There are two big assumptions made: that the stone will not 

experience air resistance, which will act as a significant drag force, and that 

the acceleration due to gravity is constant. 

(2) The model appeals to a law of nature. In this case, the law of acceleration 

due to gravity. 

(3) The model uses values for constants that are established empirically. 

In this case, the acceleration due to gravity at the Earth’ surface. 

‘We know that neither of the assumptions in (1) is true. The effect of air 

resistance can be highly significant. We know that if you have the misfortune to 

fall from an airplane above 100 m or so, the height does not matter - the speed 

of impact with the ground will be the same, around 150 km h!, because of the 

effect of air resistance (of course, it matters how you fall). The changing 

strength of gravitational force is a less important factor for normal wells.



But if we are dealing with a well that is 4000 km deep, then this factor 

would be significant. The point is that the model is actually fictional (it even 

breaks a major law of physics). It could never be true in the sense of exactly 

corresponding to reality. However, it is a sort of idealisation that we accept 

because the model provides an approximation to the behaviour of the stone 

(although not such a good one for deeper wells) and more importantly it gives 

us understanding of the system. If we were to make the modelling assumptions 

more realistic, the mathematics in the model would become too complicated 

to solve easily. Points (2) and (3) show us that the actual content of the model 

depends on something outside mathematics — namely some well-established 

results in physics. The mathematics is only a tool, albeit an important one. 

A model is a mathematical map - a simplified picture of reality that is useful. 

Another beautiful example is the Lotka-Volterra model of prey-predator 

population dynamics in biology. This model was proposed by Alfred Lotka in 

1925 and independently by Vito Volterra in 1926. 

The model assumes a closed environment where there are only two species, 

prey and predator, and no other factors. The rate of growth of prey is assumed 

to be a constant proportion A of the population. The rate at which predators 

eat prey is B, which is assumed to be a constant proportion of the product of 

predators and prey. The death rate of predators, C, is assumed to be a constant 

proportion of the population, and there is a rate of generation of new predators, 

D, dependent on the product of prey and predators. 

These modelling assumptions give rise to a pair of coupled differential 

equations: 

(1)%:Ax*3xy 

2 dy7 Cy + D ()E*‘}’ . 

A modern computer package gives the following evolution of prey and 

predators over time: 
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Figure 1 Evolution of prey and predator populations over time 
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Figure 2 A phase space diagram. Number of prey (in units of 1000) 
on the x-axis, number of predators on the y-axis 

It is interesting to look at a phase space diagram that represents each point 

(x, y) as a combination of numbers of prey and predators. Here the evolution of 

the system over time appears as a closed loop around the stationary point 

(%, %), which is an ‘attractor’ of the dynamical system. (You could try to prove 

that this is a stationary point - it is not hard.) The position of an orbit around 

the attractor depends on the initial numbers of prey and predator. Notice that 

starting the model with too great a population of prey could end up with an 

extinction of predators (Figure 2) because the very high prey numbers leads to 

overpopulation of predators for whom there is not enough prey left to eat. 

The system itself is a nice example of circular causality. 

As with the previous example, the modelling assumptions ensure that the 

mathematics of the model remains tractable, but the cost is that the model 

is not realistic. It is assumed that the prey do not die from natural causes or 

that the predators do not come into existence except through the provision of 

food. There is no competition between either prey or predators. Nonetheless, 

the model provides some important and powerful insights about the nature 

of population dynamics. As the model becomes more sophisticated and more 

factors are taken into consideration, not only does the mathematics become 

rapidly more difficult, but we lose sight of clear trends in the model (such as 

orbits around stationary points in phase space). We gain accuracy but lose 

understanding. This is a characteristic of both models and maps. A map that 

is as detailed as the territory it depicts is no use to anyone. It is precisely the 

simplification (literally what makes it false) that makes it useful. Virginia Woolf 

said about art, ‘Art is not a copy of the world; one of the damn things is enough, 

and the same could be said about models. 

The distinction between pure and applied mathematics becomes blurred in 

the hands of someone like the great Carl Friedrich Gauss (1777-1855). He was 

perhaps happiest in the realm of number theory which he called the ‘queen



of mathematics, and the idea that queens stay in their rarified towers and do 

not dirty their hands in the ways of the world was perhaps not so far from his 

thinking. He found great satisfaction in working with patterns and sequences 

of numbers. It is the same Gauss who, as a young man, enabled astronomers to 

rediscover the minor planet Ceres after they had lost it in the glare of the sun, 

by calculating its orbit from the scant data that had been collected on its initial 

discovery in 1801 and then predicting where in the sky it would be found more 

than a year later. This feat immediately brought Gauss to the attention of the 

scientific community. His skills as a number theorist presented him with the 

opportunity of solving a very real scientific problem. 

‘Who would have guessed that recent work in prime number theory would 

give rise to a system of encoding data that is used by banks all over the world? 

The system is called ‘dual key cryptography’. The key to the code is a very large 

number that is the product of two primes. The bank holds one of the primes 

and the client’s computer the other. The key can be made public because in 

order for it to work it has to be split up into its component prime factors. This 

task is virtually impossible for large numbers. For example, present computer 

programs would take longer than the 13.8 billion years since the big bang to 

find the two prime factors of the number: 

25195 908 475 657 893 494 027 183 240 048 398 571 429 282 126 204 032 

027 777 137 836 043 662 020 707 595 556 264 018 525 880 784 406 918 290 

641 249 515 082 189 298 559 149 176 184 502 808 489 120 072 844 992 687 

392 807 287 776 735 971 418 347 270 261 896 375 014 971 824 691 165 077 

613 379 859 095 700 097 330 459 748 808 428 401 797 429 100 642 458 691 

817 195 118 746 121 515 172 654 632 282 216 869 987 549 182 422 433 637 

259 085 141 865 462 043 576 798 423 387 184 774 447 920 739 934 236 584 

823 824 281 198 163 815 010 674 810 451 660 377 306 056 201 619 676 256 

133 844 143 603 833 904 414 952 634 432 190 114 657 544 454 178 424 020 

924 616 515 723 350 778 707 749 817 125 772 467 962 926 386 356 373 289 

912 154 831 438 167 899 885 040 445 364 023 527 381 951 378 636 564 391 

212010 397 122 822 120 720 357 

But this number is indeed of the form of the product of two large primes. 

If you know one of them, it takes an ordinary computer a fraction of a second 

to do the division and find the other. 

Just as pure research in the natural sciences produced results that could also 

be used for technological or engineering applications, so in mathematics, 
problems motivated purely from within the most abstract recesses of the e outhikelan 

i S Sl ¢ : example of a model 
subject (pure mathematics) give rise to very useful techniques for solving that does not represent 

problems with strong applications in the world outside of mathematics. the world well but is 
. N . . 7 

Mathematicians often practise their art as art for its own sake. They are s 
motivated by the internal beauty and elegance of their subject. Nevertheless, What othes eramples are there of pure rescarch 
it often happens that pure mathematics created for no other purpose than that end up having 

solving internal mathematical problems turns out to have some extraordinary ;Jmm;mt practical 
enefit? 

and very practical applications. 
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Constructivist view of mathematics 

Having thought a little about what the purpose of mathematics could be, let's 

move on to the question of whether it is best thought of as an invention or as 

something out there in the world. 

Broadly speaking, the constructivist views mathematics as a human invention. 

The vision we had of mathematics as a vast virtual reality limited only by 

the imagination and the rules that are installed there is a constructivist view. 

However, we are then bound to ask why mathematics has so many useful 

applications in the real world. Why is mathematics important when it comes 

to building bridges, doing science and medicine, economics and even playing 

basketball? Chess is also a game invented by humans, but it does not have very 

much use in the outside world. Constructivism cannot account for the success 

of mathematics in the outside world. 

On this view, mathematics is what might be called a social fact. A social fact 

is true by virtue of the role that it plays in our social lives. Social facts do have 

real causal power in the world. That a particular piece of paper is money is a 

social fact that does make things happen. That piece of paper acquires its status 

ultimately from a whole set of social agreements. In the end, social facts are 

produced by language acts - performances that change the social world. 

A language act would be a registry officer saying ‘I pronounce you married’ 

The use of language in a performative manner creates social facts. Social facts 

are no less real or definite than those about the natural world. The statement 

‘John is married’ is definitely either true or false. One is reminded of the story 

about the little boy who, when asked by his grandmother what day it will be 

tomorrow, replies, ‘Let’s wait and see’ Social facts do not require us to wait and 

see. They rely on social agreements, not on empirical evidence. 

The mathematician Reuben Hersh argues for a type of constructivism that 

he calls Humanism. For Hersh, numbers and other mathematical objects are 

social facts. Hersh defends this view on the Edge website: 

‘[Mathematics] ... is neither physical nor mental, it’s social. It’s part of culture, 

it’s part of history, it’s like law, like religion, like money, like all those very real 

things, which are real only as part of collective human consciousness. Being part 

of society and culture, it’s both internal and external: internal to society and 

culture as a whole, external to the individual, who has to learn it from books and 

in school. That's what math is. 

Hersh called his theory of mathematics humanism because it’s saying that 

mathematics is something human. ‘There’s no math without people. Many people 

think that ellipses and numbers and so on are there whether or not any people 

know about them; I think that’s a confusion. 

Hersh points out that we do use numbers to describe physical reality and that 

this seems to contradict the idea that numbers are a social construction.



It is important to note here that we use numbers in two distinct ways: as nouns 

and as adjectives. When we say nine apples, nine is an adjective. 

If it's an objective fact that there are nine apples on the table, thats just as objective 

as the fact that the apples are red, or that they’re ripe or anything else about them; 

that’s a fact. The problem occurs when we make a subconscious switch to ‘nine’ 

as an abstract noun in the sort of problems we deal with in Mathematics class. 

Hersh thinks that this is not really the same nine. They are connected, but the 

number nine is an abstract object as part of a number system. It is a result of our 

mathematics game - our deduction from axioms. It is a human creation. 

Hersh sees a political and pedagogical dimension to his thinking about 

mathematics. He thinks that a humanistic vision of mathematics chimes in with 

more progressive politics. How can politics enter mathematics? As soon as we 

think of mathematics as a social construction then the exact arrangements by 

which this comes about - the institutions that build and maintain it - become 

important. These arrangements are political. Particularly interesting for us here 

is how a different view of mathematics can bring about changes in teaching and 

learning. 

‘Humanism sees mathematics as part of human culture and human history. 

It hard to come to rigorous conclusions about this kind of thing, but I feel it’s 

almost obvious that Platonism and Formalism are anti-educational, and interfere 

with understanding, and Humanism at least doesn’t hurt and could be beneficial. 

Formalism is connected with rote, the traditional method, which is still common 

in many parts of the world. Here’s an algorithm; practise it for a while; now 

here’s another one. That’s certainly what makes a lot of people hate mathematics 

(...) There are various kinds of Platonists. Some are good teachers, some are 

bad. But the Platonist idea, that, as my friend Phil Davis puts it, Pi is in the sky, 

helps to make mathematics intimidating and remote. It can be an excuse for a 

pupil’s failure to learn, or for a teacher’s saying “some people just don’t get it”. 

The humanistic philosophy brings mathematics down to earth, makes it accessible 

psychologically, and increases the likelihood that someone can learn it, because it’s 

Jjust one of the things that people do. 

There is a possibility that the arguments explored in this section might cast 

light on an aspect of mathematics learning that has seemed puzzling - why it 

is that mathematical ability is seen to be closely correlated with a certain type 

of intelligence. There is a widespread view that mathematics polarises society 

into two distinct groups: those who can do it and those who cannot. Those 

who cannot do it often feel the stigma of failure and that there is an exclusive 

club whose membership they have been denied. Those who can do it often 

find themselves labelled as ‘nerds’ or as people who are, in some sense, socially 

deficient. Is Hersh correct in attributing this to a formalistic or Platonic view? 

Is he right to suggest that if mathematics is just a meaningless set of formal 

exercises, then it will not be valued by society? If we deny that mathematics 
What are the strengths 

is out there to be discovered, it takes the stigma away from the particular ST £ 

individual who does not make the discovery. It is interesting to speculate on of mathematical 

how consequences in the classroom flow from a humanist view of mathematics. L A 
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Platonic view of mathematics 

One way to explain why mathematics applies so well to things like bridges 

and planets is simply to take mathematics as being out there in the world, 

independent of human beings. As with other things in the natural world, 

it is our task to discover it (literally to ‘lift the cover’). This is called the 

Platonic view because the philosopher Plato (427-347 Bc) took the view that 

mathematical objects belonged to the real world, underlying the world of 

appearances in which we lived. Mathematical objects such as perfect circles 

and numbers existed in this real world; circles on Earth were mere inferior 

shadows. Many mathematicians have at least some sympathy with this view. 

They talk about mathematical objects as though they had an existence 

independent of us and that we are accountable to mathematical truths in the 

same way as we are accountable to physical facts about the universe. They feel 

that there really is a mathematical world out there and that they are trying to 

discover truths about it, much like natural science discovers truth about the 

physical world. 

This view is itself not entirely without problems. In ToK we might want to ask: 

‘If mathematics is out there in the world, where is it?” We do not see circles, 

triangles, V2, i, e, and other mathematical objects obviously floating around 

in the world. We have to do a great deal of work to find them through inference 

and abstraction. 

‘While this might be true, there is some evidence that mathematics is hidden 

not too far below the surface of our reality. Take prime numbers as an example. 

The Platonist might want to try to find them somewhere in nature. One place 

where she might start is in Tennessee. In the summer of 2016, the forests 

were alive with a cicada that exploits a property of prime numbers for its own 

survival. These cicadas have a curious life cycle. They stay in the ground for 13 

years. Then they emerge and enjoy a relatively brief period courting and mating 

before laying eggs in the ground and dying. There is another species of cicada 

that has the same cycle and no fewer than 12 types that have a cycle of 17 years. 

There are, to add to the puzzle, none that have cycles of 12, 14, 15, 16 or 18 

years. The clue is that 13 and 17 are prime numbers. There is a predator wasp 

that has evolved to have a similar life cycle. But if a predator had a life cycle of 

6 years, the prey and the predator would only meet every 6 X 17 = 112 years. 

Whereas, if the cicada had a life cycle of 12 years, the prey and predator would 

meet every cicada cycle. Nature has discovered prime numbers through the 

cicada life cycles by evolutionary trial and error. 

The relationship of nature to geometry was explored by the Scottish biologist 

D’Arcy Wentworth Thompson in his magnificent book of 1917, On Growth 

and Form. He explored the formation of shells and the wings of dragonflies, 

and examined the skeletons of dinosaurs through the eyes of a civil engineer 

constructing bridges and wondered about the formation of bee cells and the 

arrangement of sunflower seeds.



  

  

            N 
Many spirals in nature are formed, like the one in Figure 3, from the sequence: 

  

Figure3 Spirals in nature 

1,1,2,3,5,8,13,21,34, ... Do you think that the 
s . . . L thematics teaching 

This is called the Fibonacci sequence after the Italian mathematician Leonardo — hflm . you have experienced 
Pisano Bigolio (1170-1250), known as Fibonacci. The Fibonacci sequence is reflects a Platonist or 

related to the golden number ¢. The interested reader is referred to the many constructivist view of 
. mathematics? 

excellent sources on the internet. 

The methods and tools of mathematics 

The language concepts of mathematics 

Knowledge in mathematics is like a map representing some aspect of the world. 

Like other areas of knowledge, it possesses a specialised vocabulary naming 

important concepts to build this map. Unlike some areas, this vocabulary 

is very precisely defined. This makes sense. If the world of mathematics is 

populated by some rather esoteric objects that are literally like nothing on 

Earth, then it is very important that these objects are precisely specified. 

The other chapters in this book are all about establishing and using this 

very special vocabulary and becoming fluent in the methods that connect 

mathematical concepts into meaningful mathematical sentences. We will not 

spend too much time on these matters here, but there are a few aspects to 

highlight. 

Since mathematical objects are abstract and we cannot point to them, we have 

to represent them with symbols. But the symbol and the idea are different 

things — there is a danger that we confuse them. Take representations of 

%, %, %, 0.3333... all represent the same number 

despite appearing to be quite different. (Perhaps the infinite number of ways of 

fractions. The symbols 
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representing fractions is one of the reasons why some students have so much 

difficulty with them.) Some symbols such as %, sin~!(1.2) or log(~2) have no 

meaning at all. More worrying is that an expression such as ‘the smallest real 

number larger than 1’ doesn't actually mean anything either. This is because 

there is no smallest real number larger than 1. (Think carefully about this.) 

In a similar vein, the fact that there are different conventions for writing 

mathematics does not mean that the mathematics is different. Some 

conventions represent the number % by the decimal 0.3, others by 0,3. 

Either way, the mathematics is the same and these do not really count as 

different mathematical cultures. Carl Friedrich Gauss, one of the greatest 

mathematicians of all time, said ‘non notations, sed notions’ - not notations 

but notions. 

Algeb 

A staple method used in mathematics is the substitution of letters for numbers. 

In fact, mathematicians use letters for many sorts of mathematical objects, not 

just numbers. The reason is that they want to make generalised statements. 

By using a letter, they do not have to commit to making a statement about a 

specific number, but instead can make one about all numbers of a particular 

kind at once. This is a very powerful tool. 

This is illustrated by a worked example. Imagine we want to prove that if we 

add an odd number to another odd number we get an even number. We hope 

to show that this is true for any choice of odd numbers. We could proceed by 

trying out different pairs of odd numbers and checking that the result is even: 

1+3=4even 

5+ 7=12even 

13 + 9 =22 even 

131 + 257 = 388 even 

You can see that this method will not serve as a proof because we would have 

to check every possible pair of odd numbers and, since this set is infinite, we 

would never finish. What we need is to define a general odd number without 

committing to a particular one. For example, we can define ‘odd’ by being ‘one 

more than an even number’, 

If k is an even number, then we can write k = 2j for some whole number j. 

If m is an odd number, then we can write m = 2j + 1 for some whole number j. 

All we have to do now is to add two of these general odd numbers together. 

So, we want to take two odd numbers, let’s say m = 2j + land n = 2i + 1 

where j and i are whole numbers. There is a subtlety here because we use 

different letters j and i for the whole numbers in the expressions above because 

we want to allow m and 7 the possibility of being different odd numbers.



If we used the same letter, say j, in the expressions for m and # then we would 

be making our odd numbers equal and we would only have proved that if we 

add together two equal odd numbers, then the result is even. 

Now we have to use some symbolic rules. 

mAn=2j+1)+@Qi+1) 

We can remove the brackets and rearrange to give: 

mA =24 2i+2 

Finally, we can use the fact that 2 is a common factor of all terms in the 

expression to place it outside a bracket. 

mt+n=20j+i+1) 

But j, i and 1 are all whole numbers so j + i + 1 is also a whole number. 

Technically, this comes from the fact that the whole numbers are closed under 

the operation of addition because they form an important structure called a 

group. Let’s call this whole number p. 

So, we have that m + n = 2p. But this is precisely the definition of an even 

number that we started with. An even number is 2 times a whole number. 

This proves that any two odd numbers added together gives an even number. 

The big chain of reasoning above is called a proof. It is immensely powerful 

because it covers an infinite number of situations. There is an infinite number 

of possible pairs of odd numbers to which the result applies. This is the power 

and beauty of using letters for numbers — a practice that was developed in 

Baghdad and Damascus about 1000 years ago. In one sense, mathematicians 

have a god-like ability when it comes to dealing with infinite sets. 

Proof is the central concept in mathematics because it guarantees mathematical 

truth. When something is proved, we can say that it is true. 

This type of truth is independent of place and time. In contrast to the science 

of the day, the mathematical truths of Pythagoras are just as true today as they 

were then - indeed his famous theorem is still taught today as can be seen in 

this book. But the science of the time has long been rejected. There were four 

chemical elements in the 4th century Bc, and Aristotle thought that the heart 

was the organ for thinking. Actually, we do not have to go far back in time to 

find textbooks in the natural sciences that contain statements that we would 

dispute today. The truths of the natural sciences are always subject to revision, 

but mathematical truths are eternal. 

But there is something even more striking about mathematical truths — 

that is, mathematical statements that have been proved. A statement such as 

‘odd + odd = even’ has such power that we can say that it is certain. This is not 

just a matter of confidence - we are not talking about psychological certainty here. 
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It is certain because it cannot be otherwise. The negation of a mathematical 

truth (like ‘odd + odd = odd’) is to utter a self-contradiction or absurdity. 

Let’s reflect on the power of this statement. This means that there is no possible 

world in which ‘odd + odd = odd’ (given the standard meanings of these 

terms). A story that makes this statement is describing a world that is self- 

contradictory — that is, an absurd and unintelligible world. Such a story is 

just not credible. But this means that mathematics is really radically different 

from other areas of knowledge, including the natural sciences. It is not a 

contradiction to say that the moon is composed of green cheese. There could be 

universes where this is true, but it just happens not to be in ours. Mathematics 

deals in what we call necessary truths, while the sciences deal mainly in 

contingent truth. 

This is something that students of ToK should think about carefully. What is 

it about mathematical truth that makes it immune to revision and provides 

the basis for certainty and makes the negation of a mathematical truth a 

contradiction? 

Recall that the constructivist sees mathematics as a big abstract game played by 

human beings according to invented rules. The hero of The Glass Bead Game, 

a novel by the German writer Hermann Hesse, must learn music, mathematics, 

and cultural history to play the game. On this view, mathematics is just like the 

glass bead game. There are parallels we can draw between a game like chess 

and mathematical proof. First, chess is played on a special board with pieces 

that can move in a particular way. The pieces must be set up on the board in a 

particular fashion before the game can begin. The same is true of mathematical 

proof. It starts with a collection of statements in mathematical language called 

axioms. They themselves cannot be proved. They are simply taken as self- 

evidently true and form the starting point for mathematical reasoning. 

Once the game is set up, we can start playing. A move in chess means 

transforming the position of the pieces on the board by applying one of the 

game’s rules that govern movement. Typically in chess, a move involves the 

movement of only one piece. (Can you think of an exception?) If the state of the 

pieces before the move was legitimate and the move was made according to the 

rules of the game, then the state of the pieces after the move is also legitimate. 

The same is true of a mathematical proof. One applies the rules (these are rules 

of algebra typically) to a line in the proof to get the next line. The whole proof is 

a chain of such moves. 

Finally, the chess game ends. Either one of the players has achieved checkmate, 

or a stalemate (a draw) has been agreed. Similarly, a mathematical proof has an 

end. This is a point where the proof arrives at the required result at the end of 

the chain of reasoning. This result is called a theorem. 

Once a proof of a mathematical statement is produced, we have a logical duty to 

believe the result, however unlikely. This is illustrated with a famous example.



Many people do not believe that 1 = 0.99999999... 

(The three dots indicate that the 9s continue indefinitely). 

The proof is straightforward. 

Let x =0.9999999... 

Then 10x = 9.9999999... 

Subtract both equations 10x — x = 9.99999999... — 0.9999999... 

This implies 9x=9 

Giving x = 1 as required. 

0.999999... really does look very different to 1 but if the proof works then we 

are forced to believe that they are the same. 

REIS 

A set is a collection of elements that can themselves be sets. They can be 

combined in various ways to produce new sets. The concepts of a set and 

membership of a set are primitive. This means that they cannot be explained 

in terms of more simple ideas. These seem to be rather modest beginnings on 

which to build the complexities of modern mathematics. Nevertheless, in the 

20th century there were a number of projects that were designed to do just that: 

reduce the whole of mathematics to set theory. The most important work here 

was by Quine, von Neumann and Zermelo, and Bertrand Russell and Alfred 

North Whitehead in the three volumes of their Principia Mathematica of 1910~ 

1913. Starting out with the notion of the empty set and the idea that no set can 

be a member of itself, we can construct the whole number system. 

Mappings between sets 

Once we have established sets in our mathematical universe, we want to do 

something useful with them. One of the most important ideas in the whole 

of mathematics is that of a mapping. A mapping is a rule that associates 

every member of a set with a member of a second set. This is what we were 

doing when we started this chapter by counting cows. We set up a one-to-one 

correspondence between a set of numbers and a set of cows. 

Infinite sets 

Consider the function f(x) = 2x defined over the natural numbers. 

Clearly it sets up a one-to-one correspondence between the set of natural 

numbers and the set of even numbers (check this yourself). So, this means 

that there are as many even numbers as there are natural numbers. 

Are you happy with every 
stage of this proof? 
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This is rather strange because we would think intuitively that there were more 

natural numbers than even numbers - they are after all the result of taking 

away an infinite number of odd numbers from the original set. But we are 

saying that the set that is left over has as many members as the original set. This 

strangeness is characteristic of infinite sets (indeed it can be used to define what 

we mean by infinite). Infinite sets can be put in a one-to-one correspondence 

with a proper subset of themselves. 

But the story doesn'’t stop here. Using sets and mappings we can show that there 

are many different types of infinity. The set of natural numbers contains the 

smallest type of infinity, usually denoted by N, which we call ‘aleph nought. 

In the 19th century, the German mathematician Georg Cantor showed by an 

ingenious argument that the number of numbers between 0 and 1 is a bigger 

type of infinity than aleph nought. 

It turns out that there is an infinity of different types of infinity — a whole 

hierarchy of infinities, in fact — and this probably does not surprise you 

anymore, there are more infinities than finite cardinal numbers. 

The methods and concepts of mathematics, therefore, are quite unlike 

anything to be found in the sciences, although they do seem to bear a strong 

resemblance to the arts in terms of the setting of the rules of the game and the 

use of the imagination. This is something we will explore in the next section. 

Mathematics and the knower 

English poet John Keats said, “Beauty is truth, truth beauty - that is all / Ye know 

on earth, and all ye need to know.” 

In this section we will see how mathematics impinges on our personal thinking 

about the world. One of the more surprising aspects of mathematics is the two- 

way link to the arts and beauty. 

eauty by the numbers 

There is a long-held view that we find certain things beautiful because of their 

special proportions or some other intrinsic mathematical feature. This is the 

thinking that has inspired architects since the times of ancient Egypt and 

generations of painters, sculptors, musicians, and writers. Mathematics seems 

to endow beauty with a certain eternal objectivity. Things are beautiful because 

of the mathematical relationships between their parts. Moreover, this is a very 

public beauty because it can be dissected and discussed.



Let’s take the example of the builders of the Parthenon. They were deeply 

interested in symmetry and proportion. In particular, they were interested in 

how to divide a line so that the proportion of the shorter part to the longer part 

is the same as that of the longer part to the whole. You can check that you get 

the quadratic equation x2 + x — 1 = 0. One solution to this equation is the 
—lska/d 

1d. tio x = ———— = 0.61803398875... = @. 
golcentatio® 2 # See if you can spot the 
This proportion features significantly in the design of the Parthenon and many connection between 

other buildings of the period. Since it is also related to the Fibonacci sequence, ;;hc glden atiopndiie , ! ! ! ! ibonacci sequence. 
you will find ¢ turning up anywhere where there are spirals. It is used quite Hint: write down a 

self-consciously in painting (Piet Mondrian, for example) and in music difference equation 
for generating the 

(particularly the music of Debussy). There are those who go as far as saying that e 

it is present in the proportions of the perfect human figure and that we have a 

predisposition towards this ratio. 

  

Figure 4 Composition with Red, Blue and Yellow (1926) Piet Mondrian. 

‘The proportions of some of the rectangles in this painting is ¢ 

eauty in numbers 

Keats also put it the other way around: the beautiful is the true. Could we 

allow ourselves to be guided to truth in mathematics because of the beauty of 

the equations? This is a position taken by surprisingly many mathematicians. 

They look for beauty and elegance as an indicator of truth. Many mathematical 

physicists were guided in the 20th century by considerations of beauty and 

elegance. 

Einstein suggested that the most incomprehensible thing about the universe 

was that it was comprehensible. From a ToK point of view, the most 

incomprehensible thing about the universe is that it is comprehensible in 

the language of mathematics. Galileo wrote, Philosophy is written in this 

grand book, the universe... It is written in the language of mathematics, and its 

characters are triangles, circles and other geometric figures...” 

Perhaps what is more puzzling is not just that we can describe the universe 

in mathematical terms, but that the mathematics we need to do this is mostly 

simple, elegant, and even beautiful. 
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To illustrate this, let’s look at some of the famous equations of physics. Most 

people will be familiar with Einstein’s field equations and Maxwell’s equations. 

EINSTEIN'S FIELD EQUATION 

L e e 
P G LR MR 

  

Figure 5 Einsteins field equation 

1. V-D=p, 

2. V.-B=0 

3, VxE=-98 
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Figure 6 Maxwells equations 

It is perplexing that the whole crazy complex universe can be described by such 

simple, elegant, and even beautiful equations. It seems that our mathematics fits 

the universe rather well. It is difficult to believe that mathematics is just a mind 

game that we humans have invented. 

But the argument from simplicity and beauty goes further. Symmetry in the 

underlying algebra led mathematical physicists to propose the existence of new 

fundamental particles, which were subsequently discovered. In some cases, 

beauty and elegance of the mathematical description have even been used as 

evidence of truth. The physicist Paul Dirac said, Tt seems that if one is working 

from the point of view of getting beauty in one’ equations, and if one has really a 

sound insight, one is on a sure line of progress’. 

Dirac’s own equation for the electron must rate as one of the most profoundly 

beautiful of all. Its beauty lies in the extraordinary neatness of the underlying 

mathematics - it all seems to fit so perfectly together: 

Figure 7 Dirac’s equation of the electron 

The physicist and mathematician Palle Jorgensen wrote: 

‘[Dirac] ... liked to use his equation for the electron as an example stressing 

that he was led to it by paying attention to the beauty of the math, more 

than to the physics experiments. 

It was because of the structure of the mathematics in particular that there were 

two symmetrical parts to the equation — one representing a negatively charged 

particle (the electron) and the other a similar particle but with a positive charge 

— that scientists were led to the discovery of the positron. It seems fair to say 

that the mathematics did really come first here.



We will leave the last word on this subject to Dirac himself, writing in Scientific 

American in 1963: 

I think there is a moral to this story, namely that it is more important to 

have beauty in one’s equations than to have them fit experiment. 

By any standards this is an extraordinary statement for a mathematical 

physicist to make. 

  

Mathematics and personal i io 

  

Sometimes our intuition can let us down badly when it comes to making 

judgments of probability. Here is an example to illustrate how we might have to 

correct our intuition by careful mathematical reasoning. 

Consider the following case. There is a rare genetic disease among the 

population. Very few people have the disease. As a precaution, a test has been 

developed to detect whether particular individuals have the disease. Although 

the test is quite good, it is not perfect — it is only 99% accurate. Person X 

takes the test and it shows positive. The question for your mathematical 

intuition is: ‘What is the probability that X actually has the disease?’ 

(You should recognise this as being a problem of conditional probability.) 

Think about this for a moment before we continue. 

Many of the students (and teachers) we have worked with in the past give the 

same answer: the probability that X actually has the disease given a positive test 

result is about 99%. Did you say the same? If you did, then your mathematical 

intuition let you down - very badly. 

Let’s put some numbers into the problem to illustrate this. For the sake of 

simplicity, assume that the country in which the test takes place has a 

population of 10 million. We are told that the disease is very rare. Assume that 

only 100 people in the whole country have the disease. We are told that the test 

is 99% accurate so, of the 100 cases of the disease the test would show positive 

in 99 cases and negative in one. So far so good. 

Now consider the 9999 900 people who don't have the disease. In 99% 

of these cases the test does its job and records a negative result. In 1% of the 

cases however it gets it wrong and produces a positive result. 1% of 9999 900 

is 99 999. So, of the whole population tested there would be a total of 

99999 + 99 = 100 098 positive results. But of these only 99 have the disease. 

Therefore, the probability of having the disease given a positive result is 

—103?)98 = 0.0989% or about 1 in 1000. This is quite a big difference from the 

990 in 1000 that we expected intuitively. That is out by a whopping 99 000%. 

What went wrong with 
intuition here? 
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Mathematics and personal qualities 

There are undoubtedly special qualities well-suited to doing mathematics. 

There are a host of great mathematicians from Archimedes, Euclid, Hypatia, 

through to Andrew Wiles, Grigori Perelman, and Maryam Mirzakhani, 

who contributed significantly to the area. Maryam was the first woman to 

receive the Fields medal (the equivalent of the Nobel prize in mathematics). 

Although mathematics is collaborative in the sense that mathematicians 

build on the work of others and take on the challenges that the area itself has 

recognised as being important, it is nevertheless largely a solitary pursuit. 

It requires great depth of thought, imaginative leaps, careful and sometimes 

laborious computations, innovative ways of solving very hard problems, and, 

most of all, great persistence. Mathematicians need to develop their intuition 

and their nose for a profitable strategy. They are guided by emotion and by 

hunches — they are a far cry from the stereotype of the coldly logical thinker 

who is closer to computer than human. 

Conclusion 

‘We have seen that mathematics is really one of the crowning achievements of 

human civilisation. Its ancient art has been responsible for some of the most 

extraordinary intellectual journeys taken by humankind, and its methods have 

allowed the building of great cities, and the production of great art, and it has 

been the language of great science. 

From a ToK perspective, mathematics, with its absolute and unchanging 

notion of necessary truth, makes a good contrast to the natural sciences with 

their reliance on observation of the external world, experimental method, and 

provisional nature of its results. 

Two countering arguments should be set against this view of mathematics. 

The idea that the axioms of mathematics (the rules of the game) are arbitrary 

both deprives mathematics of its status as something independent of human 

beings, and makes it vulnerable to the charge that its results cannot ever be 

entirely relevant to the world outside mathematics. 

Platonists would certainly argue that mathematics is out there in the universe, 

with or without human beings. They would argue that it is built into the 

structure of the cosmos - a fact that explains why the laws of the natural 

sciences lend themselves so readily to mathematical expression.



Both views produce challenging questions in ToK. The constructivist is a victim 

of the success of mathematics in fields such as the natural sciences. She has to 

account for why mathematics is so supremely good at describing the outside 

world to which, according to this view, it should ultimately be blind. The 

Platonist, on the other hand, finds it hard to identify mathematical structures 

embedded in the world or has a hard time explaining why they are there. 

‘We have seen how mathematics is closely integrated into artistic thinking; 

perhaps because both are abstract areas of knowledge indirectly linked to 

the world and not held to account through experiment and observation, but 

instead, open to thought experiment and leaps of imagination. Mathematics 

can challenge our intuitions and can push our cognitive resources as individual 

knowers. Infinity is not something that the human mind can fathom in its 

entirety. Instead, mathematics gives us the tools to deal with it in precisely this 

unfathomed state. We can be challenged by results that seem counter to our 

intuition, but ultimately, the nature of mathematical proof is that it forces us 

to accept them nonetheless. In turn, individuals can, through their insight and 

personal perspectives, make ground-breaking contributions that change the 

direction of mathematics forever. The history of mathematics is a history of 

great thinkers building on the work of previous generations to do ever more 

powerful things using ever more sophisticated tools. 

The Greek thinkers of the 4th century Bc thought that mathematics lay at the 

core of human knowledge. They thought that mathematics was one of the few 

areas in which humans could apprehend the eternal forms only accessible 

to pure unembodied intellect. They thought that in mathematics they could 

glimpse the very framework on which the world and its myriad processes 

rested. Maybe they were right. 
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Answers 
Chapter 1 

Exercise 1.1 . 

L@ x=h-2 () a="5 

©@bn=2-y @r=>2 
At w 2 @ k=% ®r=—% 

< BV ek 
® =y O K= Fm, + ) 

2.(a)y:—§x—5 b) y=-4 

(c)y:§x+6 (d)ng 

(& y=—4x+11 ® y= 

3. (@) () 17 (ii) (0,%) 

(b) (i) V40 (i) (2,3) 

© o2 @ (-1.%) 
o R . 11 (@ () V533 (ii) (1,7) 

4@ k=1Tor9 (b) k=—11or -3 
5. (a) (V5)2 + (45)2 = (/50)* 

(b) sides are: V29, /29, /58 
(c) sides are: V45, /10, V45, V10 

Exercise 1.2 
1. () G (b) L (o H ) K (e) ] 

f) C (g A (h) 1 i) F 

_c B3 
2. A= 3 A== 

4. A =dx>+ 60x 5. h=x/2 

6. (a) 9.4 ) v:% 
7. (a) F=kx (b) 625 () 37.5N 

8. (a) (~62,— 15,07,3.2,3.8 (b) r>0 
(© R @ R (e) t<3 
0 R (@ x#+3 
(h) ~1=x=landx#0 

9. no, x = cisa vertical line 

10. (a) () V17 (i) 7 (iii) 0 
(b) x<4 
(c) domain: x = 4, range: h(x) =0 

11. (a) (i) domain {x:x € R, x5}, range {y:y € R,y =0} 

(i) y-intercept (0, —é) vertical asymptote x = 5, 
horizontal asymptote y = 0 
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(b) (i) domain {x:x < —3,x > 3}, range {y:y > 0} 
(i) vertical asymptotes x = ~3and x = 3 

  

(©) (i) domain {x:x € R,x# ~2}, range {y:y € R,y #2} 
(i) y-intercept (0, ~ 1), vertical asymptote x = ~2, 

horizontal asymptote y = 2 

  

@ @) domaiu{;a—%é;cs“ } 

range {y:0<y=/5} 

(i) y-intercept (0, /5), x-intercepts ( —fi, 0) 

V10 wnd ({15) 

 



(e) (i) domain {x:x € R, x#0},range {y:y R, y=—4} 
(ii) vertical asymptote x = 0, horizontal asymptote 

  

Exercise 1.3 

L (@) (fog)®=1 (b) @;/)(s):% 

  

  

  

L © (fgw=r25 @ EHO=5"7 
2.(a) 1 (b) -7 © 7 

(d) —47 (e) —1 ® -79 
(g) 1—2x* (h) —4x?+12x—7 (i) 4x—9 
() —x*+4ax?—2 

3. (@) (fog)w = 12x + 7, domain: x € R; 
(g°f)(0) = 12x — 1, domain: x € R 

®) (feg)n = 
(g=f) 

(©) (fog)x) = Vx + 2, domain: x € R; 
(g°f)@0) = x + 2, domain: x = —1 

@) (feg)x) = B 
x+3 

(gef)o = — L domain: x €R, x = —4 

  

x? + 1, domain: x € R; 

—2x2 - 2,domain: x € R    

  

  domain: x € R, x # —3; 

x+2   

(e) (feg)x) = x, domain: x € R; 
(gof)0 = x, domain: x € R 

(£) (feg)x) =1+ x2 domain: x € R; 

(gef)) = T—xo + &7 — 

® (feg)n = 

2 
(g2 = =2 domain: = 0,524 

(h) (fo Q)0 = x, domain: x = —3; 
(¢°f)@) = x, domain: x # —3 

    domain: x € R 
   
   

- domain: x » 0 > =k 

-   

@) (fog)0 = % domain: x # */7; i 

_ -1 
GNw =3 

() (goh)x) =9 — x2, domain: =3 = x=3, 
range: y > 0 

(b) (heg)x) = —x+ 11, domain: x = 1, range: y < 10 

  

  domain: x# 1 

[ 
@ . (@) (feg)o = To— o domain: x = +/10, range: y # 0 = 

) (g=f) =10 - % domain: x # 0, range: y < 10 

* (a) h(x) =x + 3, g(x) 

(b) h(x) =x — 5,g(x 

(€) h(x) =%, gx) =7~ x 
    

(d) h(x) =x + 3,gx) = % 

(e) htx)=x+ 1,gx) = 10 
() heo 
(8) hx) 

M) heo = X 5,g0 = 1 
7.(a) (i) domainoffix=0 

(i) domainofg:x € R 
(iii) (fog)(x) = Vx? + 1, domain: x € R 

(b) (i) domain of f 
(i) domainofg:x € R 

x— 9,800 =% 
X2 =9, g(x)     

  

=l D= (iii) (fog)x) = i domainix = =3 

(c) (i) domainoffix==*1 
(i) domainofg:x € R 

(i) (fo g)x) fi domain: x#0, =2 

(d) (i) domainoffixeR 
(i) domainofg:x € R 
(iii) (fog)(x) = x + 3,domainx € R 

Exercise 1.4 
L@2 ® 6 
2.(a) -1 (b) b 
3.4 
4.6 
5. (a) () 

(i) 

o 

  

8 

=10 

®) @ 
(i) w f 

10- 

s 
s 
4 

8 2 
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Answers 

() @) 
(i) y 

10 

8 

f 4 

2 

  

=7 

-6 

-8 

-10 

() @) 
(i) 

  
(e) (i) 

(i) 

) @) 
(i) 
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(g) () 

  
6 () f 'm:%n%xem 

) f'w=ax-7,x€R 
(©) i =x3x=0 

@ flw=Lt-2xecrxs0 
© fiw=vI-—xx=4 
) Flm=x+5x=5 
@®f'w=tx-Licr 

 



) flo=-1+Vx+1L,x=-1 

© fioo= 112 
G) flo=k—T,xeRr 

7x<-1l-lsx<lLx>1 
8 @ 3 ®) 5 

7 © 4 @3 
(e) g loh ':%x—l 

1.1 (8) (goh) ‘72x+2 

   

  

  

  sl R 

  

@ htegt=tes 
(h) (hog) ' =2x+2 

Exercise 1.5 
L (@ 

(b) 

  

(c) 2 

  

— ] 
-8 —6 —4 -2 

(@ y 
12 

10 

8 

6 

4, 

2 

-8-6-4-20 2 4 6 8%   

(e) 

() 

(8) 

(h) 

  

—_—7 
—12-10 -8 —6}—4 — 

    

.
o
 

we
 

  

  

  

  
553



Answers 

3. (a) 

(b) 

C] 

()   
  

2. (@ y=-x*+5 

© y=-lx+1l    
554 

  

 



(e) 

  
  

4. (a) horizontal translation 3 units right; vertical translation 

5 units up (or reverse order) 
(b) reflect over the x-axis; vertical translation 2 units up 

(or reverse order) 
(¢) horizontal translation 4 units left; vertical shrink by 

factor é (or reverse order) 

() horizontal shrink by factor %; horizontal translation 

1 unit right; vertical translation 6 units down 

Chapter 1 practice questions 
L@a=-3b=1 (b) range: y >0 
2.(a) 5 () -9 
3. (a) gl = —3x+4 (b)x:§ 
4. (a) (geh)w =2x—3 (b) See Worked Solutions 

5. (a) 

  

(b) maximum at (— 1L- %) minimum at (0, = %) 

6. @ k=1 ® p= 

  

) q=3 

7. (a) y 

  

-4 

(b) x=4,x=—4 
(¢) range:y=1 

8. (a) ¥y 

  

  

  

  1 b) heo ==~ 

S 700 i (© @) intercept: z,O),y—mtcrcspt. (0, 

  

  —4;   (ii) vertical asymptote: x 

horizontal asymptote: y 

  

(iii) 

  

  
9. (a) (i) VIT (i) 7 (iii) 0 

(b) x< -3 
© (gefl=x—2 

10. (a) 4 
() x=%2V2 

b) (gt oh)w=2x2+6 
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Answers 

    

  

  

11 @) [ :lx+l ®) (fog)w =12 Chapter 2 

(©) (fog) ' = + ) ) geg) =x Exercise 2.1 

2@@a=8  G)b=--3 LA, S SO (5 refloction over s-axis (i) horizontal translation 5 units right; vertical 
13. (@) translation 7 units up 

. ) (iii) minimum value of f: 7 
: ® () x=-3,(-3-1 

(ii) horizontal translation 3 units left; vertical 

translation 1 unit down 

& (iii) minimum value of f: —1 
© @ x=-1,(-1,12) 

— s T % (ii) horizontal translation 1 unit left; reflection 

mErTmoTeA=d 1234 587 2 in x-axis; vertical stretch by factor 2; vertical 
translation 12 units up 

(iii) maximum value of £12 
D gl (i @@ x=1(Ls) 

5 (i) horizontal translation % unit right; vertical stretch 
24 by factor 4; vertical translation 8 units up 

(iii) maximum value of £ § 

1 © @ x:’7,(’7,%) 
(ii) horizontal translation 7 units left; vertical stretch 

T T I I T T NTA T by factor 1 vertical translation 2 unit up 

(i) minimum value of fi% i 
2 (@) x=2,x= -4 ) x=5x=-2 

. ©@x=3x=0 @x=6x=-1 
(€ x=3 (f)xz%,x:—z; 

(b) A(-3,-2) 1 
14. (g x=3x=2 [h)x:Z,x:Z 

3.(a) x=-2%,7 
(©) no real solution 

(& x=2,x=—4 
4. (a) 2+/5 

(b) axis of symmetry: x = 2 
5. () two real solutions 

() two real solutions 

    
  

  

     

  

.x~z—x2¢7(x1~x+2)¢7(x2—x+%) - 

(b) x=5x=-1 
@ x=-4=/13 
© x= 252   

2 

(¢) minimum value of fis —5 
(b) no real solutions 
(d) no real solutions 

s
l
 

@) (-2,-3) 

6. p=*2/2 
7. k<4 

15. (fog) o =Vx— 1 8. k<-1k>1 
—_x 2 9.m<-3m>3 

16 (@) g0 = 35 ® 5 10. k> 12 

17. () —%5xs%x¢o b) fo=0 1 ‘ 
=LY =22 e S 2L = —(x-1) - 2= Trorailx 

IX*Z 12. (a) y=— 22+ 6x+ 8 
_1 f 7 19. (a) z<A<2 (b) f ) fl,)yziz,?fl 

20. (a) g =Vx T 1 (b) g0 = \x+l 13. ~1<k<15 
. - 14. m < —2/10 or m > 2/10 

21. (a) V3 <x<3} (b)f(x)>T 15 (@) () y=(t22-3 

22.% (i) minimum 

23. (a) A(1,25), B(4,0), C(7, —35), D(10, 0) ®)) y:==2be=1)i+530) (1,3) 
(b) A(—1, ~25), B(0,0), C(1, 35), D(2,0) (i) maximum 
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(© () y=3x+2? (i) (—2,0) 
(iii)) minimum 

A G) y=-G-32+12 
(i) (3,12) (i) maximum 

16. (a) x=4 (b) hx) = 

17. Answer shows that there is no real ¢ for 
2-1P-4X2X(2+3)>0 

18. Answer shows that 
1 

—b+ (b2~ 4a) 
2a 

Exercise 2.2 
L (a) 

  
x-intercept: none, y-intercept: (0, %) 

vertical asymptote: x = —2 
horizontal asymptote: y 

  

(b) 

x-intercept: none, y-intercept: (0, ~%) 

vertical asymptote: x = 2 
horizontal asymptote: y = 0 

[C] ¥ 

        

(d) 

  

x-intercept: (0, 0), y-intercept: (0, 0) 

vertical asymptote: x = 5 
horizontal asymptote: y = 1 

(e) 

      x-intercept: (2, 0), y-intercept: 

vertical asymptote: x = 3 

    horizontal asymptote: y 

() ” 

  

x-intercept: ( = g, 0 ) y-intercept: none 

vertical asymptote: x = 0 
horizontal asymptote: y   3   

2. (a) 

    
    
Xx-intercept: (% 0), y-intercept: (0, 1) 

vertical asymptote: x = 1 
horizontal asymptote: y = 4 

    

domain: x € R, x# —6 
range:y ER,y#3 
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(b) 

  
domain: x € R, x#3 

range:y €R,y # ~% 

Answers 

    

domain: x € R, x# —6 
range:y R,y #0 

@ 7 

  
domain: x € R, x#5 

range:y R,y # 'é 

3. (a) 

(b) vertical asymptote: x 
horizontal asymptote: y 

  _22+13 
(c) g0 = 243 

4. (a) y 

_ 
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(b) 

C] 

5.(a) C 

30 

0 

  

  

  

24 

(b) at t = 0 hours, concentration is 30 mg/l 
(c) 145 hours 

  

6.a:4,b:%,c 

Exercise 2.3 

  
  

1. () x=3 

() x=50rx=—2 

(e) x=—5 
(9 x=2o0rx=-2 

" 141 

W x="== 
® x:%urx: 4 

(m) no solution 
2.(a) —2<x<4 

1 
= > © x<-3.x>1 

  

(b) x= 
@zx=3 
() x=1lorx=-2 
(h) x=+/5 
() x=30rx=2 

) x=2orx=38 
1+ ) x =155 

(b) no solution 
@ x= %,;@5



  

3.k<— Chapter 3 
9 9 9 4@p=7 by p<7 ©p>7 Exercise 3.1 

5. k<-1,k>1 1. (a) -1,1,3,57 (b) —1,1,513,29 
3 2333 3 (d) 1,7, -5,19, =29 6.() mAE=2=mnt1=2m=mn—2m+120; 2781632 e 

since m = n = mn = n? it follows that &) 584,15, 1 i) %2982, 30 
2. (@) —1,1,3,5,7,97 

(b) 2,6,18, 54, 162,4.786 X 102 

0 50 
27 1251 

(d) 1,2,9, 64,625, 1.776 X 10%* 

(e) 3,11, 27 59 123 4.50 X 10'% 

mn —2n+1=n?—2n+ 1and since 
n2=2n+1=(n—12=0then 

   mn—2n+l>0ém+%>2 

®) G+ m(L+ %) >4 (m+ m(% + %)mn 

  

  

=4mn = (m + n)(n + m) = 4mn = m?* + 2mn £ 03 approx 1 

+n2=dmn=m>—2mn+n2=0=(n—m2=0 ® 713 55’ PP L 
which is true for all m = n > 0 and is equivalent to (g) 2.6,18,54, 162, 4.786 X 10 

i (h) ~1,1,3,5,7,97 
original inequality - thus (m + w (% + &) = 4is 1 

L 3@ uy= gy = true forall m = n > 0. 1 3 
4a? 1 7.x= —lorx=-2 ®) u,= 2w, =10 

8.x<-2,-1<x<1,x>3 ©) ty=tt,y+a—ku=a-5k 

4.(a) u,=n>+3 () u,=3n—1 
Chapter 2 practice questions © u, =211 @ =21 
lL.x=aorx=3b n+3 

2.¢=5 

3. () x=1 (b) px) = 4x> — 8x — 45 
4.a=-1,b=-2,c=3 

5. () m> -2 (b) ~2<m<0 
6. 1=x<3 

7. -1<k<15 

8. (a) vertical asymptote: x = —     
horizontal asymptote: y 2. (a) arithmetic, d = 2, a5 = 97 

   

  

(b) x-intercept: (—l, 0) (c) y-intercept: (0,2) (b) arithmetic, d 

2 (c) arithmetic, d = 2, as, 

   
      

      

@ (d) not arithmetic, no common difference. 
(e) not arithmetic, no common difference. 

(f) arithmetic, d = —7, as, = —341 
3.() (i) 26 

(i) a,=—2+4(n—1) 
(iii) a, = ~2,a,=a, , +dforn>1. 

() @) 1 
ii) a,=29—4(n—1) 

(iii) @, = 29,a, = a,, — 4forn>1. 
(0 () 57 

(i) a,=—6+9(n—1) 
(iii) a, = —6,a,=a, , + 9forn> 1. 

9. keR (@ (i) 9.23 
10, 2= (i) a,=10.07 - 0.12(n — 1) 

2 a,=10.07,a,=a,, — 0.12forn > 1. 

11. (a) P(lg (e G) 79 
1 5 (i) a,=100—3(n—1) 

(b) domain: x € R, x # 2; range: y € R, y# 5 (iii) @, = 100,a, = a,, — 3forn>1. 
12. —3éx<% ® @ _% 

13Ax:%0rx:7 (i) a, _g(n_l) 

5 (@) @, = 2,0, = a1 = S forn > 1. 
15. w=*Torw=*2 4.13,7,1,-5,-11,-17, -23 
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Answers 

  

5. 299, 2995, 299%, 299%, 300 
40 , 26 14,26 a =20, 26, 14,26 6.a,= 5 + G- D="0+2n 

42, 11 1 =12 1y g 1L 7. a, 3t -D=-51+—n 
8.8 (B36 (1l (16 (11 
9.9,3,-3,-9,~15 10. 99.25,99.50,99.75 

1. a,=4n—1 lZ.an:M 

13.a,=4n+27 14. Yes, 3271t term 
15. Yes, 1385th term 16. No 

Exercise 3.3 
1. (a) Geom.,r = 3% g, = 3%*! 

(b) Arithmetic, d = 3, a = 27 
(¢) Geometric, 7 = 2, by, = 4096 
(d) Neither 
(€) Geometric, r = 3, u,, = 78732 
(f) Geometric, r = 2.5, a,, = 7629.39453125 

    
(g) Geometric, r = —2.5,a,, = —7629.39453125 

(h) Arithmetic, d = 075, a,, = 8.75 
() Geometric,r= %, ap= ~% 

(j) Arithmetic,d = 3, a, = 79 
(&) Geometric, 7 = —3, ujo = 19683 
() Geometric, 7 =2, ;o = 512 
(m) Neither 
(n) Neither 
(0) Arithmetic, d = 1.3, a,, = 14.1 

2. (a) () 32 
(i) —3+5(n— 1) 
(iii) @, = —3,a,=a, , + 5forn>1 

) @ -9 
(i) 19— 4d(n—1) 
(iii) @, = 19,0, = a,, — 4forn>1 

© @) 69 
(i) —8+11(n—1) 
(iii) @, = —8,a, = a,_, + 1l forn>1 

@ @) 9.35 
(i) 10.05— 0.1(n — 1) 
(i) @, = 10.05,a, = a, , — 0.1 forn>1 

(e (@) 93 
(i) 100~ (n—1) 
(iii) @, = 100,a,=a, , — Lforn>1 

i L7 ® o Y 
(i) 2 15— 1) 
(iii) @, = 2,4, = a, , — L5forn>1 

® () 384 
(i) 3 X2t 
(iii) @, = 3,a, =24, , forn>1 

() () 8748 
(i) 4x 3! 
(iii) @, = 4,a, = 3a, , forn>1 

@ @ -5 
(i) 5% (~1)! 
(iii) @, = 5,a, = —a, forn>1 

G () -384 
(i) 3% (~2)! 
(iii) @, = 3,a, = —2a,, forn>1 
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&) (@) 

(i) 

(i) )a,, (forn>1 

o O 

(i) 

(iii) @y = —2,a,= '%a,‘ w1 

o 390625 

@0 761 
T e 

(i) ay= 35(?) 

(i) @ = 35,4, = %a,, w1 

g 3 e -2 
Ly 
@ a,=-6(3) 
(iii) a, = ~6,a, = %u,( pn>1 

(0) () 1216 
(i) 9.5% 211 
(iii) @, = 9.5,a, = 24, ,n> 1 

o - _ 893871739 @) () 6833729609375 = SDIET 
. Loyt 

(i) a,= mo(%) 

(iii) a, — 100, a, :%nn pn>1 
(@) () 000208568573 = 2187 

. 1048576 oy 
@ a,=2(3) 

(i) @y = 2,4, = %u,, wn>1 
3. 6,12,24,48 4. 35,175,875 

et 6. 21,63,189,567 

7. —24,24 8. 150, = 
Iyt &l . 3 

10. %9 11. 10th term 

12. Yes, 10th term 13. Yes, 10th term 

14. €2228.92 15. £945.23 

16. €2968.79 17. 7745 

18. % 19. 10th term 

20. £2921.16 

Exercise 3.4 
  105469 1. 11280 2 1848 

307 4. 170 
16 +4/3 

39 
52 449 7459 

6 @ 55 ® 550 © 2475



   
  

    

7. £13026.14 
8. (a) 940 (b) 6578 (c) 42625 

9. w 10. 17 terms 

11. 29 terms 12.d=4 
13. (a) 250,125250  (b) 83501 
H4.a=1d=5 
15. (a) 2890 (b) 0.290 () —2.065 
16. 11400 17. 1191 18. 49.2 

6 3+16 19.% 20. 52 

18 93 468 15(, 1 2 @ 3,182,498, 4(1 

1131 _»n 
® S o3 mra 
©V2-1,3-1,1,5-1;yn+1—-1 

22. (a) 1.945 (b) 842 
23. (a) 127 (b) 128 

819 32 24. (@) o ®) 

25. (a) 11866 (b) 763517 
(c) 14348906  (d) ~150 

Exercise 3.5 
L (a) x°+ 10x%y + 40x%% + 80x%° + 80xy* + 32y° 

(b) a* — da’ + 6a%b* — dab® + b* 
(¢) x° — 18x% + 135x* — 540x® + 1215x? — 1458x + 729 
(d) 16 — 32x* + 24x6 — 8x7 + x2 
(€) x7 — 21bxS + 189b%x® — 945b%x* + 2835bx 

— 5103b%?2 + 5103b%x — 2187b7 
160 60, 12 1 (F) 64n +192n° + 240 + =20 + 20 4 12 4 e T Tt 

81 _ 216 216 . 5 ® et A 9T+ 16 

2. (a) 56 ®) o (¢) 1225 
(@ 32 (00 

3. (a) &7 — 14x% + 84x%y2 — 280xy? + 560x%y" — 672x%* 
+ 448xyS — 1287 

(b) 64a® — 192a%b + 240a*b? — 160a°b* + 60a%b* 
— 12ab° + b® 

(€) x° — 20x* + 160x* — 640x? + 1280x — 1024 
(d) x19 + 12215 + 60x2 + 160x° + 240x6 + 192x3 + 64 
(€) 2187x7 — 5103bxS + 5103b%5 — 2835b%x* + 945b'x> 

— 189552 + 21b%x — b7 
160 , 60 12 1 o~ 1920 - 160 (6) 64n° — 1920 + 240 = "2+ S0 - Lk 

  16 9 , 216 - ) ® G- ooty 26 T8l 

(h) 112 
(i) 1792/3 

4. (a) x* — 90x® + 3960x 
(b) Does not exist as the powers of x decrease by 2 starting 

at 45. There is no chance for any expression to have 
zero exponent. 

© (He@ "+ (@D @ 
- _(45)L“+ (45)2;‘_L“ 

43) 51 \aa) 5 4 

@ ()" =-(5) 
n! n! n! 

% (Z) RGB! i—RK G -Rn - -R) 

- (flk) 
6. a+vr=()+ (1) +(G)+() 

e () (2ot (o 
=G+ () 

7.@) K=k(k—1) - x2X1=kKk-1-X2X1) 
(b) apply parta 
(o) apply parta. 
1..2)¢ 22,5\ L (+2) = L (2+2) = & (3+5) -1 o (3+3) - 
1,6\ _ 10. (;+;) =1 1. 15 

12. 90720 13. 16128 
14. 1+ 10x + 45x?, 1.1045, 0.9045 

15. Use definition of (}') , sum of an entry in the nth row plus 
twice the next entry plus the third entry is equal to the 
entry directly below the last entry but two rows below. 

Z 19 7952 
16. (a) 3 (b) 5% (c) 2475 

17. —145152 18. 35a° 19. 96 096 

20. 243n° — 810n*m + 1080n°m> — 720n°m* + 240nm* 

—32m° 

21. 7838208 

22. k=3 

Chapter 3 practice questions 
1L.D=5n=20 

2. $2098.63 

3. (a) Nick: 20 
Charlotte: 17.6 

(b) Nick: 390 
Charlotte: 381.3 

(¢) Charlotte will exceed the 40 hours during week 13. 
(d) In week 11 Charlotte will catch up with Nick and 

exceed him 
4. (a) loss for the second month = 1060 g 

loss for the third month = 1123.6g 
(b) Plan Aloss = 1880 g 

Plan B loss = 1898.3 g 

(c) (i) Loss due to plan A in all 12 months = 17280 g 
(ii) Loss due to Plan B in all 12 months = 16869.9 g 

5. (a) €895.42 
(b) This is the future value of an annuity due = 6985.82 

6. (a) V7,1,V7,1... (®) 0,2,0,2, ... 
7. (a) On the 37th day (b) 407km 
8. (a) 1.5 (b) (i) 207595 (i) 2019 

(c) 619583 (d) Market saturation 

OF 

@05 )2 
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Answers 

10. (a) 1220 (b) 36920 © @ ¥, 
s 1 4 1 

11. (i) AreaA = l,Arcang (ii) 31 

) 
(i) 1+ g, 1+ g + (g) (i) 0 

12. (a) Neither, geometric converging, arithmetic, geometric 
diverging 

® 6 
13. (a) (i) Kell: 18400, 18 800; YBO: 18 190, 19 463.3 . 1), 

(ii) Kell: 198 000; YBO: 234 879.62 

(iii) Kell: 21 600; YBO: 31 253.81 

(b) () After the second year 

  
(i) 4th year iy y 

14. (a) 62 (b) 936 
15. (a) 7000(1 + 0.0525)" (b) 7 years 

(¢) No, since 9912 < 10015.0 
16. (@) 11 ®) 2 © 15 
17 15;~8 18. a= —2,b= —719. 10300 

20. (a) a,=8n—3 (b) 50 
21, 559 22,:—3,3 23.9 

24, (a) 4 (®) 1604~ 1) ) 
5 2. 14 <210 

26. (@) "O1ED 30 2 
27. 1275 In2 o) 
28. (a) 4,8,16 

®) @) u,=2" ()21 =3x2"—2x201 

29. (a) % ) 9 

30.a=2,b=-3 31.-2,4 3 o R 
1= cosf    

  

33. (a) 32 + 80x + 80x? + 40x* + 10x* + x% 
(b) 32.8080401001 

34. (a) $5000(1.063)" (b) $6786.35 
(o) 12 

35.7 
36. u,=12,d=—15 
37. (a) 1, —nx, + (;)x = (;‘);& 

(b) (i) Jus| = |l = Jus| — us] = 3n* = 9n = n® — 6n° 

fo =3+ 

  

  

  

+ 5n 

(i) n=7 S o 5 (i) y-intercept: (0, 81) 
38 (:) MOV ikt (i) horizontal asymptote: y = 0 (x-axis) 

b).92: a (iii) domain: x € R; range: y > 0 
39. (a) 41 (b) :7 +7n (c) 6314 (d) 287 ) ¥ 

40. (a) () =L=24 (i) 20 (iii) v, =200 

®) @) s, = 2;% Gi) d<o. 
_ 2 ¢ _ i) 8, =170 (iv) d= -1 

Chapter 4 

Exercise 4.1 
L (a) y=0* 

  

(b) domain {x:x € R}, range {y:y > 0} 
(i) y-intercept: (0, 4) 
(ii) horizontal asymptote: y = 3 
(iii) domain: x € R; range: y > 3 
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5. 

6. 

7 

8. 

. : o T 
(i) y-intercept: (0, Z) 

(ii) horizontal asymptote: y = 0 
(iii) domain: x € R; range: y > 0 

(d) ” 9 

10. 

11. 

(i) y-intercept: (0, 1) 
(ii) horizontal asymptote: y = 0 
(iii) domain: x € R; range: y > 0 

(e) 7 

(i) y-intercept: (0, 1); x-intercept: (—0.631,0) 
(ii) horizontal asymptote: y = —1 
(iii) domain: x € R; range: y > —1 

3. domain: x € R 
range:ifa>0=y>d,ifa<0=y<d 
y-intercept: (0, a(b)< + d) 
horizontal asymptote: y = d 

4 y=2ry=4*y=8* y=8y 

12. 

13. 

14.   

) 
) 

0, 
.y = brissteeper 
. (a) P() = 100000(3)F where t is number of years 

(b) () 900000 
(i) 2167402 
(iii) 8100000 

. (a) N = 10')° 
(b) () 20000 

i) 80000 
(iii) 5120000 
(iv) 10485760000 

  

. (2) AD) = AT 
(b) 7.18% 
() $17204.28 
(b) $29598.74 
(9) $5092251 5 0.09 (a) A = 5000(1 + 7) 

(b) A 
500004 

400004 

30000 

200004 

100004 

  

5 10 15 20 25t 

(¢) minimum number of years is 16 

    
4 

50000-] 

400004 

300001 (15.46, 20000) 

200001 

10000 

— 
o 5 10 15 20 25t 

(a) $16850.58 (b) $17289.16 
(c) $17331.09 (d) $17332.41 
(a) 240310 (b) 299592 
(a) A(w) = 1000(0.7)" (b) about 20 weeks 

563



Answers 

15. (a) Payment plan 1T (b) $10737418.23 @ 

16. (@) a=2,k=3 (b)n:%,k—z 

4 () a=10k= %   (© a=3k= 

Exercise 4.2 
1. (a) 

  

(i) x-int:none, y-int.: (0, 4) 
(ii) horizontal asymptote: y = 3 
(iii) domain: x € R; range: y >3 

  

    

b 
0 x © 

@) xint: none, y-int.: (0, 1) 
(ii) horizontal asymptote: y 
(iii) domain: x € R; range: y > 0 

(b) ) 

1 

[ % 

(i) x-int.: none, y-int.: (0, 1) 
1 (ii) horizontal asymptote: y = 0 

(iii) domain: x € R; range: y > 0 
2. (a) Bank A: earns €113.71 in interest; Bank B: earn €113.99 

in interest 

  

(i) x-int:none, y-int.: (0, 1) 
(ii) horizontal asymptote: y = 0 
(iii) domain: x € R; range: y > 0 

(b) Bank B account earns €0.28 more in interest 
3. (a) Blue Star 

(b) $1362.34 which is $5.96 more than Red Star. 

  

(c) 7, 4. (a) 97.6% (b) 78.7% 
(c) 9.16% (d) 0.254% 

5. (a) 5kg (b) 3.53kg 
6. (a) (i) £1568.31 (i) £2459.60 

(b) 15.4 years 
7. (a) 39 (b) 11 minutes 

2 

Exercise 4.3 
L (a) 2 =16 (b) e"=1 (¢) 102 =100 

o - (@ 102=001 (e) 7 =343 ) et=1      
) ) ) () 107 =150 (h) e =x i) e*=x+2 

(i) x-int: none, y-int.: (0, 2) 2. (a) log,1024 = 10 (b) log0.0001 = —4 
(ii) horizontal asymptote: y = 0 1 1 
(iii) domain: x € R; range: y > 0 © 1"1“(2) -2 (d).Jog;51:=4 

() logl =0 () In5=x 
(g) log,0.125 = —3 (h) Iny =4 
(i) logioy =x+1 

@6 M3 @ 3 @5 ©2 
0 % ®-3 Mm13 (o G 6 
®=3 OZ w3 (n)% (0) —2 

®8 (@ % ® 18 (9 % (G 
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10. 

11. 

12, 

13. 

14. 

15. 

. (a) foo = logux 

. (a) 170 (b) 0.239 (© 391 
() 0.549 (e) 1.40 (® 0209 
(g) 461 (h) 13.8 

L (a) x>2 (b) xeRx%0 () x>0 
(d)x<§ (e —2=x<3  (f) x<0 

. (a) domain [x:x > 0, x # 1} range {y:y € R, y # 0} 
(b) domain {x:x > 1} range {y:y = 0} 
(c) domain {x:x >0, x# 1} range fy:y < 0,y = 6.259 

(®) o) = logox 
(d) fix) = log,x 

  

(¢) fix) =log,ex 
. (a) log,2 + log,m = 1+ logym 

(b) log — logx 
© élnx 
(d) logsa + 3log,b 
() logl0x + log(1 + P* =1 + logx + tlog(1 + 1) 
() 3lnm — Inn 

. (a) log,p + log,q + log,r 
(b) 2log,p + 3log,q — log,r 

1 1 © Ui»P + 08,4 

log,r  log,p 
@ 4 & 2 2 

log,q 

(¢) log,p + %hgm — logyr 

      

() 3log,p + 3log,q — %mg” 

  

. 
(a) logx (b) log,72 © ln(%) 

3 
(d) log, 4 (e) lug(%) ) 1,,(7) 

(a) 997 (b) —532 () 2.06 (d) —0.179 
Inx Inx @ (5432 (®) [r1.86 

10881 
804 " Tog,b  log,b 

e _ 1 loge=ne __L 
In10 n10 

= 10(logl — log10°'%) 

  

I dB = 10log(—— 
2 Ug( 10 

= 10(logI + 16) = 10 logI + 160 
(b) 101og10~* + 160 = 10(—4) + 160 = 120 decibels 

Exercise 4.4 
1 

P
P
 

e
 

s
e
e
E
N
 

     
(a) x=0699  (b) x=2.50 (¢) x=797 
(@ x (e) x=—192 (f) x=271 
(g) x (h) x=212 (i) x=442 
@) x=0. ) x=0642 M x=220 

(a) x=3 (b) x=0or—1 
(a) $6248.58 
(a) 12.97 years 
20 hours (~ 19.93) 
(a) 24 years (= 23.45) 
(¢) 9 years (~ 8.04) 

®) 9% years 
(b) 12.92 years 

(b) 12 years (= 11.90) 

6 years 
(a) 99.7grams (b) 127000 years 
(a) 37 dogs (b) 9 years 

. (a) 459 litres 
(b) 8.89 minutes ~ 8 min. 53 seconds 
(c) 39 minutes 

11 

12. 

13, 

  

(@) 5kg (b) 17.7 days 
@x=2 ®mxr=14 ©x=1 (@x= 3 3 
(e) x=98 = *eb 

(® x=20rx=14 ) x=9 
@ =2 0 x= 
@ x>-L (b 0<x<2 () 0<x<In6 

4 

(d) 0.161 < x < 1.14 (approx. to 3 s.£) 

Chapter 4 practice questions 

L 

. (@) x~258 (b) x~117 () x=2 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21, 

22, 

23. 

.k 

V
o
 

N
 
A
U
 
A 

W
 

@x=2 (b)x=3 (@ x=3 

(d) x~0.304 

o 255 

  

. (a) logy(9x) 

. (a) 1.89 (b) 4.85 
(a) €2597 (b) 11 years (c) 7.18% 

. (a) $1474.47 (b) 5.7% 

@1 ® 3 © 36 
. (@) 604 (b) 13 years 
. (a) 88% (b) $11610 (c) 2011 
. (a) domain: x € R, range: y > 0 

  

(b) y-intercep (0, i) asymptote: y = 0 (x-axis) = 
(© f'o=2+Inx 

(d) domain: x > 0, range: y € R 
(a) 631 (b) 1270 
(c) (i) A,=500 (ii) b= 1.06 
(d) k =In1.06 ~~0.05827 
(a) (i) domain:x<0,x>2 

g 2 
®) () x=-g5 
(a) C = 5000, k~0.0556 
(b) 140753 
(a) 8 
x=2 
y=16 
(@) x=3 

a’b® @ (=2) 
1900 years 
c=42 
x=Vex=e 
(a) $265.33 

x=5storx=5% 
In2 
20 

(ii) domain: x > 2 

(ii) no solution 

2 ® 2 © (-23) 

b) x=6 

® ()   

(b) 235 months 

Chapter 5 

Exercise 5.1 

1 (a) 

(d) 

©® —7 (h) 

57 37 ® 3 © 3 
3w 57 CE 37 
20m 8m 

9 O -5 

Gy
 

wi
y 

NE
] 
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Answers 

2. (a) 135° (b) —630° (o) 115 
(d) 210° (e) —143° (f) 300° 
(g 15° (h) 90.0° (i) 480° 

3. (a) 390, —330°  (b) 77” 7 (c) 535, —185* 
ufl 137 117 g @Uz BT L7 7 

(f) 9.53,3.03 
4. (a) 12.6cm (b) 14.7cm 
5. 1.5 radians, or approx. 85.9" 
6.7.16 
7. (a) 13.96 ~ 14.0cm? (b) 131cm? 
8. a = 3 (radian measure), or a = 172° 
9. 32em 

10. 6.77cm 
11. (a) 37 radians/second 
12. 19.8 radians/second 

(b) 11.9km/hr 

_ 9r 13. v= 250 

14. 28.3cm 

15. 20944 sq metres 
16. (a) r~30.6cm 
17. 150/3 ¢ 
18. area of circle = 

(b) difference ~ 0.0771 cm 

   

  

2. (a) 0.6 () 1.0 (@ 05 
() 27 () 0.1 (h) 1.6 

3. () 1 

®) G v 

© G v 

  

(d) (i) negative y-axis (i) (0, —1) 

  

(e () I (ii) (—0.416, 0.909) 

® 6 W (22 
(® @) I (ii) (0.540,0.841) 
   

  

®) () 1 

@) @    
(d) sin%r =1, cos’zlj 0, tang is undefined 

© sin(_fl) =3 cus(Jfl) —h 
3 2’ 3 2 

tan(*%fl) =-3 

(£) sin37 =0, cos37 = —1, tan37 = 0 
@ sin%’r - ~1,cus37” -0, mn%”is undefined 

566 

    (i) sin(1.25m = f% cos(1.25m) = 

   
1 

5. (@) sin 13T = gin T = 1, o 137 — o s 6 2% 
4w 107 ) sinl9T = sin 27 os197 = co 

© smi =inZT = L2, 05157 — o s < "y 
. Ssm_1_ 1m__ Sw_ {3 @ smk = sinT = L cos 1T = o2 = 

6@ -2 ® -2 () undefined 

7. (a) 0.598 (b) -72 © 0 
8. (a) LI (b) 11 (¢) 111 
@1 (© LIV 

Exercise 5.3 
1. (a) ¥ 

   



  

@ 

    

  
27 3w 4w 5w 

amplitude = 2. period = 27 
(i) domain: x € R, range: —3.5<y = —2.5 

(®) () 

D 
b
 
e 

—4- 

o 2w amplitude = 3, period = =57 
(i) domain: x € R, range: =35 <y =25 

() @) y 
5 

  
amplitude 1.2, period = 47 

(i) domain: x € R, range: 3.1 < y < 5.5 
3.(a) A=3,B=7 (b) A=27,B=59 

    

    
4. (@ p=8 b) g=6 
5.() a=2,b=3c= 

57 ® % 
6.a=3b=-Tc=-1 

Exercise 5.4 

1. ) x:’s—’,fl ) x:%” 

(c)x:ll (d)x:;l 

(e)x:l—’ (f)x:g 

@ x= g W x=5 5N 

@) x=0, G) x=0, 

  

2. (a) x~0.412,2.73 
(¢) x~ 1.11,4.25 
(d) x = 0.508, 1.06, 3.65, 4.20 
(e) x~ 296,532 (f) x~ 1.28,4.42 

3. () 2T 3T @ @ 3w 57 
- 2272 "2 "2 0 

o _1l7w 

® 6 6 
(@ 17 197 

12° 12 
o dr 

(d o, T2 4 

(b) x~ 1.91,4.37 

  

 



Answers 

5. t~ 1.5 hours 
6. (a) 80" day (March 21) and approximately 263 day 

(September 20) 
(b) 105 day (April 15) and approximately 238" day 

(August 26) 
(c) 94 days - from 125% day to 218" day 

7. (@) x=Z2T AT 3T g       
=T T 

@ x=3.73 

  

  

  

  

@ 3w (€) x~ —0.785, 1.11 (0 x=777 

©®x=0T 5T o (h) x~0.983,4.12 

_4 2x = L 8. (a) cosx =2 (b) cos2x = 5 

oy = 24 (© sin2x =50 _ 

9. (a) sinx:% (b) sin2x = —4‘95 

v = —L (©) cos2e =~ 

Chapter 5 practice questions 
1. (a) 135cm (b) 85cm 

(c) t=05sec. (d) 1sec. 
2. x=Z 737 L x= 5w 
3. 0~ 2.28 (radian measure) 
4.() ) -1 (i) 47 

(b) four 
5. (a) p=35 (b) g=29 (c) m== 

6. x = 0x~0483,0571,2.42,2.86 
=27 4w & @ 57 3w 7@ x =557 ) x =755 

e L s2x =L 8. (a) sinx =5 ~ () cos2e =5 

(9 sin2x = 42 9 
=16sin 27(t-2 9. (a) d= l.ssm( u(‘ 4)) +42 

(b) approximately 3.15 metres 
(c) approximately 12:27 pm to 7:33 pm 

10. x ~0.785, 1.89 
11. (a) 15cm 
12. k>25k<-25 
1B.k=la=-2 

(b) area~ 239 cm? 

4@ 3 o2 0B e 

Chapter 6 

Exercise 6.1 
1. (a) scalene 

() isosceles 
(b) equilateral 
(d) equilateral 

2.(0,2,0) 
3. (a) yes (b) no 
4. See Worked Solutions 
5. (a) yes (b) no (9 no (d) yes 
6. ()7, ()2 (iii) 6, (iv) 3 

®) @) 4 ()2 (iii) /3, (iv) 3 
7. 82,0, 16) 

568 

8. 

9. 

10. 

3. 

12. 

13. 

14. 

15. 

559 
2 

surface area = 1167 units2, volume = 

78 cm 

surface area 27 262cm?, volume ~ 330 cm?® 

(—1,6,-7),(3,4,5),(1,2,3) 

2 2 2 b 2 @ 3 ®) 3 
surface area ~ 2170 m?, volume ~ 6170 m* 

surface area = 2052 cm?, volume = 5832 + 3247 cm? 

() See Worked Solutions ~ (b) 
16m29 o 

Exercise 6.2 
1. 

  

. (a) x = 50/3,y = 100 

. (a) a=60° B =30° 

1) cosb =" tanf=3 cotfi 4 sechi=S @ (i) cosd =% tanf =2, cotd = 3, sect = 3, 

  

  

1 
sco="3 csch=3 

(i) 6~ 36.9°53.1° 

i) sing = 22 tang = 3 corg= 339 (b) () sinf =", tanf = 7, cottl = >22%, 

8 83 sech = 3, escf = 3 
(iii) 6 ~ 51.3°; 38.7° 

() (i) sinb= % cost = 

  

, cot = % sech= 5, 

-5 cscl =3 
(i) 0~ 63.4°;26.6° 

e nou =asol —e T - (@) 0=60%T  (b) 6=45,F © 0=607F 

(b) x ~ 8.60,y ~ 12.3 
(d) x ~ 374,y ~ 299 
(f) x =200,y = 100/3 
(b) o~ 67.4°, B ~ 22.6° 
(d) a=30°, B = 60° 

(¢) x ~ 206,y ~ 245 
(e) x=18,y = 182 

(€) a=200° B~ 700° 

    

  

  

5. 114 metres 6. 67.40 7. 4,05 metres 
8. 4105m 9. 44°,68,68°  10. 576kmh-! 

11. 69.5m 12.287m 13. 151 m 
14. 59.2m 15. 35 16. —0.6 

ap + bq + | 
lptbatd o e 

Va 

Exercise 6.3 

1. (a) sinf= % cosf=2, tano = % 

ing = 12 cosh = —32 =12 (8 sing = 2. cost =~ tang =~ 32 

() sinb= —sz,mse: % tan6= —1 

gL g 02 g 8 (@ sind = —3,cos0 =~ tang =3 

2. (a) sin120° = % 0s120° = —%, tan120° = /3, 

, 5ec120° = —2, csc 120° = % 

  

cot120° = 

(b) sin135° 

  

V2 ,_ _V2 o 
5o cos1357= X tan135° = —1, 

cot135° = —1,sec135° = —/2, csc135° = V2 

in330° = —L, cos330° = 13, o 03 () sin330 3 €0s330° = ,:nn330 > 

cot330° = —3, sec330° = csc330° = 2 

 



(d) sin270° = —1,c0s270° = 0, tan270° = undef., 
ot 270° = 0, sec270° = undef., csc270° = —1 

e V3 (€) sin240 o 

  

c05240° = —%, tan240° = /3, 

    

cot240° = TSV sec240° = —2, csc240° = —% 

nSTo VI Sm_ VI 5w ® sin2T = 2 cos a1, 

       
(g) s 

(h) si 

(i) sin(—60°) = = tan( 60°) = —3, 

cot(—60°) = —‘T, sec(—60°) = 2, csc(—60°) = —? 

G) sin(—%”) = 1,:05(—37"’) =0, mn(~37") 

= undef, cot( ) =0, sec(—%”) = undef, 

(k) 

    

[0 
   . cot(— zm°)fl3 sec(—210° 

        

   

  

    

  

csc(—-ZlO") N 
Loy _ V2 _m (m)sm( T) == ,cus( T 

P ™5 TN _ 5 cot(=F) = ~Lisec(~7) =2 ese( ) = -2 

(n) sinm = 0, cos7 = 1, tan = 0, cotrr = undef,, 
sec = —1, cscmr = undef. 

(0) sind.257 = % cosd. 257 = 72 tand. 257 = 1, 

cotd.257 = 1, secd.25m = 2, cscd. 257 = 

15 17 17 smt‘)—fi tanf = 2, cotf) = 5,m97 Fesch=1Z 

6061 _ 5061 . sing = ~2L2, cost = 22 

~1,tan6 = 0, cot6 = undef,, sect = — 
undef. 

. (a) (i) 30°  (ii) 85° 
®) () 45° (i) 7 
(c) (i) 60° (i) 20° 

L () 63 (b) 889 (¢) 675/ 
. 28.5° 

  

  

9. (a) 236cm? (b) 97.4cm? 
10. (a) 9.06cm? (b) 175cm? 
11. absing 
12, x/3 
1, Hfcost 

ntf 
14. See Worked Solutions 
15. (a) A0 = 24 sinx 

(b) 0° < x < 180° 

0 30° 60° 90° 120°150°180° * 

(c) (90°,24), right-angled triangle, which will always give 
the maximum area because that is the maximum value 

of sinx 
16. (a) 45° (b) 33.7° (c) 60.3° 
17. (a) 71.6° (b) 45° 

Exercise 6.4 
1. (a) infinite (b) one triangle 

(c) one triangle (d) one triangle 
(€) two triangles (f) one triangle 

2. (a) BC ~ 179, AB ~ 27.0, ACB = 115° 

11 

12, 

R
 

. (a) (i) 

L X~ 649m,y & 
10. 

(b) AB ~ 18.1, BC =~ 22.5, BAC = 65° 
(c) AB =~ 74.1, BAC ~ 60.2", ABC ~ 48.8° 
(d) BAC ~ 81.6°, ABC ~ 60.6", ACB ~ 37.8° 
(e) two possible triangles: 

(1) BAC ~ 55.9°, ACB ~ 81.1°, AB ~ 40.6 
(2) BAC ~ 124.1° ACB ~ 12.9°, AB ~ 9.17 

() two possible triangles: 
(1) ABC ~ 72.2°, ACB ~ 45.8°, AB ~ 0.414 
(2) ABC ~ 107.8°, ACB ~ 10.2° AB ~ 0.102 

  

. 10.8 cm and 30.4 cm 

51.3°,51.3°, 77.4° 
716° or 224° 
20.7° 
area ~ 151 cm? 

BC = 55sin36°, or BC>5 
(i) 5sin36°<BC<S5 
(iii) BC < 5sin36° 

(b) (i) BC=5/3,0rBC>10 
i) 5/3<BC<10 

(iii) BC < 5/3 
56.9m 

  

@) x=5 
(b) See Worked Solutions 
© 15\3 

21V 15 

  

4 
(a) obtuse triangle 
(b) acute triangle 
(c) See Worked Solutions 
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Answers 

13. 21.1 

14. (a) 14 (b) cosh = % WY = 2/65 
© 205 @ 139° 

15. 57.9° 

Chapter 6 practice questions 

1. sinAOB = % 

sin26 = 2L cos2p = 20 . $in26 Zg,cuszfl 2 29 
3. 101.5° 

) 120 4. sin24 = — 1= 
5. (a) 29.1m (b) 41.9m 
6. CAB ~ 86.4° 
7. (a) 382° (b) 17.3cm? 
8. (a) ACB ~ 116° (b) 155cm? 
9. 78.5km 

10. JRL ~ 31° 
11. (a) 326cm (b) 7.07cm? 
12. 70.5° 
13. (a) 91m (b) 16903 

(c) (i) See Worked Solutions 

  

(iii) x 
(d) (i) supplementary angles have equal sines 

(ii) See Worked Solutions 
14. (a) 202 +4 (b) 5V2 + 6/3 +5/6 + 6 
15. 28.3cm? 
16. (a) 0< 6< 120° 

(b) See Worked Solutions 
(c) 60° 

17. (a) 120cm? (b) 2.16 (c) 161cm? 
18. (a) See Worked Solutions 

  

(b) sin% == 2 
() See Worked Solutions 

19. coso =2 
20. 59.5cm>" 
21. AABC = 72cm?, AABD = 24/3 ~ 41.6cm?, 

ABCD = 34.6cm?, AACD ~ 693 cm? 
22. DEF ~ 41.9° 
23. 43.0 metres 
24. 52.26° 
25. (@) y= gx (b) 56.6° 
26. length ~ 277 ki, bearing ~ 18.5° 

Chapter 7 

Exercise 7.1 
Note: Some answers may differ from one person to the other 
due to different graph accuracies. 

1. (a) Student, all students in a community, random sample 
of few students, qualitative 

(b) Exam, 10%-grade students in a country, a sample from 
a few schools, quantitative. 

(c) Newborns, heights of newborns in a city, sample from 
a few hospitals, quantitative 
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(d) Children, eye colour of children in a city, sample of 
children at schools, qualitative 

(€) Working persons, commuters in a city, sample of a few 
districts, quantitative 

(f) Country leaders, all country leaders, sample of few 
presidents, sample of international school students, 
qualitative 

(g) Students, all international school students, qualitative 
Answers are not unique! 
(a) Skewed to the right as few players score very high 
(b) Symmetric 
(¢) Skewed to the right 
(d) Unimodal, or bi-modal, symmetric or skewed etc. 

. (a) (b) Quantitative 

(9) (d) Qualitative 
(a) Discrete 
(b) Continuous 
(c) Continuous 
(d) Discrete 
(e) Continuous 
(f) Discrete (debatable) 
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20 24 28 32 
GPA 

Relatively symmetric. No outliers.



7. (a) 

| (b) 

  

  

  

    

  

     
  

  

  

  

        

  

  
    

  

  

  

  

  

  

        
  

  

& 
2 i 
& 
g 

& £ 

g £ 
L o 

0o 12 24 36 48 
Time 

About 10 customers will have to wait more than 
T et T h 2minutes. ) 

Grades 9. (a) Skewed dm (fhc right, there h.s a mocile at abm}:& 6 day; 

‘The grades appear to be divided into two groups, one with j:a”' e ; f“‘ Sl"‘y‘(h"“";z‘d A 20 days: 
mode around 65 and the other around 85. No outliers are ® et e 
detected. 

5000 
4000 
30001 

g 
g 2000 
& & 1000 & 

o 10 20 30 40 
Days 

(c) Approximately % of the patients 
16 10. (a) 40 minutes (b) Approximately 30% 

Grades (© 2507 
(b) The data is skewed to the right. 200 . 
) (c) g 0 155 

5 
. wf S 

s 0 50 
£ 20 
2 0 18120 2224126128130 32 3436 38 40 
& Minutes 

0 
0 5 10 15 20 25 30 35 40 11. (a) o Speed Frequency 

) ;. 60 = speed < 75 20 
Approximately 36 out of 50 may lose their licence, =i 
about 72%. 75 = speed < 90 70 

8. 2 - 90 = speed < 105 110 
12 105 < speed < 120 150 
1 
i 120 < speed < 135 40 

g 12 135 = speed < 150 10 
g 10 b),(c) 4007 £ (), () iy 

  g g 

  

  

0.0 12 24 36 48 
Time 

  3 g   Cu
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re
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N 8 g 

        
60 75 90 105 120130135 

Speed 
25 _ (@) 455 = 625% 
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Answers 

  

      

  

  

  

      
      

12. (a) Histogram of C1 (c) 9 
100 

8 

§ & 7 

£ & ® 
v §s g 2 
Z w0 g4 g & 
S 2 & 

2 

495 500 505 510 515 520 525 1 
Length (mm) 0 

(b) about 5% at the lower end and also about 5% at the ks 
upper end. @ 

110 13. (a),(b) _ 100+ ; @ 
|== 100 

3 80 90 
g 

80 
g o z & g 
o g 70 £ 40 - | g 
= 60 
E Z (_=) % 50 

£ il g 
60 120 180 240 300 360 420 30 

Time 2 

(c) As you see from diagram, about 250 seconds. 10 

0 

Exercise 7.2 16 2 32 0 R 
1. (@) 6 (®) 6 Marks 

(c) Itappears to be symmetric as the mean and median are The median is approx. 27. 

  

  

  

  

  

  

          

  
  

the same. A histogram supports this view 9. (a) 25000 
2. (a) 7.8 (b) 7.5 () 7or8 £ 20000 
3. Average = 1.16, median = 1. Median is more appropriate k| 

as the data is skewed to the right. 3 1500 
4. Mean = 307036, median = 288 521. There are extreme 2 10000 

values and it is skewed to the right. Median is more 2 ol 
appropriate. £ 

5. Mean = median = 430. It appears to be symmetric and 
hence either measure would be fine. 1970 1975 1980 1985 1990 1995 2000 2005 

6. (a) €49.56 Year 
(b) €49.93 There appears to be a decline in the total number of 

7. 2.05kg injuries. 

8. (a) 29.96 (b) Pie chart of year 

b) ® [ Tso Fatal*year Serious*year 
2 | 023344 

2 | 5666777 

334 

3| 568 
4|02 - 

Slight*year 

4|68 Category 
Median is 27 W 1970 

W 1990 

[ 2005 
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10. (a) 140 

120 

100 

80 

Co
un
t 

60 

40 

20 

o S P D e D P DD O 
NP O W M Bl B p Ao G TS S 9 o T 

Age 
(b) 37.6 
(c) 

11. 

12. 

13. 

14. 

15. 

16. 

17, 

  

100 

80 

60 
  

z £ 
8 

g 
g Z 
g 40 

20     

  

  
O D DD DD S I 0 e NS 3 &8 > P 

¥ SR S 
Age 

From the graph, the median is approx. at 38. 
Median = approx. 8 days ; Mean = 9.5 days 
Median = approx. 28 minutes; Mean = 28.7 minutes 
Median = approx. 105kmh~’; Mean = 103 kmh " 
Median = approx. 5.075mm; Mean = 5.09 mm 
Median = approx. 210seconds; Mean = 228.6 seconds 
(a) 416 (b) 61.6 
(a) 614 (b) 63.8 

  

Exercise 7.3 
1. 

2. 

(a) Mean =71.47,8, , = 7.29 
(b) 
  

  

Q1
 

68
 

Min 56 

Q3
79
 

T 

08 
Xe
W 

Me
d 
71

 

        

      
55 60 65 70 75 80 

Rates 

(6) No outliers 
(a) Mean = 1626,S, , = 233 
®) [11]79 

12 [ 567 
13 | 089 
14 | 123679 
15 | 033445689 
16 | 02334568 
17 | 1344789 
18 | 02255779 

  

  

  

  

  

  

  

          

C] 

(d) 

(e) 

  
19 | 8 

20 |9 

21|08 

Median = 162.5 

100 

  

        

80 
  

60 
  

40 
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20           
120 140 160 180 200 220 

Passengers 
QI approx. 150, Median approx. 165, Q3 approx. 182 
  

  

  

        

      

120 140 160 180 200 220 

Passengers 

Real Q1 = 14675, Q3 = 179.25, IQR = 32.5. 
No outliers 
%+ 35, = (92,55, 232.65) No outliers 

3. (a) and (b) 

4. (a) 

(b) 
(c) 

1004 
904 
804 
704 
604 
50 
404 
304 
204 
104 
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la
ti
ve
 p
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r
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n
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09 10719 2029 30139 4049 5060 

Marks 

Q = approx. 18, Med = approx. 29, Q3 = approx. 39 
100: 

90, 

80 

70 

60 

50 

40 

30 

20 

10 Cu
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 of
 t

ime
 

S > S S DO D H P S ENSTH S § S 

  

Time 

approx. median = 63, IQR = 27 
about 68 
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Answers 

5. 296 20 
6. (a) mean =72.1,S, , = 6.1 

(b) New mean = 85.1, S will not change. 

G   

7@ i<i0 [ x=20 | x=30 | x=40 | x=50 
15 65 165 335 595 
  

  

  

Fr
eq

ue
nc

y 
S 

x=60 x=70 x=80 | x=90 | x=100 
              
    

  

   

  

  

  

  

  

  

815 905 950 980 1000 5 

() 1000 
900- 0 

g s 150 160 170 180 
2 700 ht § oo Heights 

T 500 (¢) Mean = 170.5, standard deviation = 9.61 
£ 400 (d) The heights are widely spread from very short to very 
2 300 tall players. Heights are slightly skewed to the right, 
3 20 bimodal at 165 and 170, no apparent outliers. The 

wg heights between the first quartile and the median are 
1050 20 40350 1€0; J0eH0 1907100 closer together than the rest of the data. 

s (e) 1404 eats 
(¢) (i) Around 50 120 

(i) Q1 =40,Q3 = 60,1QR = 20 100 
(iii) About 170 days 30 
(iv) Approximately 70 seats o 

8. (a) 40 i 

30 20 

= o4 
g GRRBBBERREEEEEE2] 
g Approx. 183 cm tall 
B (f) 1713 

10. (a) 12 (b) 12 (e) 111 
11. (a) 31 (b) Increase 
12 

13. Ly =11 
14. 11.12, Variance = 24.6 (calculating 02 = 23.6) 

®) . 100 15. Std. dev. = 6.1, IQR~ 6 
fi 90- 16. Std. dev ~ 4.5, IQR ~ 6 
3 80 17. Std. dev ~ 16.7,IQR ~ 15 
g 70 18. Std. dev ~ 0.056, IQR ~ 0.05 
g o 19. Std. dev ~ 82.3, IQR ~ 60 
2 50 

£ 4 s 
Z 30 Exercise 7.4 
g ig L@ Fediom] @orey 
o ¥ 

0 o 
5D 0D L@ e R : “ a - PR D B D P a 
BT § o oo 8 

Time i : . 

Median = 53, IQR = 15 
(¢) mean =513and$,, = 34.8 

9. (a) QI = 165.1, median = 167.64, 
    

  

  

It appears that the data have a weak positive linear 
relationship. The correlation coeflicient is 0.26 which 

  

    

    

  

    

          
    

® 9 Usmmma dgn a1 confirms the weakness of the relationship. 
- | ! | L ‘The regression equation is: y = 6.56 + 0.29x. For every 

|l Pl | |1 | change of 1 unit in the x-values, the y-values will change, 
I T [N on average, by 0.29. 

[ ] | | | 
150 160 170 180 190 200 
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2. (a) 

(b) 

5 

() 

3. () 

(b) 

< 

() 

4. (a) 

Scatterplot of Fuel Consumption 
kmL~" vs Speed kmh " 

% 

Fu
el
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on
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ti
on

 
km
 

L~ 
o0 
%
3
5
 

E 
& 

  

50 7 00 125 150 
Speed kmh ™! 

We chose the speed as the explanatory variable because 
the car must first run to cause a fuel consumption. 
Hence the speed helps explain the fuel consumption. 
‘The relationship appears to be negatively sloped 
because the consumption is measure by the distance 
travelled per litre of fuel. 

‘The relationship appears to be a relatively strong negative 
one without any apparent outliers. The correlation 
coefficient is —0.986 which is very close to —1. A very 
strong relationship. 
‘The regression equation is 
Fuel cons.kmL~! = 24.1 — 0.116 Speed kmh™". 

For every increase of 1 kmh ! in speed, the average 
number of km per litre will decrease by 0.116km1-*. 
i.e. consumption will increase. 

Scatterplot of PPP vs GNI/Cap 

  

60000 

55000 

50000 

PP
P 

45000 

40000 

35000 

  

40000 50000 60000 70000 80000 90000 

GNI/Cap 
‘The relationship appears to be a positive one except 
for an outlier which can be traced to be Singapore. 
We chose the explanatory variable to be the Income 
because the income level dictates how willing are 
people to pay for goods. 
‘The relationship is relatively strong (weakened by 
Singapore’s numbers). The correlation coefficient is 0.621. 
If we remove Singapore’s data, then it becomes 0.886. 
‘The regression equation is: PPP = 24383 + 0.351 GNI/ 
cap. For every increase of $1 in GNI/cap, the PPP will 
increase, on average by $0.351. 

Scatterplot of Consumption vs Visitors 

Co
ns

um
pt

io
n 

  

200 250 300 350 400 450 500 550 
Guests 

(b) There is obviously a positive relationship between the 

C] 

number of guests and consumption. As the number of 
guests increases, the consumption will also increase. 
‘The relationship seems to be strong and there is an 
absence of outliers. The correlation coefficient is 0.978 

which is very close to 1. 
(d) The regression equation is: 

Consumption = 40.0 + 0.777 Guests. For every 
increase of 1 guest, we expect, on average, that 
consumption will increase by 0.777.5. 

        

5. (a) Scatterplot of After vs Before 
140 

120 
100 

5 %0 
< 60 

40 

20 
0 

0 20 40 6 80 100 
Before 

‘The scatter plot shows a strong positive relationship. 
That is, the higher the ‘Before score, the higher the 
‘After’ score is. The regression equation is: 
After = 20.2 + 1.03 Before. 
‘This means that, on average, for every change of 1 mark 
on the ‘Before’ test, the ‘After’ test is expected to change 
by 1.03. The correlation coefficient is 0.97 indicating 
a very strong linear relationship. For a student with 
60 score on the ‘Before’ test, the model predicts, on 
average, a score of 81.90 on the After” test. 

6. (a) Scatterplot of Cost vs Units 
5000 
4500 
4000 

5 3500 
S a0 

2500 
2000 
1500 

10 20 30 40 50 60 70 80 90 
Units 

(b) The regression equation is: Cost = 1066 + 47.1 points. 
(c) For every increase of 1000 units in production, the 

cost, on average. will increase by 47 100 Euros. The 
correlation coefficient is 0.999, which is almost perfect 
association. This is a strong linear relationship. 

(d) Let number of 1000 units be x, 
then: Cost = 1066 + 47.1x 

Clost _ 1066 ;47,1 = cost per unit. If this cost i 105, 

then 105 = 10% +47.1= 18411 

‘Thus the number of units will be 18 40 units. 
7. (a) R = 0.493. This is a relatively weak correlation between 

the two scores. 
(b) The regression equation is: Economics = 2.07 + 0.649 

Physics 
(c) 4.7 (which can be rounded up to 5). 
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Answers 

8. (a) Scatterplot of Price (€) vs Points 
18000 
16000 
14000 

< 12000 
10000 
8000 
6000 
4000 
2000 

  

& 

  

20 30 40 50 60 70 80 90 100 110 

Points 

Appears to be a positively sloped trend. 
(b) The regression equation is: 

Price (€) = —2689 + 154 points. 
‘The intercept is meaningless because zero is not in 
the domain of the explanatory variable. On average, 
for every increase of 1 point, we expect the price to 
increase by 154 Euros. 

(d) r = 0.93 indicating a strong association between points 
and price. 
The average price of a 63-point diamond is predicted to 
be 7013 Euros. 

(f) Residual = 2104. 
9. (a) Scatterplot of Blood Volume vs Age 
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50 60 70 80 
Age 

(b) r = —0.922. There is a strong negative correlation 

between the stroke volume and age of patients. 
(c) The regression equation is: 

Blood volume = 82.5 — 0.269 Age. On average, for 
an increase of 1 year, we expect blood volume to be 
decreasing by 0.269 ml per stroke. The interpretation 

of the intercept of 82.5 does not make sense in this 
situation. 

(d) On average, 45-year olds may have 70 stroke volume. 
Using the model to predict the 90-year old volume 
is not advisable as it is an extrapolation of 17 years 
beyond the range of collected data. 

Scatterplot of Velocity vs Time 

20 30 40 

10. () 

Vel
oci

ty 

  

Time 

Apparently, there is a strong association between time 
and speed as expected. However, it appears that there is 
abreak point around 3 seconds. 
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(b) The regression equation is: Velocity = 24.5 + 21.8 Time 
Fitted Line Plot 

Velocity = 24.46 + 21.83 Time 

  

          
200 

150 

2100 
2 

50 S 113886 
RSq 94.3%       

  

Time 

Apparently, the data do not follow a linear model 
through the whole range. There is a clear deviation 
from the line at both ends. 

(¢) R=0.97, which is a strong association indication. 
However, this number may not be of great validity 
since the data does not appear to be linear. 

(d) By splitting the data, we can clearly see that the new 
model fits the data better. The data clearly has two 

phases, one before 3 seconds and the other after. 

Scatterplot of Velocity vs Time 
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I+ — b       

  

Time 

First interval: Velocity = 3.60 + 34.9 time 

Second interval: Velocity = 60.12 + 14.9 time 

(e) At4 seconds, model in (b) gives a speed of 111.78 
while model in (d) gives 119.78. The actual observation 
s 118. This shows that the error in using (b) is much 
larger than the error in using (). 

Chapter 7 practice questions 

  

1 (a) 12 (b) V3083 
2.4 
3. (a) 
Time 1.6(2.1]263.1]3.6|4.1|46[51]56]6.1|66 
  

                        Frequency [ 2 [ 2 | 6 |4 [11{10|5 |53 [2|0   
  

Fr
eq
ue
nc
y 

  (b) 86% (d) 3.8, 1.1 () approx. 4



(e) 
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Time 

6,Q1 = 3, median = 4,Q3 = 4.5, 
‘maximum = 6.2 
Median and IQR as the data is skewed with outliers. 
Mean = 682.6, standard deviation = 536.2 
500 

Minimum 

  

4504 

400 

350! 

300 

250 

200       
  

  

150 

100 

50                 
gEgeges E §E gge3 

Q1 =300, median = 500, Q3 = 800, IQR = 500 
‘There are a few outliers on the right side. Outliers lie 
above Q3 + LSIQR = 1550 
Data is skewed to the right, with several outliers from 
1600 onwards. It is bimodal at 300-400. 
Spain, Spain (b) France 
On average, it appears that France produces the more 
expensive wines as 50% of its wines are more expensive 
than most of the wines from the other countries. Italy’s 
prices seem to be symmetric while Frances’ prices are 
skewed to the left. Spain has the widest range of prices. 
Mean = 52.65, standard deviation = 7.66 

(b) Median = 51.34, IQR = 2.65 
(c) 

L 

(c) 

Apparently, the data is skewed to the right with a clear 
outlier of 112.72! This outlier pulled the value of the 
mean to the right and increased the spread of the data. 
‘The median and IQR are nor influenced by the extreme 
value, 
‘The distribution does not appear to be symmetric as 
the mean is less than the median, the lower whisker is 
longer than the upper one and the distance between Q1 
and the median s larger than the distance between the 
‘median and Q3. Left skewed. 

(b) There are no outliers as Q1 — L5IQR = 37 < 42 and 
Q3 + L5IQR = 99 > 86. 

  

(d) See () 
. (a) 225 

(b) Q1 = 205, Q3 = 255, 90" percentile = 300, 
10" percentile = 190 

(©) 
(d) 

(@ 

. (a) 

(b) 

(©) 
(d) 

  

100 150 200 250 300 350 400 

‘The distribution has many outliers and is apparently 
skewed to the right with more outliers there. The 
middle 50% seem to be very close together, while the 
whiskers appear to be quite spread. 
  

  

  

  

  

  

  

          

Speed | Frequency 
26-30 5 

31-34 16 

35-38 31 

39-42 23 

43-46 12 

47-50 8 

51-54 1 

251 - 

204 
g 
£15 
Z g 10 
& 

54 

0   

  

25 30 35 40 45 50 55 
Speed 

Data is relatively symmetric with possible outlier at 55. 
‘The mode is approximately 37 
Histogram created from table: 
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285 325 365 40.5 445 485 525 

Speed 

Mean = 38.2, standard deviation = 5.7 
  

  

  

  

  

  

  

        

Speed | Cumulative frequency 
26-30 9 

31-34 25 

35-38 56 

39-42 79 

43-46 89 

47-50 9 

51-54 100 
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Answers 

(€) Median = 37.6,Q1 = 34.5,Q3 = 41.3,IQR = 6.8 

    

  

  

        

  

  
  

        

          

(0) Skew to theleft 

  

  

  

  

  

  

  

        
  

  

  

                      

  

  
  

  

  

  

  

                  
  

  

  

  

  

  

            
  

(£) There are outliers on the right since (d) 65 
Q3 + L5IQR = 51.5 < maximum = 54. 18. (a) 7.41g 

(&) [Weightg | Number of packets 
0 | | I w=85 5 

A LLT] w=90 15 
w=95 30 

25 30 35 40 45 50 55 W= 100 56 

10. (a) Mean = 1846.9, media = 1898.6, 
standard deviation = 233.8, W= 105 © 
QI =171.8,Q3 = 2031.3,IQR = 319.5 w=110 76 

(b) Q1 — L5IQR = 1232.55 > minimum, so there is an w=115 80 
& outlier on the left. © @ Medin=97g @ Qi -0g 

(@0 
| (e) 0.263 

=il 1 19. (a) 982 
—_— -+ - (b) () m=165n=275 

(ii) 3507 

1dflfl 12‘00 M‘OO 1600 1800 2000 2200 24‘00 300 

(d) 11613,2081( s 
(¢) The mean and standard deviation will get larger. The 

rest will not change much. 200 
11. (a) 49.6 minutes (b) 48.9 minutes 150 

12. (a) 166 
<10[=20] =30 =40 =50 =60] =70 =80 =90 [ <100 504 
30 [ 130 | 330 | 670 [ 11901630 1810 1900 1960 [ 2000 o 

(b) 4 2500 60 70 80 90 100 110 120 130 140 

5 2000 (¢) (i) 20% (i) 115kmh"! 
;5’ 1500 20. (a) (i) 24 (i) 158 

£ 1000 ib) 40 i (© 7% 
g s00 2l.a=3 
© 04 22. (a) 120 

10 20 30 40 50 60 70 80 90 100 

Time 100 — 
(© () 47 (i) About500 (iii) Above 60 80 

13. 174cm 5 | 
4. () p=12 (b) Standard deviation = 5 
15. k=4 = | 
16. (a) 97.2 seconds 20 

b ® 50 T 60 [ 90 [120] 150 | 180 | 210 | 240 V0 00 
5 | 20| 53| 74|85 | 92|97 |100 (b) 1QR = approx. 120 

(c) 120 (© m=7,n=6 
100 (d) $199000 i 

. (e) (i) approx.9 ) § 
0l 23. (a) () 20mm (i) 24mm 

(b) 10mm 
40 24. (a) 

207 Mark [0, 20[ | [20, 40 | [40, 60 | [60, 80 | [80, 100[ 

730760 90 120 150 180 210 240 Numberof | =, 50 66 2 20 
() All approx. median = 88 SRS 

Q1 =66 (b) Pass mark = 43% 
Q3= 124 25. (a) 183cm (b) 14m 

7@ G 10 i) 24 26 a=3b=7cll,d=11 
(b) Mean = 63, standard deviation = 20.5 27. (a) 100 (b) a=550b= 

578 
  

 



28. x=4,y=10 
29. (a) Apparently linear with two possible outliers: 

(7,54) and (28, 78). It appears to be a linear 
relationship. 

Scatterplot of Yield vs Rainfall 
90 

Yi
el
d 

3 

  

10 15 20 25 30 
Rainfall 

(b) 0.853. A relatively strong positive linear relationship. 
(¢) Yield = 405 + 1.78 Rainfall. On average, a change of 

Lem in rainfall corresponds to a change of 1.78 kg in 
crop. The intercept is not useful in this case since 0 s 
not in the domain of the explanatory variable. 

(d) 743 
(e) 7°. 

Chapter 8 

Exercise 8.1 
Note: Some answers may differ from one person to the other 

due to different graph accuracies. 
. (a) {left handed, right handed} 

(b) all real numbers from (say) 50 cm to 210 cm. 
(c) all real numbers from 0 to 720 (say). 
{(Lh), 2, h), ... (1,0, .0 (6,0} 

3. (a) {(1, Heart: (King, Hearts), (1, Spades), ...} 
(b) {[(1, hearts), (King, Diamonds)], ....[(L, Spades), (10, 

Diamonds)],...} 
(c) a:52,b:1326 
(a) 047 
(b) anywhere from 0 to 20! 
(c) 10000. 

5. (a) {(1L1),(1.2),.... (4,4} (b) {3, 
6. (a) {(b,b), (b, g), (b,y), (g, b). (g 8). (g 

() 
() {(y ), (v, b). (y @)} 
(©) {(b.b), (g 8), (v y)} 

7. (@) {(b,g), (b,y), (g b), (g ) (y: b), (v, &)} 
®) {(y.b), (v )} 
© ¢ 

8. (a) {(tL1), (tth), (th), (htb), (hth), (hht), (thh), 
(hhh)} 

(b) {(h,th), (hh,t), (thh), (hhh)} 
9. {(L, fly), (1, dr), (I, tr), (Hydr), (H, b)}, {(L, fly)} 

10. (a) {(Lg), (LD, ..., (0,0)} 
(b) {(0,0), (0:9)} 
() {(1,g), (1,0), (0.g), (0.H)} 
(d) {(L,g), (1,6, (1,5), (L)} 

1L (@) {(Gy, Ky, M), (G, Ky, M), (G, Ky, M), 
(b) A = all triplets containing G; B = all triplets not 

containing K;; C = all triplets containing M,. 

» 

    

e 

   
> 9% 

(v, b), (%, 8) 

  

  

(c) AUB = All males or persons who drink; AN C = All 
single males; C' = All non-single persons; AN BN C 
= All single males who drink; A’ 1 B = All females 
who drink. 

12. (@) {(R,L,L,$), (LR, L,R), ..}, 81 
(b) {(RRRR), (LLLL) (SSS9)} 
(©) {(RRLL), (RLRS), ...} 
(d) {(RLRS), (S, S, R, L),. 

13. (a) {(T,SY,0),(C, SN, 0), ...} 

(b) {(T,SY, 0), (T, SY, F), ( 
(0) {(C,SY,0),(C,SN,0), (C,SY, F), ... 
(d) CNSY = {(C,$Y,0), (G, SY, F)} 

C =T ooy ) (By oy )} 
CUSY = all triplets containing C or SY. 

14. (a) {(L1,1), (1,1,0), (0,1,0), ...} 
(b) X = {(1,1,0), (1,0,1), (0,1,1)} 

        

  

Exercise 8.2 
3 3 L@ ®2 

2. (a) 0.63 (b) 1 

1 7 410 1 1 10 3@ 1Y ) © 213 
4 11 @4 ® ©1 
1 1 

5. (a) 2 (b) 12 

1 4 
6. (a) 7 (b) 7 

7@ B (L1,(12),..(66) 
@i a2 

®) @ 0 (ii) é (i) % (iv) 0 
8. (a) 0.04 (b) 0.55 (c) 0.1548 

(d) 0.060372 (¢) 0.104022 
9. (a) Yes (b) No (¢) No 

10. (a) 0.06 (b) 0.42 (c) 03364 (d) 0.412 
11. (a) 0.183 (b) 0.69 

5 1 5 
12. (a) % (b) 517 (© g 

3. @) 2= 0107 (b) 15o=00895 () $3=0.716 

14. 0.75 

11 _ 
15 20" 0.2775 

16. (a) 0.096 (b) 0.008 (0) 0512 

Exercise 8.3 

1o 
2 1 2 1 

2. @ 5 o) 5 © 3 

1 2 @& @2 
3. P(ANB) = L2072 P(A)P(B) 
200 
35 

8: 08 

6. (a) 92% 
() () 0.64% (ii) 15.36% (iii) 14.72% 
(c) 48.68% 
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Answers 

  

  

                            

7. (a) 10000 (b)% (0) 0.3439 (d)% 

s@wh mi @1 
9. (a) {(1,1),(1,2),....(6,6)} 

(b) 

x J2|3lals]e]7]s]o]w|uln 

P | LI L L] L[5 |5]1[L]1|L 
36|18 12| 9 |36] 6 36| 9 | 12|18 |36 

0o B e @l wi 

Wi ol 0wl 0¥ @l 
() No. For example, a grade 9 student is more likely to 

be femal le. 

1L (@) () 056 (i) 0.15 

  

  

  

  

                  

) 5 © no 
12. 

Conditions for, 
P | P@®) | o T | PAnE) [P@UB) | PUIB) 

0.3 | 0.4 | Mutually exclusive 0.00 0.7 0.00 

03 | 04 Independent 0.12 0.58 0.30 

0.1 0.5 | Mutually exclusive 0.00 0.60 0.00 

02 | 05 Independent 0.10 0.60 0.20 

13. (@) 030 () yes 
14. (a) 65% (b) 35% (c) 52% 
15. (a) 0.56; (b) 0.10 

1 91 75 
16. — (b) — — 

@ 216 ® 216 © 216 

17. (a) 0.21 (b) 0.441 (c) 0.657 
2% 11 15 9 

18. (a) 14 (b) 44 (c) 4 () 3 

19. (a) A N B ={(10,5),(10, 4), ...(10, 1),(1, 10), ...(5, 10)}, 
p = 0.069 

(b) AU B = {(1,12), (1, 1), (2, 12), .o, (3, 12), oo (4, 11), 
w0 (5,10), .}p = 0.778 

() list, p=0.931 (d) list, p = 0222 

(@ 05 

(c) 0.537 

(c) 0.75 
(f) 0.682 

(e) sameas (¢) (f) same as (d) 
(8) Thisis (4 U B) — (A1 B p = 709 

1 1 91 2. @ 5% ® 55 © 7= 

21 % 
22. (a) 0.103 (b) 0.0887 
23. (a) 0.10 (b) 0.00001 
24. (a) 036 (b) 0.64 

@ 0.17 (e) 0.0455 
25. (a) 0.8805 (b) 0.0471 

Chapter 8 practice questions 
1. (a) 0.30 
2. (a) 0.0004 
3. 0.99998 

(b) 0.72 
(b) 0.9996 

4.() () 09 (i) 0.80 
(b) 0.083 

(i) 0.15 

(0 0.7 
(c) 0.0004 

5.(a) (i) 03405 (ii) 0.0108 (iii) 0.9622 (iv) 0.30 
(b) Yes. 

6. (a) 063 

580 

(b) 0.971 

10. 

11. 

12. 

13. 

14. 

16. 

A7 

18. 

20. 

21, 

22, 

23, 

  

  

  

  

          

  

      
  

  

  

              

  

      

. (a) 0.60 
(b) Yes, P(BIA) = P(B) = 0.60 
(© 042 

. (a) 

Boys | Girls 
Passed the ski test 2 | 16 
Failed the ski test 1| n 
Training, but did not take the test yet | 20 16 

Too young to take the test 4 6 

() () 06167 (i) 0.56 (i) 0.1463 
3 3 5 @2 ®?2 @< 

(@ 0.02 (b) 0.64 
(@ 04 ®) 06 
(@ 03#8 (b) 0.283 
(@ U 

X Y 

®® 2 6 
(©) No,n(XNY)#0 
@ Males | Females | Totals 

Unemployed | 20 ) 50 
Employed %0 50 140 

Totals 110 90 200 
o 0 9 wmo L@ 

- (@) U 

M N 

(b) 35 () 035 
7 1 1 @ % w i © 1 
i 12 

@ 57 ®) 57 

@ a=21,b=11c=17 
w1 o 31 wo L ow 

© () 0258 (i) 0.742 
(a) See Worked Solutions  (b) = © 3 gt | I 
Wi o mg ©2 
@wo £ @l 

(iii) No, P(A 1 B) # P(4)P(B) 
10 200 

® 57 © 399 
0.00198 
10 

" 19 

 



2 
24— 

5 i 15 g 25 s 5N 
5. () 5 ) 5y (m)g(g) 

(b) Working using (a)(iii) as sum to infinity of a 
geometric series 

© (d) 0.432 
1 26. 5 

27. (a) 0.80 (b) 0.56 

28. (a) 0.732 ®) % 

2. (a) OF ©2 
30. (a) 

o 7 m 2 oo L 6% 
(¢) 0.559 @ n=8 (e) 3 

Chapter 9 

Exercise 9.1 
1. (a) 4 (b) 3x2 (c) -2 @6 

2. (a) 0 () g 
(¢) does not exist (increases without bound) 

. R 
i (1) e 
limfeo = Jim fo0 =3 
asx — a,g(x) — + 00 
(a) horizontal:y = 3; vertical: x = 1 
(b) horizontal:y = 0 (x-axis); vertical: x = 2 
(c) horizontal:y = b; vertical: x = a 

E
 

  

Exercise 9.2 
1 (a) -2 (®) 3 

(c) % ) -2 

2. (a) (@) (i) —4 
(®) () (i) 0 

() (@) (i) —6 

@) () 

(e) () 

) @ 

(g @) 

(h) () 

(i) 1 

OF 
(ii) 0 

(ii) 10 

  

(ii) 3 

® @ y=—sinx (i) v% 
3.a=-5b= 

4. (a) between A and B 
() ) ABandF (i) DandE (i) C 
(¢) pair B & D, and pair E & F 

5. (a) (0,0) (b) (2.8) and (2, —8) 

© (2.-%) @ .- 
6.a=1b=5 

7.a=1 

  

8. (3,6) 
9. (a) 4.6 degrees Celsius per hour 

(b) C =3/t 
_19 (© t=1g0 ~ 242 hours 

Exercise 9.3 

1. () (1,-7) (b) (—%,s) © (.2) 
2. @) y=22-5 

(i) increasing for x > ; 

(i) decreasing for x < % 
®) () y=—6x-4 

(i) increasing for x < ~3 

(iii) decreasing for x > —2 e 3 © @ y=x-1 
(i) increasing for x > 1,x < ~1 
(iii) decreasing for —1 < x < 1 

@G y=dr- 20 
(i) increasing for x > 3 
(iii) decreasing for x < 0,0 < x < 3 

3@ () G- 130),(~4,213) 
(i) (3, — 130) minimum because 2% derivative is 

positive at x = 3 
(—4,213) maximum because 2% derivative is 
negative at x = —4 

(iii) y 
(—4,213) 250 

200 

© 

   
   

    

(®) () (0 -5 
(ii) stationary point s neither a maximum nor 

minimum because 1* derivative is always positive 
(iii) 7, 
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Answers 

() () (1,4),(3,0) (i) 
(ii) (1, 4) maximum because 2 derivative is negative 

atx=1 
(3,0) minimum because 2 derivative is positive 
atx=3 

(i) 

  

4 4 
s 1 ositive at x = — positive atx = 3 

) (4, ~ %) minimum because 2+ derivative s 

(i) ¥ 
2 

     

  

   Displacement function: 
st =r—ar+t 

  

. 5 _279 @0 L9.006.(3.-2) 
(i) (—1,4) minimum because 2 derivative is 

positive at x = —1 
(0, 6) maximum because 2™ derivative is negative 

  

atx=0 

G —%) minimum because 2% derivative is 

positive at x = g 

(i) 

Velocity function: 
V() =36 -8t +1 

  

© o 11,2 -12) 
(i) (—1,14) maximum because 22 derivative is 

negativeatx = —1 
7 122\ . . S it >~ 55 ) minimum because 2+ derivative is 

positive at x = % 
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10. 

Acceleration function: 
a(t)=6t — 8 

  

(¢) ¢~ 0.131seconds, displacement ~ 0.0646 m 
(d) t = 1.3seconds, displacement = —4.3m 
(e) object moves right at a decreasing velocity then turns 

left with increasing velocity then slows down and 
turns right with increasing velocity 

  

. (a) relative maximum at (—2, 16); relative minimum 
at (2, 16); inflection point at (0, 0) 

(b) absolute minima at (—2, —4) and (2, —4); relative 
‘maximum at (0, 0); inflection points at 
(,fi, ,E) and (fi _E) 

309 309 
relative maximum at (—2, —4); relative minimum at 
(2, 4); no inflection points 

(d) relative minimum at (— 1, —2); 
relative maximum at (1, 2); inflection points at 

2 W2 VZ W2 (2 5 ol £22] 
(¢) relative minimum at (—1, 0); 

absolute minimum at (2, ~27); 

(© 

       

relative maximum at (0, 5); 

inflection points at (1.22, —13.4) and (—0.549, 2.32) 

=i 5w (@ x=Fandx =7 

(b) maximum at x = %becausc 2nd derivative is negative; 

minimum at x = 5?7 because 2nd derivative is positive 

(@ ¥0) = 27ms ™, a(0) = —66ms > 
(b) ¥(3) = 45ms ™, a(3) = 78ms > 
© t= % andt= 2%; where displacement has a relative 

maximum or minimum 
@t= % = 1.375; where acceleration is zero 
x % 5.7 tonnes; D & 34.6 ($34,600); this cost is a minimum 

because cost decreases to this value then increases 
a=-3b=4,c=-2 
relative maximum at (—z, ,%), stationary inflection 
point at (1, 3) 
fix) — xasx — *oo 

  

11. (a) y’ 

(b) )” 

(c) ¥ 

(e) y 

(d) ¥, 

  
  

  
12. (a) (i) increasingonl<x<5; 

decreasingonx < 1,x > 5 
(ii) min. atx = I;max.atx =5 

(b) (i) increasingon0<x<1,3<x<5 
decreasingon 1 <x<3,x>5 

(ii) min.atx = 3;max.atx =landx =5 

13. x =~ 0.5and x ~ 7.5 
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Answers 

  

15. (a) right 1 <t < 4;leftt < 1,t>4 
(b) () vo=-24 (ii) @, =30 

16. (a) max. atx ~ 6.50, min. atx ~ —0.215 
(b) max. is 77” + Lmin.is T~ 1 

Exercise 9.4 

  

      
  

  

L () y=—dc—8 ®y=a 
©y=-x+1 @y=-2c+4 

1 19 2 . =L =-2 2@ y=tx L ®)x=-2 

©y=x+1 (d)y:éx—*% 
3.at(0,0):y = 2xat (1,0):y = —x + L;at (2,0):y = 2x — 4 
4.y= -2 
5. x=1 

(b) fory = x* — 6x + 20 eq. of tangent is y = —4x + 19 
fory = x* — 3x? — xeq. of tangent is y = —dx + 1 

6. normal:y = 1 = Zint pe( 1, -13) 
2 z 2’ 4 

7. eq. of tangent: y = —3x + 3; eq. or normal: y = +x — % 

8.a=-4b=1 

5 2 4 3 =2+ 2 c 9. (a) y=2x 2 (b) (3,27) 

10. eq. of tangent: y = ~%x + 1; eq. or normal: y = gx - % 
11. (a) Shows x = 1 is the only solution to fand y = 12x + 4 

(b) fandy = 9x + 5 intersect at (3, 32) which is a 
turning point 

(c) y=12x+4     

    
  

y=0+x(5-x) 

=1lx—25andy 
13. y=(2/2 - 2)x,y 

-1 
—(2V2 + 2)x 

(b) V9 ~ 2.08 

    

14. (a)y:%wfi 

    

16. xg = —2xp Yo = —8yp 

Chapter 9 Practice questions 

1. (a) gradient = 3 (b) y=3x— % 

C] 

  

PREEORIS 
(¢) Mid-point PR :( 2 

=(30=Q 
) y=2ax — a2 

a a2 (g) T(Z,o),U(o, a?) 
a+0_a () x-coord;: 410 = 2 

22A=1,B=2C=1 

3. (a) 4x — 15x* o~ i 
4. (a) x=20r— 2 (1) = —6 < 0 (decreasing) and 

f® = % > 0 (increasing) .. 2) is a turning point 

  

     ; y-coord.: 

  

(b) vertical asymptote: x = 0 (y-axis); 

oblique asymptote: y = 2x 
1 s (3.3) 

6.1 

7. () y=5¢—7 (b)y:-'éx—*% 
8 (a) x=1 

(b) —3<x<-21<x<3 

©x=-1 
2 

(d) 

  

           
maximum at x = 1 

inflexion point at 
— i 

2



10. 

1L, 

12, 

13. 

14. 

15. 
. (a) v=14—98t,a=938 

1% 

18. 

18, 

20. 

2 

22, 

23. 

24. 

  

  

  

  

    

. (a) absolute minimum at (3 

      

  

function diagram 

1 d 
£ ¢ 
£ b 
£ a 

@ 2 (b) (¢) x ~ 0881 

(a) ili) x=0 (i) y 
y _ 2 

(b) P 

  

() increasing for all x, except x = 0 
2 . ¢ v 

d) stati y ts because — = = #0 (d) nostationary points because - = 

maximum at (~ 1, 1), minimum at (0, 0), 
maximum at (1, 1) 

8 ,_16 8,16 
473 5 
(a) 10ms™! (b) 10sec. (¢) 50 metres 

(b) max height = 10 m t ~ 143 sec. 
(¢) velocity = 0, acceleration = ~9.8 ms 2 
(—4,120) 

  

  

@ y=-7x+1 (b)y:§+¥ 

3 ,E) 
4’ 256 

27 in: syl (b) domain: x & Ryrange: y =~ 

N I () inflexion points at 0,0) and (£, — 6) 

(d) 

  

.     

    
     

inflexion 
points 

‘minimum 

. (a) —g ®) 3 

  

  rpan e 3% = B2 — EEE @ S =22 (b) f = 322 — cosx 

© foo= @ fon = o 

3 solutions: ).@.~19),and (-2.5) 

  

25 Zand -4 
2 2 26. (2, 3), (-2 73) 
=) 

28. (a) s(4) = 16,52) = 20 
() 5(3) = 18 

29. (a) changes direction at x = 0, then v > 0 for 0 < x < 277 
© t=0m2m 
() max. value of s is 277 

  

3 e e S - 19 Jre= ~6.d= ~Jiycoord.is— 3 

. absolute minimum points at (2, ~1) and (2, 1) 

  

3 

32.(a) y=—x+2 (b)y:—w% 

(c) For example, deduces that —x + g <-x+w 

33. (a) Show only solution is x = 1,y = 2x, 
() (1,2) 

34. (a) v =50 — 20t (b) s = 1062.5m 
a8, y 

y=f®    
   

  

maximum 

inflexion 

points 

Chapter 10 

Exercise 10.1 

1 (a) y = —e* ®y=1+1[or Xt 
,_ 2 ,_2e 

(@ y =5 @)y =% 
f=Lex P | (€) y = Je* — sinx 0 y=1 

1 2 A = =2x+ —y 2. (@) y=7x (b) y=2x+1 © y=3x 

3. (0, — 1) is an absolute maximum 
» dy i . . . 

. — == #0..no points of inflection Iy v 
-7 5.x=7 
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Answers 

6. (a) f'(0) = ex — 3x4 f'(x) = e* — 6x 
(b) x ~ 3.73 orx ~ 0.910 or x & —0.459 
(¢) decreasing on (—oo, —0.459) and (0.910,3.73) 

increasing on (—0.459, 0.910) and (3.73, 00) 
(d) x ~ —0.459 (minimum); x ~ 0.910 (maximum); 

x & 3.73 (minimum) 
(€) x~ 0.20d0rx ~ 2.83 
() concave up on (— o0, 0.204) and (2.83, 00); 

concave down on (0.204, 2.83) 

N ol
 

Exercise 10.2 

  

    

    

1 () y' = 126x = 8)° () y = 
v 

©y=2 @ y - (%) 

i A B e 
©y=—cr ® y=-3e 

= e il ] 

@ T et vx z] 
() y=—2sinxcosx () y =2xe* ~2 

5 =65+ 5 o xS o2 
Y= Gammar % Tere 

po 20 o y 5 

2. (a) y=—12x— 11 (b)y:%‘,% 

() y=2x-2m 

  

3. (a) v = —2tsin(t2 = 1) (b) velocity = 0 
@© t=Vm+1~204t=1 
(d) Accelerates in the positive direction then slows down, 

turn around, accelerates in the negative direction, 
slows down, turn around again, then accelerates in the 
positive direction. 

  

  

& & 4@ 2= 1frx<-1,L=1forx>-1 ax ax 
dy_ cosx & -2 1 b) —=— — =3+ 1+ — 

®) 3™ T @ g =3+l ( 2/ x) 
d d 

@ ay: (~sinvess () IZ:LI:" 

d © Y- s 
dx (2x+ Dv2x+1 

: iyl ] 5@ @ y ) y= o+ 7 
o g = 

b @ y= (i) y = —2*+6 

Lo 11 © () y=dv—4 @ y=—Jx+1 
d & 

6. (a) ay -2 sin(Zx);Ey: 4cos(20) 

® (Z.0)and (37’T o) 

Exercise 10.3 
L (a) y = x%e* + 2xe* 

2 =3y )y =vT=x- 
. 2Vl1-x 2Vl-x 

    

© y=1+Inx 
(d) y' = cos’x — sin®x or 2cosx — 1 
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@ y=% 

Oy="cTm 
(8) ¥ = 2(2x — DA7x* — 243 + 3) 

() y = 205X = sinx 

@ y= 

0 y= Gx +2)? 

e 1 2x2In3x + x2 () y = 2xIndx + or 2Xmdx 27 | 
M y=0 

2. (a) y:-%x—!’z 
] 1 ®) y=txsl 

(© y=5x-8 

3. (a) (~1, —2¢) and (3,%) 

(b) (1, —2¢) isaminimum,(3, 

  

(©) () hv) — Oasx — o0 
(i) h(x) — coasx — —oo 

(d) horizontal asymptote: y = 0 (x-axis) 
(e) 

  

-1~2)~6 

=1 
27 

5. (a) (i) (0,0)and (4,0) (repeated) 

W) ) 

x+ %; normal: y = —27x — 242 4. t; t: angent: y. B 

(b) 

 



    

  

  

3y i etk 6. () y=-12x+38 @)y =+ 
®) () y= (i) y = —x 

@@ y= W)y = —ax+3 
16 _ 7. A(fi,o),s(o, 16) 
o —2X2+ 8= 6 

8. (a) h'(o) Femyranrry 

®) (1~ Dand (3, 1) 

9. tngentsy = (T22)s - T 
nommal:y = (-2 )+ TEAT N T2 4+ 8 

10. (a), (b) see worked solutions 
G8) — 3 = 8 >0 Py = — 2 (© [38) = 0and f() = 2= >0,/ = ~Z=<0, 

therefore graph of f changes concavity from up to 
down at x = 3.8 verifying that graph of fdoes have an 
inflection point at x = 3.8 

Exercise 10.4 

V65 (fié) 1 (%8,5) ana (-2, 
4 
T 
  4 s by 8 2. 7 metresby metres (or 0.56 m by 0.56 m) 

5o l2 3. ryT , 

4133 amby65 cm 
5 
2 

(@) See Worked Solutions 
(®) § =422 + 220 
(c) 7.21cm X 14.4cm X 9.61 cm 

7. x =527~ 12.5cm 

8. x~3.62m 

9. longest ladder ~ 7.02m 
10. d ~ 2.64km 

11. 4 units® 

12. 6 nautical miles 

* 

  

N 13Ah—ZV3R, r 

14. distance of point P from point X is —4<   7 r? — 

  

15. x &~ 51.3 cm, max volume ~ 403 cm* 

16. Students’ worked solutions 

Chapter 10 practice questions 
L; yi 

  

2, (@) (i) 0and -5 

n (-12,20) 

  

3’27 

Fe ) 
20 

Y 

  

   
4.y=3x+1 
5. () a= i) b=2 

® @ fo s 
i) 2127 ; 27 220 h 27 iy fn =5 

© @) y=8¢ i) x= -2 
6. (a) (i) w0)=0 (i) v(10) ~ 51.3 

() (i) ap) = 099015 (i) a(0) = 099 
© @ 66 @) 0 

(iii) as object falls it approaches terminal velocity 
2 149\, . . . : 7@ (-2 27)mnnmmum.( 4,13) is a maximum 

—7 101} o ani i 0 ®) ( s )15 an inflection point 

8@ @) go= 'c% 

© 

(ii) e > 0forallx, hence ~— < 0 e 
for all x - therefore, fx) is decreasing for all x 

(b) () e+2 (ii) g = —3e 
© y=—3ex+2 

. (a) see worked solutions 
(b) £(3) = 0and f'(3) > 0 = stationary point at 

x = 3.and graph of fis concave up at x = 3,50 f(3) is a 
‘minimum 

() (4,0 
4 sin(s 10. (a) ot (b) 5 cos(5x)esinso 

11.A=1,B=2C=1 

1 g 1 12. @) ¢ i) — 
(b) () (ii) see worked solutions 
(©) 
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Answers 

(@ x=4orx=2 
44 ag0 13, (@) X3 G (b) 2e%c0s(2x) + e*sin(2x) 

x 
4.a=1 
15. (a) x = 3; sign of h'(x) changes from negative (concave 

down) to positive (concave up) at x = 3 
(b) x = 15 h'(x) changes from positive (h increasing) to 

negative (1 decreasing) at x = 1 
(c) 

  

16. y = 2ex — 
17. h = 8em,r = 4cm 
18. maximum area is 32 square units; dimensions are 4 by 8 
19. (@) E ) A (© C 

1,3 Ly = —ox 4+ 22 20.y=—zx+ 3 

  

Chapter 11 

Exercise 11.1 
> 

1.(a)"7+2x+c b)) B—+t+c 
. 

©E-Z+c 3.1 
5 () —;S—u‘-#c 

w, r Ll o3y @+ 5-sthe 
   

O FE-3F+c 

(g) —3cosf+4sinf+c  (h) £+ 2cost + ¢ 

    @ 4"5; = ‘0’;? +c () 3sinf—2tamb+c 

(k) éc“ Lokid M 2Initl + ¢ 

(m)éln(S f45)+e (n) e 4 ¢ 
s (0 & i 9, 

seb 2w L (a) 2 42 ot 2. (@ —7 3 Ttk 

oL xt 2 11 R B e 
® STy 

e 
(c) T+smt+ct+k 

(@) 3x* —4x2 + 75+ 3 

(e) 2sinf + %cuszfl +e 
(3x2 + 7)¢ 1 L@t kg b ——L e 

® 5 L 18(3x2 + 5)% 
8V(5x° +2)° @vx +3)° © e (@ 2 

P =77 Qx + 3 5 . © ¢ o 2 

© _w Fee 
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. (a) —li 

(h) ~3Inlcos20— 1 +3) + ¢ 

@ Lano-2)+c 

1 &) Lsecat+ ¢ 
& 

P 
3 

=58P +¢ 

  

() —cosvT+c 

(e) 2In(vx +2) + ¢ 

© %ln‘xl tex+N+e 

© 
) —L jm g 4 o= K 

2a* 

() Lsin(mx+3) + ¢ 

W %e"" +e 

@) 2000 + ¢ 

(b) %tan 6+ 

1ns + (@ tan°2t + ¢ 

® Ler ot 

s 
V1—a’xi+c   

21ar® 

(i) %(39(2—):—21»3(—14-6 

s 2 p——as 
) —5/0Fcost” +¢ 

2 (15532411 (k) ]05(15t 32 —4t -8 1—t+c 

1) %5(312 +2r—13)02r—1+¢ 

(m)%ln(c*’ te )+ 

Exercise 11.2 

1 

  

  

  

(a) 24 (b) 40 © % @0 

) m%“ ® 0 (9 2 

(h) —268 (i) %4 G) 2 

® ln(%) W % —83 (m) /7 + 1 

(m) ()6 Gi) 6 (i) 12 

(0) 1 (p) 4 (@0 
= 

@ W2 gy L (© In2) 

@ 162 -55 () 114 — {10 () % 

1 37 o ® —u(Z) wo @) —4 

o 1 ey ol w et ) 2cos(1) +2 

. (@) S (b) -Snx © 
1, (3k+2 2’1 

L@ gn(¥2) 0 k- 
. Substitute u = 1 — x 

af 1 x—1 
- @ -~ -2 l(k+1+k+z) 
By o 

*+ DET2) _ 
@0 ®) 77 © 57



Exercise 11.3 

I - (@) % (b)% +1 (c) 413 

@ © % o2 

R ) 47 o 3 

() 465 ) 32 — % 

® (between —Tand T) v§ln(%) 2B +4 

(m)19 (n) % 

22 OF » 4 
2 269 

= 

m=0973 
37 

‘12 

Exercise 11.4 

L; (@) 732 m, 65m 
(@ 2m,2%m. 
€ mim 
(b) 2 — 4t +3,0,2.67m 

(©) I'm,1m 
(¢) 18m,28.67m 

. (a) 3t,6m,6m 

©1- mst,(321+ 1)m.(37’7 + l)m 

(d) 4 - 27 F1,243m,291 m 

L3 113m113m 
20+ 2 

. (a) 4.9+ 5t+ 10 

(e) 32+ 

(b) 1662 =2t + 1 

  

1 cosmt 1 (© 7<% (@) In(¢+2) + 

. (a) e'+ 19t +4 (b) 4.9 — 3t 

(0) sin(2t) — 3 (@ ~cos(2) 

; 13 13 . (a) 12;20 ® 555 

9 11 - - 
© 3% d) 23 - 6,6 —273 

10 17 204 13 
- @) 5y b) 5o © —65 

166 166 166 
@) 2 ) = © = 

(a) 50 — 20t (b) 1187.5 
. 1.0041s 
. (a) 55 (b) 272.5m 

(c) 10s (d) —49ms! 
(e) 12465 (f) ~73.08ms"! 

(b) 8.5m to the left, 8.5m. 

Chapter 11 practice questions 
1) p=3 (b) 3 square units 

2. 1) 
3.a=e 

4@ y=% 
(c)%m-l—flllnxd.x 

5. (a) (i) 400m 
(i) v =100 — 8t 60m/s 
(iii) 85 
(iv) 1344m 

(b) Distance needed 625 
6. (a) See Worked Solutions 

2 
(c) —mcosx — "7 +¢0.944 

7.In3 

. (a) () See Worked Solutions 
(i) (1.57,0); (1.1,0.55); (0, 0), (2, —1.66) 
-z ®) x=7 

(b) 2V2=2 

() Inx+1-1 

(b) 231 

» 
(c) (i) See Worked Solutions 

i) [ x2cos (.12) fn x2cosxdx 

(d) % — 2~ 04674 

9. (@) 27 
(b) range: {y|—04 <y <04} _ 

(© () —3sin’x+2sinx ) 22 
bt 9 

@7 
(&) () %sin’x +e (i) % 

® arccos% ~0.491 

10. (@) () See Worked Solutions (i) See Worked 
Solutions 

(b) See Worked Solutions  (c) 3.69672 

* — 2~ 7.86960 

10x—1—e> (ii) lnTS“ 0.805 

® @ -t 

© v=nf "0+ e 
24542 ;) 12 7(15,1 +3a 

201 foan i a4l 2(2x+1) - 2(2 + 
3 4(5(2" 1) 3(2"“)) ¢ 
4. 9=—1 

(d) fo (4 xcomdx  (€) 

11 @ @ 

(ii) See Worked 
Solutions 

15. g(c% -1 

16. k= 
17. 1800m 
18. 2aby 2a2 

19. (a) Inx +1 -k ® x>1 
(c) () See Worked Solutions 

(ii) (c*,0) 
o2k 

@ < 
(£) See Worked Solutions 

    (e y=x-c¢ 
(g) Common ratio = ¢ 
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23, 

24. 

25. 

26. 

27. 

28. 

29, 

  

(b) See Worked Solutions 
(c) 0.6937 

P \ @ [ e = (e ~1)dv~ ~0.467 

(a) See Worked Solutions 

OIOE SRR < 
(© Gn+ 1) 
() t=0,3,0r6 

®) @) f:|¢sm(g)mr| 

(a) 0.435 

—2t 
(b 
® Q@+ £ 
  

2x2 

3 F 

(b) See Worked Solutions 

(c) k=0918. 
6m 

0.852 

() See Worked Solutions 

+21+ 22 
    (a) %: 

48 ; — k=L ® () A=78k=cn22 

8 ® In]3 

590 

Answers 

_oml® © area=21n]3 

      

2 
3L S i+ r2dnbe 2l + =B e x4z 
32 (a) 

o 6 (i) &7 

@) 115m 

) () x=23 
(ii) x—int=¢—3y—int=In3 -2 

(9) ~1343.05 
e 

(@ ffl (4— (1 — % — (Inx + 3) — 2)dx 
. (iii) 106 
@) 453 () 463 

 



Chapter 12 

Exercise 12.1 
. (a) discrete 

(d) discrete 
(g) discrete 
(j) discrete 

(m) discrete 
2. (a) 04 

(b) 05 

(b) continuous 
() continuous 
(h) continuous 
(K) continuous 

(c) continuous 
(£) continuous 
(i) continuous 
(1) continuous 

0.4 

034 

02 

0.1 

0.0 
0 1 2 3 4 5 

(¢) 185,1.19 (e) 2.85,1.19 
(f) E(2) = E(Y + b) = E(Y) + band 

V(Y) = V(Y + b) = V(Y) 
. (a) 0.26 (b) 0.37 (0) 077 

(d) 1629 () 81259 
(f) 4.145,2.031475 
(g) E(aX + b) = aE(X) + band V(aX + b) = a®V(X) 

    

w 

  

  

  

              

  

4. (a) 0.969 (b) 0.163 (© 35 
(d) Z(X —3.5)2. P(x) = 1.048 = ¢ = {1.048 ~ 1.02 

(¢) Empirical: 0.68, 0.95; approximately 0.68, 
approximately 0.90 

5. k=L 
30 

x 12 14 16 18 

POX=x) | ok | 7k | 8k | % 

1 ¥ 1 6@ k=1 w7 ©® 
(@) E(X) = 16,5D=7 

= 11 49 (e) () ="55V(N) =7 
1 7@ 

2 3 4 

17 - oz 0 (d) =12 Var = 1.08 
8. (a) P(X = 18) = 02, P(X = 19) = 0.1, Symmetric 

distribution. 

(b) = 17,SD = 1.095 
9. (a) p=19,5D = 1338 

10. k = 0.667, E(X) = 5.444 
(b) between 0 and 5. 

  

11. (a) k=030r0.7 
(b) for k = 0.3: E(X) = 2.18; for k = 0.7: E(X) = 1.78 

12. (a)   
  

            

  

    

x o[ 1]2]5 
- 112|418 

PE=9 5|5 |5 |m 
(b) 2 1 7 

5@ k= OF 
14. (a) See table below.  (b) 0.85 © 015 

(d) 48.87 (©) 2057 ® 072 
x |45 |46 | 47|48 [49 |50 | 51|52 53] 5455 
CDF|0.05]0.13]0.25] 0.4 [0.65]0.85] 09 [0.94]0.97]0.99] 1                         
  

15 @[y o1 [2]3]as5]s 
CDF | 0.08 | 0.23 | 0.45 | 0.72 | 0.92 | 0.97 1 
                      

  

  

                  

  

  

(b) 072 () 097  (d)263  (e) L4d0 
16. (a) 0.9 (b) 0.09 (9) 0.009 

(d) (i) unacceptable (i) acceptable 
(&) P(x) = (0.1 X 09 

17. (@) 0 (b) 081 (9) 0.162 
(@) () either (ii) acceptable 
(&) (x— 1) (0.152) X 09, x > L. 

18. 0 =132 
19. @) @) & @) - : 9 81 

o 73 - 575 
® ® Gy @ 1596 
(&) (i) See Worked Solutions 

@ Ty 1 2 3 4 s | 6 
T | 15 | 65 | 175 | 369 | 671 

CPF | 1256 | 1296 | 1296 | 1296 | 1296 | 1296 
o 6797 

(i) 1296 
20.93 

Exercise 12.2 

1. (a) 
x 0 1 2 3 4 5 
  

P(X = x) |0.01024| 0.0768 | 0.2304 | 0.3456 | 0.2592 |0.07776                 

(b) 

  

0 1 2 

(¢) (i) Mean = 3,SD= 1.095 
(i) Mean = 3,SD= 1.095 

(d) between 2 and 4, and between 1 and 5. 
(€) 0.8352,0.990. Slightly more than the empirical rule. 

2. () 0001294494 (b) 0.000000011 
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Answers 

  

(c) 0.99999999 (d) 0.99999966 
(¢) mean = 12,SD = 2.19 

3. (a) 
k 0 1 2 3 4 5 
  

            p(x < k)|0.11765|0.42017 |0.74431|0.92953 | 0.98907 |0.99927 

(b) 
  

  

Write the Find the Numberof | List the SO | Brplaini, | e number of | Listthe | probability | PR required successes x| values of x if needed - 
statement probability 
  

Atmost3 [0,1,2,3 |p(x=3) |px=3)  [0.92953 
  

Atleast3  [3,4,56 [Px=3) |1-px=2) 025569 
  

Morethan 34,56 |p(x>3) |1 — p(x=3)0.07047 
  

Fewerthan3(0,1,2  |p(x=2)  |p(x=2)  |0.74431 
  

Between (3,45  [p3=x=5)|p(x=5)— [0.25496 

                

  

  

  

                

  

3and5 plx=2) 
(inclusive) 
Exactly3 [3 P(x=3) |[P(x=3) |o.a8522 

4. @) |k 0 1 2 3 

plx=k) | 002799 | 0.15863 | 0.41990 | 0.71021 
k 4 5 6 7 
px=k) | 090374 | 0.98116 | 99836 1 

(b) 

Numberof | Listthe | "W¢the | ppny, | Findthe probability | required successes x| values of x if needed i 
statement probability 
  

Atmost3 [0,1,2,3 |px=3) [px=3) [071021 
  

Atleast3  [3,4,5,6,7 [P(x=3) |1 - p(x=2) [0.58010 
  

More than3(4,5,6,7 |p(x>3) |1 — p(x=3)0.28979 
  

Fewerthan3(0,1,2  |p(x=2)  [p(x=2)  |0.41990 
  

Between [3,4,5  [p3=x=5)|p(x=5)— [0.56126 

          3and5 p(x=2) 
(inclusive) 
Exactly3 |3 Px=3) [Px=3) [0.290304     

5. (a) p is not constant, trials are not independent. 

(b) p becomes constant. 

                

5 
©n=3p=7¢ 

y 0 1 2 3 
P(Y=y) | 005273 | 0263672 | 0.439453 | 0.244141 

(d) 075586 (e) 1875 
() 0.703125 (g) 094727 

6. (a) 0.107374 (b) 0.99363 
(c) 0.89263 @ 2 

7. (a) 0.817073 ®) 1 (¢) 00161776 
8. (a) 0.033833 (b) 0.024486 (c) 0782722 
9. (a) 075 (b) 0.0325112 (c) 0.172678 

10. (a) 00431745 (b) 0.997614 (¢) 00112531 
(d) 0.130567 (e) 0.956826 () 10 
(93 (h) 4, 16. 
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11 (a) 3 (b) 0.101308 (c) 0.000214925 
12. (a) 

x 0 1 2 3 4 5 
P(X) |0.03125]0.15625]0.31250|0.31250(0.15625|0.03125 

(b) 0.03125 (c) 0.03125 
(d) 0.96875 (e) 0.96875 
(f) (a) 

x 0 1 2 3 4 5 
  

          P(X) |0.32768(0.40960(0.20480(0.05120 0.0064010.00032       

13. 

14, 

(b) 0.32768 (c) 0.00032 
(d) 0.67232 (e) 0.99968 

. 0.91296 

. (@) 0.107 (b) 0.893 (© n=14 

Exercise 12.3 
(some answers are rounded) 

1 

- s 

  

21. 

22, 

23, 

24. 

25, 

26. 

27. 

o
u
 
A
W
 

    

. (@ 05 (b) 0.499571 (c) 0.158655 
(d) 0.682690 (e) 0.022750 ) 0 
(a) 0.76986 (b) 0.161514 
(c) 0.656947 (d) 0.999944 

. (a) 0.008634 (b) 0.982732 
128 
1.96 

. (a) 0.066807 (b) 0.68269 
(c) 678.16 (d) 134.90 

. (a) 1.76% (b) 509.98 (¢) 571 

. (a) 0.969 (b) 0.546746 

. (a) 1day (b) 29 days (c) 112 days 

. 1.56 

. 189192 

. 30.81 

. 100.28 

. 29.95 
21.037, 0 = 4252 

= 18988, 0= 0.615 
121935, 0 = 34.389 

. (a) = 6.966,0=0.324 (b) 0.252 

. (a) 0.655422 (b) 0.008198 (c) 82bottles 

. (a) 22.73% 
(b) 0.546% 
(c) 29.678 
(d) 229.183 
(a) Not likely: chance is 0.135% 
(b) 15.87% 
(c) 68.27% (d) 5396km 
(a) 6.817 (b) 3.4315 
(¢) p=64.135,0=7545 
7.3% 
(a) 216.06 
(b) 1531 
(a) p=111.90,5 = 17.09 (b) 
9.1929 
(@ (i) o=1355 

(if) = 110.37 
(b) A =108.64;B=112.11 

(e) 43785 

0.54 

 



Chapter 12 practice questions 
1. 

2, 

% 

b 
» 

10. 

12. 

13. 

14. 

5 

16. 

17, 

18. 

19. 

20. 

(a) 34.5% (b) 0416 (¢) 3325 
(a) (i) 0393 (i) 0.656 (b) 50 
(a) 0.1 () 10 
(¢) See Worked Solutions () 0.739 

35 7 
(@) 335 ®) 55 

91 
©) 35 

. (@) (i) a=—0455b=0.682 
(b) () 0.675 (i) 0.428 
(¢) See Worked Solutions ~ (d) ¢ = 62.6 
(a) 69.97% (b) 0.00226 
(a) 0.0808 (b) See Worked Solutions 
(¢) p=2555=0255 (d) 12500 
(@) (i) 0345 (i) 0.115 (iii) 0.540 
(b) 0.119 (c) 737 
(a) 15.9% (b) 227cm 
(a) 0.0912 (b) a=251,b = 369. 

L@ a=-1b=05 
(b) (i) 0.841 (i) 0.533 

  

  

            

    

(¢) (i) See Worked Solutions (ii) 0.647 
(a) 2 (b) 0.182 (c) 0.597 

= 66.6,0=226 
(a) 0.8 
(b) (i) See Worked Solutions 

@ Ty 0 1 2 
1 8 2 

P(Y=y) I i3 3 

3 T © 5 @ g 
(a) 0.129886 (b) 0.676714 (© 2 
(a) 0.1829 (b) 0.3664 
(a) (i) 0.002171 (ii) 0.00120 
(b) 0.8413 
0= 0.00943kg ~ 9.4 g 
(a) x = 58.69 
(b) s =341 
(¢) (i) Karl 

(i) 0.00239 
(a) m=163 
(b) 0.44 X 0.401 + 0.56 X 0.242 = 0.312 
(c) 0.434 
(d) $6605.28 
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Index 

A 
absolute maximum 398, 400, 404-5, 

443-4 
absolute minimum 398, 400, 437, 443 
absolute value 6,47-9,192,305 

ofarea 443-4,492-3 
distance and speed as 403, 506-10 
in equations 77-8 

absolute value function 36, 38-9, 46, 
47-9 

acceleration 403-5, 506, 507, 510-12 
due to gravity 511-12, 606-7 

accuracy 203, 225,243,263, 621 
insketches 72,444 

acute angles 223-31,232, 233,235, 251-2 
arrangement of known parts of a 

triangle 243-7 
between two lines 236-8 

acute triangles 234, 248-9 
addition rule (probability) 342, 344, 351 
algebraic analysis 18-21 
algebraic methods 74-80 

inequalities 78-80 
optimization problems 443-7 
quadratic equations 62-5, 75-7 
systems of equations 9-11 
trigonometric equations 2046, 

208-10 
using logarithms 151,161-9 

algebraic notation 614-15 
ambiguous case 247 
amplitude 191-2,194,195 
angle of depression 224,225 
angle of elevation 224,225,226, 244 
angles 175-82,222-55 

etween two lines 235-8 
converting degrees/radians 176-7 
included angle 234-5, 243, 249-50 
right-angled triangles 223-30 
in standard position 175,176,183, 

231-3 
supplementary 232-3 
three-dimensional structures 238 
trigonometric values 223 

annual interest 93-4 
annuities 107-8 
antiderivatives 456-65, 510 

fundamental theorems of 
calculus 479, 4834, 485 

see also integration 
arclength 175-80 

and trigonometric functions 183-6, 
188, 199-200, 201, 206 

arccosfarcsinfarctan 458-9,463 
area 

alongy-axis 496 
between curves 493-5 
and definite integral 476-88 
finding by integration 491-7 
finding maximum 4434, 446 
finding volumes 497-9, 500, 502 
right-angled triangle 237 

of sector 179-80 
of segment of a circle 234 
surface area 218-20,238 

of triangles 227,233-5 
under curve 476-80, 481-2, 486, 

491-4 
under normal distribution 561-2, 

563-5 

594 

under probability density 
function 54850, 551, 552, 554 

under velocity-time graph 508-9 
argument (of a function) 24 
arithmetic mean (average) see mean 
arithmetic means (sequences) 89-90 
arithmetic sequences 88-91,101 
arithmetic series 98,101-3 
associated variables 301, 309 
asymptotes 20,467,195, 376, 378 

exponential functions 140-2 
rational functions 702,379 

average see mean 
average rate of change 390-1 
average value (of a function) 480-1 
average velocity 374-5,401-2 
axioms 616 
axis of symmetry 58-62, 657 

B 
bearings 252-3 
beauty 618-21 
bimodal data 296 
binomial coefficients 113-14, 346, 529, 

540 
binomial distribution 478-9, 578-9 
binomial expansion 115-16 
binomial experiments 540 
binomial probability model 541 
binomial theorem 111-18 
bivariate statistics 300-19 
box-and-whisker plots 288-9,291-2, 

2934 
broken-stick regression 315 

C 
calculus 374, 375, 386, 443 

fundamental theorems 479, 4814, 
485 

see also differentiation; integration 
cardinality 602 
categorical data 262,263 
census of a population 269 
central angle 175 
central tendency, measures of 276-83, 

530-1, 5338, 5514, 555-60 
chain rule 428-34, 439, 440, 445,483 

and integration 459, 460, 464 
change of base formula 157-8, 162 
changing the subject 2-3 
circles 175-82,234 

see also unit circle 
classes 264-5, 548 

modal class 279 
co-function identities 211 
coefficient of determination 308 
coin tossing 332-3, 334-5, 336, 341 
combinations (objects) 122-4, 346, 540 
combinations (random variables) 574-6, 

580-2 
common logarithm function 154-5 
common ratios 91,92,103-4,105 
complement rule (probability) 342, 344 
completing the square 60-2,63 
composite functions 24-8, 46-9 

differentiating 428-34 
integration 4634 
two inverse functions 29 

composition 24-5 
compound interest 93-5,107-8,163, 164 

continuously compounded 147-9 
exponential model 143 

concavity 58-9,405-8,437 
conditional probability 353-7, 621 
cones 219,220 
consistent system of equations 8 
constant function 36, 385, 457 
constant multiple rule 386, 435 
constant rule 385,386 
constructivism 610-11 
continuous change 147-50 
continuous compound interest 147-9 
continuous data 263 
continuous distributions 547-72 

measures of centre 5514, 555-60 
measures of spread 553-60 

continuous exponential growth/ 
decay 149-51 

continuous functions 397, 406, 477-9, 
480 

continuous random variables 547-72, 
5734 

cumulative distribution functions 550, 

normally distributed 560-72, 580-2 
probabifily density functions 548-60 
summary measures 551-5 

convenience sampling 272 
convergent functions 378 
convergent series 105 
coordinate planes 3, 6-7,8,175,216-18 
coordinates 3,6-7,16,216-18 

scatter plot variables 304, 310-11 
stationary points 3968, 399-400, 

437 
in three dimensions 12,217-18 
transformations 39-40, 41-3 
on unit circle 182-5,188-9 
of avertex 60-2,65,66-7,396 

correlation 300-4, 306-9, 315-19 
correlation coefficient 306-9 
cosecant 223,231,232, 459 
cosine 183-7,202 
of acute angles 222-3,224 
of angle in standard position 231-3 
antiderivative 457 
calculus formulae 458,463 
derivative 393 
graph 188-94 
identities 199,206-11, 232, 472 
integration 458, 459,461-7, 468, 

469-73,474-5 
transformations 189-94 

cosine rule 242, 248-52 
cotangent 223,231, 232,459 
coterminal angles 175 
coterminal arcs 186 
counterfactual world 603 
counting 118-27, 602 

combinations 1224, 346 
fundamental principle of 119-20 
permutations 121-3 

covariance 304-6 
critical points 397-8 
critical values 444, 445 
cube root function 28-9 
cube (solid) 170 
cubic equations 604-5 
cubing function 28-9,36 
cuboids 217,219



cumulative distribution function 
(CDF) 527-8,537 

binomial distribution 5434 
continuous random variables 550, 

554 
cumulative frequency distributions 

266-8, 274-6,294-5 
cumulative frequency graphs 267-8, 

291,294-6 
cumulative probability 565 
cylinders 219 
cylindrical shells 5034 

D 
data 260-2 

bimodal 296 
classifying 262-3 
collecting 2612, 269-73 
graphical tools 263-8,274-6 
grouped 290-2 
organizing 263-5 
reffability and validity 262 
summary measures 276-83, 284-300 

data set 262, 288-9 
De Morgan's laws 337 
decay 140-1,142,144,164 

continuous 148, 149-50 
discrete 148 

decay factor 142 
decomposing functions 26, 431-2 
definite integrals 477, 479-88, 4917, 

498-504 
degree :An%le measure) 176 7,178 
degree (polynomials) 
dependence, measures o 3049 
dependent variables 16-17,301,312-15 
depreciation 144 
derivatives 383-411, 482-3 

composite functions 429-34 
exponential functions 424-5,427-8 
first derivative test 399402, 404-5 
as gradient (slope) functions 3834, 

395 
logarithmic functions 425-8 
polynomials 385-90 
products of functions 435-7 
quotients of functions 438-42 
as rate of change 390-1, 403-5, 

429-30 
second derivative test 407-8, 444 
second derivatives 402-8, 437 
sum and difference rule 385,386 
trigonometric functions 391-3 

dice rolling 335,337-8, 3445, 575-6, 
577-8 

two dice experiment 524-5 
differential equations 607-8 
differentiation 385-422, 424-54 

composite functions 429-34 
of a derivative 402-8 
finding equations of normals 414-17 
finding equations of tangents 412-17, 

427 
finding maxima/minima 395-411, 

443-50 
finding vertex of parabola 3967 
formulae 458-9,463 
logarithmic and exponential 

functions 426-8 
moving objects 401-5, 506-8 

Index 

optimization problems 443-50 
products of functions 435-7, 441-2 
quotients of functions 438-42 
rules 385-91, 426, 428-42 
term by term 385, 387, 413,430,432, 

435 
Dirac’s equation of the electron 620 
discrete data 263 
discrete growth/decay 148 
discrete random variables 524-6, 5734 

binomial distribution 538-47 
expected values 530-1, 533 
probability distributions 52647 
standard deviation 532-3 
variance 532-3 

discriminant 63-5 
disjoint events see mutually exclusive 

events 
displacement 401, 403-5, 506-10, 511-12 
distance 6-7,17,403 

between two points 6,7, 14,216 
between two points in 3D 217-18 
from point to line 226-7 
minimum 226-7 
optimization problems 444-6, 447 

distance travelled 506-10 
distance-time graphs 374-5, 381 
domain (of a function) 16,18-21 

composite functions 24,26-7 
endpoints 397,400, 404, 443, 444 
exponential functions 140, 141-2 
interchanging with range 31-4 
inverse functions 29-34,152 
logarithmic functions 153 
rational functions 69-72 
trigonometric functions 183,185, 

194-5 
double angle identities 207-8,209-11 
double root 63,64 
dual key cryptography 609 

E 
e (number) 147-51, 154, 424-7 
Einstein’s field equation 620 
elementary row operations 12-14 
elimination method 9-10,12-14 
empirical rule 292-4, 562 
endpoints 

classes 264 
domain 397,400, 404, 443, 444 
line segment 6-7,217-18 

equally likely outcomes 341, 344-5, 346 
equation of a line 3-6,8-9, 14,235-8 

normals 414-16 
regression line 310-12 
tangents 412-14,416-17,427 

equations 2-15,73-8, 80-2,161-9 
‘with absolute value (modulus) 77-8 
with fractions 74-5 
graphs of 3-6,8-9 
in Cfimdralic form 75-7 
with radicals 74 
systems of 8-14,15,567 
see also specific types of equation 

errors 270 
evaluation theorem 484 
even numbers 614-16, 617-18 
events 332-40 

asareas in the plane 345, 360-1 
combined 350-65 

definition 335 
equally likely outcomes 341, 344-6 
independence of 351-2,357-61 
mutually exclusive 342, 344, 346, 351, 

527,540 
probability of 340-65 

exact values 154, 185-6,199-202, 210, 
2323 

expanded form% uadratic equations 59 
expectation algebra 572-85 
expected values 530-1, 533-8, 572-85 

inomial distribution 541 
continuous distributions 551, 552 
and covariance 304-5 
linear combinations of random 

variables 574-6, 580-2 
linear function of random 

variable 572-3 
normal distribution 561-5 
sample mean 579-80 
several observations of random 

variable 576-9 
experiments 33240, 524-5, 540 
explanatory variable 301,308, 310, 314 
explicit definitions 85,89, 91 
exponential decay curve 140-1 
exponential equations 152-3, 161-5, 

168-9 
exponential functions 138-51,169-72 

characteristics 138-9 
derivatives 4245, 427-8 
graphs 139-42 
growth/decay models 142-4,163-4 
inverse of 152,153-4 
natural exponential function 138, 

149-50, 154 
power function comparison 138-9 
transformations 141-2 

exponential growth curve 140-1 
exponentiation 166 
extraneous solutions 74-5 
extrapolation 310,312-13 
extreme values see outliers 
extreme values (of a function) 397-401, 

402, 404-5, 407-11 
optimization problems 443-50 

F 
factorial notation 113,121-2 

ed form 65-7 
ing to solve quadratics 63, 64 

Fermat's conjecture 605 
Fibonacci sequence 86,613, 619 
finite sequences 84,97 
first derivative test 399-402, 404-5 
first fundamental theorem of 

calculus 481-3, 485 
five-number summary 288-9 
Formalism 611 
formulae 2-3 

calculus 458-9,463 
change of base formula 157-8, 162 
compound interest 93, 934, 147-8 
quadratic formula 58,61, 63-5 
volume and surface area 219 

fractions 74-5,613-14 
frequency distributions 263-8, 273-6 
frequency theory 341 
function notation form 430-2, 435, 436, 

593 

 



Index 

functions 16-56, 58-73, 81, 82 
absolute value of 47-9 
algebraic analysis 19, 20-1 
analysing behaviour 376-9 
antiderivatives 456-65,479, 510 
average value of 480 
composition 24-5 
concavity 405-8 
decomposing a composite 26 
definition of 16-23 
derivative tests 399-402, 404-5, 

407-8, 444 
derivatives see derivatives 
domain see domain (of a function) 
graphical analysis 19,20-1,30-1, 

64-7,70-2 
graphs see graphs 
increasing%decreasing 396-400, 405 
inverse 28-35,152,153-4 
limits 375-9 
‘maximum|minimum values 58-9, 

192,397-411, 437, 443-50 
notation 19,24-5,29,156 
transformations see transformations 
see also specific types of function 

fundamental principle of counting 
119-20 

fundamental theorem of calculus 479, 
481-4, 485 

future value 93-5,107-8 

G 
general form of aline 4 
general form quadratics 59, 60-5, 67 
geometric means 97 
geometric probability 345, 360-1 
geometric sequences 91-8, 105 
‘geometric series 103-10 
geometry 179-80,216-22 
golden ratio 619 
gradient 4-6,235-6,394-5 

ofacurve 380-4, 385,386-92,413 
derivatives as 383—4, 395 
inflection points 407 
normals 414-17 
positive/negative 396, 403,405 
and rates of change 380-1, 390-1, 

395 

   

  

regression line 310, 311, 314, 315-17 
secant lines 381-3,390-1 
sine graph 391-2 
tangents 380-4, 385, 386-9, 392, 

412-17 
turning points 390 

gradient-intercept form see slope- 
intercept form of a line 

graphical analysis 19, 20-1,64-7 
inverse functions 30-1 
rational functions 70-2 
trigonometric identities 207-10 

graphical display calculator (GDC) 
accuracy 203,225,243 
area under normal curve 564-5 
behaviour of functions 376, 377-8 
binomial distribution 541, 5434 
checking solutions 21,77-8,167, 

437 
correlation coefficient 307, 308 
discrete random variables 532, 533 
equation solver 77 
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finding areas 495 
finding derivatives 383-4, 386-9, 393, 

424-6 
finding domain and range 21 
finding gradients 386-9 
finding probabilities 541, 5434 
finding roots/zeros 63, 64-5 
graphing derivatives 424-6 
inverse functions 32-3 
invNorm 566 
order of operations 163 
regression equations 314-15 
scatter plots 304 
simultaneous equations 8-9,11-12, 

13 
solving equations 645, 167,201 
statistical calculations 286-7 
transformations 40 
trigonometric identities 207, 209 

graphical solution methods 
quadratic equations 63 
systems of equations 8-9 
trigonometric equations 200-1, 

2034 
graphs 3-6,8-9 

common functions 36-7 
concavity 58-9,405-8, 437 
cumulative frequency graphs 267-8, 

291,294-6 
distance-time graphs 374-5, 381 
exponential functions 139-42 
factorized form quadratics 65-7 
inflection points 405-7, 437 
logarithmic functions 153 
quadratic functions 58-62, 637 
stationary points 396-402, 404-5, 

407-8,437,443 
trigonometric functions 188-98 
turning points 390, 395-7 
velocity-time graph 508 
vertex form quadratics 59-61 
see also scatter plots; transformations 

gravity 403,404, 511-12, 606-7 
grouped data 290-2 
growth 

continuous 147-9,150-1 
discrete 148 
exponential 140-1,142-3,145-6, 

163-4 
see also population growth 

growth factor 142 

H 
HALE data 260, 280-1 
histograms 

frequency distributions 266, 267-8, 
274-6,279-80, 289,293 

probability distributions 527, 530, 
533,542-3 

relative frequency 548 
shape 279-80,293 

horizontal asymptotes 20, 46-7, 376 
exponential functions 140-2 
rational functions 70-2, 379 

horizontal stretch/shrink 42-3, 45, 
195-6 

horizontal translations 37-9, 59, 142, 
193,196 

humanism 610-11 

1 
identities 2,199 

see also trigonometric identities 
identity function 29,36 
image (of domain value) 16 
imaginary roots/zeros 63,65 
included angle 234-5, 243, 249-50 
inconsistent system of equations 8,12 
independent events 351-2, 357-61 
independent variables 16-17, 301, 305, 

575 
inductive definitions see recursive 

definitions 
inequalities 19, 78-80, 81, 82 
inferential statistics 332 
infinite geometric series 104-6 
infinite sequences 84, 105 
infinite series 98, 104-6 
infinite sets 617-18 
inflection points 405-7, 437 
initial amount 93, 1424, 147-9 
instantaneous rate of change 390-1 
instantaneous velocity 374-5, 381,401-2 
integrand 458, 488-9 

rewriting 459-60, 461,473 
integration 456-522 

antiderivatives 456-65, 479, 4834, 
485,510 

area under a function 476-80, 481-2, 
486, 491-5 

by partial fractions 488-91 
by parts 466-71 
by substitution 460-4, 472-6, 485-6 
change of variable 460-5 
definite integral 477, 479-88,491-7, 

498-504 
finding areas 491-7 
finding average values 480-1 
finding unknown integrals 469-70 
finding volumes 497-505 
formulae 458-9,463 
fundamental theorems of 

calculus 479, 4814, 485 
max-min inequality 481 
modelling linear motion 508-14 
polynomial functions 488-91 
and rates of change 484, 508-14 
rewriting integrand 459-60, 461, 473 
trigonometric integrals 458-9, 4614, 

466-7, 468-70,472-5 
trigonometric substitution 472-6 

interest see compound interest 
internal assessment 593-9 
interpolation 312-13 
interquartile range (IQR) 288-9,294-6 

continuous distributions 553-4, 556, 
557,559 

normal distribution 566, 568 
intersecting lines 8-9,236-8, 415-16 
intersection (of events) 350-2, 355-7 
interval variables 263 
intervals 264-5 
inverse (meaning of) 37 
inverse functions 28-35,152,153-4 
inverse normal distribution 565-7 
inverse operations 29 
inverse square function 37 
inverse trigonometric functions 458-9, 

463 
investments see compound interest



K 
kinematic problems 401-5, 506-14 

L 
least squares regression 31015 
Leibniz notation 386, 402, 430-1, 435-6, 

438 
limit process 381-3 
limits 375-9 

geometric series 104-5 
integration 477, 481-2, 498 

ine of best fit 310-15 
ine segments 6-7,217-18, 220 
ine of sight 224 
inear combinations of random 

variables 574-6, 580-2 
linear equations 3-6,8-15 

linear functions 36, 58, 69, 380, 381 
areaunder 478-9 
modelling sequences as 84-5, 88 

of random variables 572-3, 580-1 
linear motion 401-5, 506-14, 6067 

linear regression 300-19 
correlation and covariance 300-9 
least squares regression 310-15 

lines 4-6,8-9 
angles between two 235-8 
distance from point to 2267 
equation of see equation of a line 
intersecting 8, 9,236-8, 415-16 
parallel 6,8,10 
perpendicular 6, 414-16 
relationship between 8-9 

location, measures of 276-83, 5301, 
551-4 

logarithmic equations 152-3,165-7,169 
logarithmic functions 151-61,169-72 
change of base 157-8,162 
common logarithm function 154-5 
derivatives 425-8 
natural logarithm function 154-5, 

425-8 
properties of logarithms 153-7, 161-5 

long-run relative frequency 334 
lowerbound 142 
lower fences 288,293 

I 
| 
I 
1 

M 
majorarc 176 
many-to-one functions 31 
mapping notation 19 
mappings 16,24, 29, 602-3, 617 
mathematical exploration 593-9 
mathematical models see modelling 
mathematical physicists 619-21 
matrices 12-14 
‘max-min inequality 481 
maximum values 192, 397-402, 404-5, 

407-11, 437 
optimization problems 4434, 446, 

448-50 
quadratic functions 58-9 

Maxwell's equations 620 
mean 277-8, 280-3, 294-5, 296-300 

binomial distribution 544 
continuous distributions 551,552, 

555-60 
grouped data 290 
normal distribution 561-3, 5667, 

580-1 

Index 

and outliers 278-9 
population mean 278,530 
random variables see expected values 
sample mean 277,278, 281,290, 

579-80 
symmetric distributions 280, 293 
variability about 285-6 

mean proportional 97 
mean value theorem 457 
measures of centre 276-83,530-1, 

533-8, 551-4, 555-60 
measures of spread 284-300, 532-7, 

553-60 
median 277, 278-83, 2946, 297,298-9 

box-and-whisker plots 288-9 
continuous distributions 5534, 

555-7, 558-60 
and distribution shape 280-1, 293,294 
grouped data 291 
and outliers 278-9 

mid-interval value 265 
midpoint (class) 265 
midpoint (line segment) 7,217,218 
milk consumption 279, 526-8, 530-1, 

532 
minimum distance 226-7, 447 
minimum values 192, 397-401, 407-11, 

437 
optimization problems 443, 444-6, 

447-9 
quadratic functions 58-9 

minorarc 176 
modal class 279, 280-1 
mode 277,279,280 

bimodal distributions 296 
continuous distributions 551-2 

modelling 606-9 
continuous growth/decay 148-50 
exponential models 142-4, 148-50, 

1634 
growth/decay 95-6,142-4, 148-50, 

1634, 607-8 
linear motion 506-14, 6067 
population 95-6,143, 1634, 607-8 
probability models 334-5, 541 

monotonic functions 31 
moving objects 401-5, 50614 

uniformly accelerated 511-12, 606-7 
multiplication rule (probability) 351-2, 

355,357 
multiplicative inverse 37 
mutually exclusive events 342, 344, 346, 

  

351 
probability distributions 527, 540 

N 
natural exponential function 138, 

149-50, 154 
natural kinds 602 
natural logarithmic function 154-5, 

425-8 
natural numbers 617-18 
negative skew 280 
non-probability sampling 270,272 
non-random sampling 26970, 272 
non-rigid transformations 41-6 
normal distribution 56072, 580-2 

inverse normal distribution 565-7 
standardising 562-5 

normals (to a curve) 414-17 

notation 613-15 
differential calculus 383,386,402, 

430-2,435-6,438 
factorial notation 113,121-2 
functions 19, 24-5,29,156 
integration 458, 484 
limits 376 

mapping notation 19 
random variables 524 
sigma notation 98-101, 115 
trigonometric functions 202 

nth partial sum 101-4 
nth term of a sequence 84-5, 88-9,90-1, 

92 
numberline 3,6,182-3 
number theory 608-9 
numerical data 262-3 

o 
obtuse angles 232-3, 236,237,247 
obtuse triangles 234,235, 2436, 247-9, 

250 
odd numbers 614-16 
ogives 267-8,291,294-6 
one-to-one correspondence 602-3 
one-to-one functions 30 
one-variable linear equations 3 
optimization problems 443-50 
ordered pairs 3,16, 32 

datasets 301, 524-5 
ordinal properties 602 
ordinary annuity 107-8 
outcomes 335, 341, 344-5, 346 
outliers 278-9, 288-9, 2934, 296 

bivariate statistics 302, 303-4, 309 

P 
parabolas 58-9, 65-7,396-7, 415-16 
parallel lines 6, 8,10 
parallelepiped 503 
parallelograms 218 
parameters 2,277 
partial fractions integration 

method 488-91 
partial sum of a series 101-5,107-8 

sigma notation 98-101 
parts method of integration 466-71 
Pascal'srule 114-15 
Pascal’s triangle 112-13,114-15 
patterns 600, 601-2, 609 
Pearson product-moment 

coefficient 307 
percentiles 287,288, 5534, 565 
period 192-3,194-5 
periodic functions 183, 185, 188-9, 

192-3 
permutations 121-3 
perpendicular lines 6, 414-16 
phase shift 193 
phase space diagram 608 
pie charts 263 
piecewise regression 315 
plane in 3D space 12 
Platonism 611,612-13 
point of inflection 405-7, 437 
point-slope form of a line 4, 5, 88, 427 
points 

distance between two 216-18 
distance to line 226-7 

of intersection 8-9,415-16 
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Index 

polynomial equations 3, 64-5, 604-5 
see also quadratic equations 

polynomial functions 58, 69-73, 379, 
395-411 

differentiating 395-401, 430, 432-3, 
435 

finding derivatives 383-9 
inle%l'aling 488-91 
see also quadratic functions 

polynomial inequalities 79-80 
population growth 607-8 

exponential model 143,163-4 
geometric sequence model 95-6 

population parameters 277,278, 285, 
530-2 

population (statistics) 261-2 
position function 401-5, 506-8, 510-12 
positive skew 280 
power functions 138-9, 456 
powerrule 385,386, 435, 441, 456, 459 
practice questions 

differential calculus 417-22, 450-4 
equations and inequalities 81-2,169, 

172 
exponentials and logarithms 169-72 
functions 51-6, 81-2 
integration 514-22 
probability 366-72, 586-92 
sequences and series 127-36 
statistics 319-30 
trigonometric functions and 

equations 212-14 
trigonometry 255-8 

predictions (response variable) 312-15 
prime numbers 609, 612 
principal (investment) 93-5,143,147-9 
principal square root 20 
prisms 217,219 
probability 332-72,621 

assigning 340-50 
binomial variables 539-47 
conditional probability 353-7 
and counting principles 346 
definitions 334-7 

equally likely outcomes 341, 344-5, 
346 

frequency theory 341 
geometric probability 345, 360-1 
independent events 351-2, 35761 
mutually exclusive events 342, 344, 

346, 351,527, 540 
operations with events 350-65 
random events 332-40 
rules 342-4,351-2 
and set theory 335-6 
tree diagrams 337, 355, 35960, 

539-40 
two-dimensional grids 337-8, 344-5 

pmbabililf/ density functions 548-60 
normally distributed random 

variables 561 
standard normal distribution 563 

probability distribution function 527-30 
probability distributions 524-92 

binomial distribution 538-47, 578-9 
continuous distributions 547-72 
definitions 526~7 
discrete random variables 526-7 
expectation algebra 572-85 
inverse normal distribution 565-7 
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mean see expected values 
measures of centre 530-1,533-8, 

551-4, 555-60 
measures of spread 532-7, 553-60 
normal distribution 560-72, 580-2 

probability mass function see probability 
distribution function 

probability model 334-5 
probability sampling 270-2 
probability tables 337 
probability theories 340-1 
product rule 435-7, 439, 440, 441-2, 466 
projectiles 402, 403,506, 511-12 
proofs 605,615-17 
proportion 619 
pure mathematics 604-5 
pyramids 219, 238 
Pythagoras’ theorem 6-7,216-18,223, 

250, 445 
Pythagorean identities 206-7, 209, 

210-11 

quadratic equations 3, 58, 59 
methods of solving 62-3,73-7 
roots 64-5 

quadratic form equations 75-7 
quadratic formula 58,61, 63-5 
quadratic functions 58-69 

completing the square 60-2, 63 
discriminant 63-5 
factorized form 65-7 
general form 59, 60-5, 67 
graphs 58-62,63-7 
vertex form 59-62, 67 
zeros 62-5 

quadratic inequalities 78-80 
qualitative data 262, 263 
quantitative data 262-3,276 
quartiles 287-9, 2946 

continuous distributions 553-4, 566 
corresponding z-scores 5656 

grouped data 291-2 
normal distribution 566 

quota sampling 272-3 
quotient rule 438-42 

R 
radians 175-7,378, 392,393 
radicals in equations 74 
random events 332-40, 531 
random number generator 270 
random sampling 269-72, 541 
random variables 524-38 

binomial distribution 538-47 
cumulative distribution 

functions 527-8, 550 
discrete distributions 526-47 
discrete/continuous 525-6 
linear combinations 574-6, 580-2 
linear function of 572-3, 580-1 
mean see expected values 
normal distribution 560-72, 580-2 
probability density functions 548-60 
several observations of 576-9 
see also continuous random variables; 

standard deviation; variance 
range (data) 284,288 

see also interquartile range (IQR) 
range (of a function) 16,18,19-21 

composite functions 26-7 
exponential functions 140, 141-2 
interchanging with domain 31-4 
inverse functions 29-34,152 
logarithmic functions 153 
rational functions 69-72 
trigonometric functions 194-5 

rate of change 380, 484 
average/instantaneous 390-1 
derivatives as 390-1, 403-5, 429-30 
integral of 484 
moving objects 403-5, 507, 508-14 

rate problems 447 
ratio variables 263 
rational functions 69-73, 379, 488-91 
rational zeros 63,79-80 
real number line 6,182-3 
real numbers 18, 85 
real roots 64-5 
real zeros 62,63, 65 
reciprocal function 37, 46-7 
recursive definitions 85-6, 88, 89,91 
reflections 39-40,141-2,153 
regression line 310-15 
relation 16 
relative cumulative frequency 

distribution 266 
relative frequency histogram 548 
relative frequency theory 340-50 
relative maximum/minimum value 398, 

400-1, 408 
reliability (data) 262 
replacement 119 
representative sample 269 
response variable 301,312-15 
right-angled triangles 6, 7,222-30,231, 

232 
right-hand rule 217 
rigid transformations 37-41 
roots (of equations) 2, 58, 63, 64-5 

S 
sample 261-2 
sample mean 277,278, 281,290, 

579-80 
sample space 334-5, 3367, 524-5 
sample variance 284-5 
sampling 261-2, 26973, 541 
sampling error 270 
sampling frame 270 
scatter plots 300-4, 315-19 

correlation 306-8, 309 
covariance 304-6 
least squares regression 310-15 

secant function 223,231, 232, 458, 459 
integrals 463,472, 4734, 482, 485 

secant (of a curve) 381-3,390-1 
second derivative test 407-8, 444 
second derivatives 402-8, 437 
second fundamental theorem of 

calculus 4834, 485 
sector of a circle 179-80 
segment of a circle 234 
segmented regression 315 
sequences 84-98, 127-36, 609 

arithmetic 88-91,101 
compound interest 93-5 
Fibonacci sequence 86,613,619 
geometric 91-8, 105 
nthterm 84-5, 88-9,90-1, 92



series 98-110, 127-36 
arithmetic 98,101-3 
convergent/divergent 105 
geometric 103-10 
sigma notation 98-101 

set of ordered pairs 16 
sets 602-3,617-18 

and probability 335-6 
shrink 41-6, 191, 195-6 
sigma notation 98-101, 115 
sign charts 79, 80, 3967, 398, 406 
similar triangles 222-3 
simple events 335,337 
simple random sampling 270 
simultaneous equation solver 11-12,13 
simultaneous equations 8-14, 15, 567 
sine 183-7,200-1, 204, 205 
of acute angles 222-3,224-5 
of angle in standard position 231-3 
antiderivative 457 
calculus formulae 458,463 
derivative 391-3 
graph 188-91,192-3 
identities 199, 206-7, 208-11, 232 
integration 461-5, 467, 468, 469-70, 

471-3,474-5 
transformations 189-91,192-3 

sinerule 242-8, 249-50, 251, 252 
skewed distributions 280, 294-5,296 
slope see gradient 
slope-intercept form of a line 4-5, 9, 

236, 380 
social facts 610 
solids 218-20, 221-2, 497-505 
solids of revolution 499-505 
solution set 2, 3,78-80 
‘something has to happen’ rule 342 
speed 12,291-2, 374,511 

definition 403, 507 
spheres 219,220, 500 
spread, measures of 284-300, 5327, 

553-60 
square root function 36, 38 
square roots 20, 24, 63, 202, 285 

approximating 412-13 
squaring function 36, 37-8 
standard deviation 285-7,532-3 

binomial distribution 541, 544 
continuous distributions 554-6, 557, 

560 
grouped data 290 
normal distribution 561-5, 5667, 

581 
population 285, 532 
symmetric distributions 2924 

standard normal distribution 563-5 
standard position 175,176, 183,231-3 
stationary points 396-402, 404-5, 407~ 

8,437,443 
statistics 260-330 

bivariate statistics 300-19 
classification of variables 262-3 
frequency distributions 263-8, 273-6 
graphical tools 261, 263-8, 288-9, 

3004 
grouped data 290-2 
inferential statistics 332 
linear regression 300-19 
measures of central tendency 276-83 
measures of variability 284300 

  

Index 

percentiles 287,288 
population and sample 261-2 
quartiles 287-9,291-2, 2946, 5534, 

565-6 
sampling methods 26973 
shape of distribution 280-1,292-4 

straight line motion 403-5, 506-14, 

stratified random sampling 270-1 
stretch 41-6,142,190-1 
subpopulations 270-1 
substitution method 

integration 460-4,472-6, 4856 
simultaneous equations 10-11 

sum and difference rule 385-6, 435 
sum of infinite convergent geometric 

sequence 105 
summary measures 

central tendency 276-83 
five-number summary 288-9 
variability 284-300 

supplementary angles 232-3 
surface area 218-20, 238 
symbols 602, 603, 613-14 
symmetric distributions 279, 280, 2924 
symmetry 114,600, 619, 620 

graphs of function and inverse 32,33 
parabolas 58-62, 65-7 

systematic random sampling 271-2 
systems of linear equations 8-14,15, 567 

T 
tangent function 183-5, 186-7, 201,203, 

205 
of acute angles 222-3,225,226 
of angle in standard position 231-3 
angles between lines 235-8 
calculus formulae 458-9, 463 
graph 194-6 
identities 199,205,232 
integration 461, 4735 
inverse of 225,244 
transformations 195-6 

tangents 412-17 
at turning points 390 
equation of 412-14,416-17, 427 
and gradient (slope) of a curve 380-4, 

385,386-9, 392,413 
term by term differentiation 385, 387, 

413,430, 432,435 
terminal velocity 511 
theorems 616 
theory of knowledge 600-23 
three dimensional measurements 

216-22,238 
time 17, 447 
transformations 36-51, 61 

exponential functions 141-2 
of normal curve 562-3 
order of 38,46 
reflections 39-40, 141-2 
sequence of 38,45-6 
shrink 41-6,191,195-6 
stretch 41-6,142,190-1 
translations see translations 
trigonometric functions 189-94 

translations 37-9,45-6, 59, 190-1 
exponential functions 141, 142 

phase shift 193 
trigonometric functions 193,196 

tree diagrams 337, 355, 35960, 539-40 
triangle inequality theorem 220 
triangles 

area 227,233-5 
arrangement of known parts 242, 243, 

244-7,248-9,251 
cosinerule 242,248-52 
finding unknowns 223-7,243-55 
right-angled 6,7, 222-30, 231,232 
similar triangles 222-3 
sinerule 242-8, 249-50, 251,252 

trigonometric equations 199-214 
analytic solutions 204-6 
exact solutions 199-202 
graphical solutions 200-1, 2034 
solving with identities 205-6, 208-10 

trigonometric functions 174, 182-7, 
212-14 

of acute angles 222-30,232 
antiderivatives 457 
ofany angle 231-42 
calculus formulae 458-9, 463 
derivatives 391-3 
evaluating 185-6 
graphs 188-98 
notation 202 
and right-angled triangles 223-7 
signs of 232 
transformations 189-94 

trigonometric identities 199, 205-11, 
472 

finding exact values 210 
for pairs of supplementary angles 232, 

233 
solving trigonometric equations 

205-6, 208-10 
use in integration 472-6 

trigonometric integrals 458-9, 4614, 
466-7,468-70, 472-6 

trigonometry 222-58 
angle between two lines 235-8 
area of a triangle 227,233-5 
right-angled triangles 222-30, 231, 

232 
turning points 390, 395-7 
two dice experiment 524-5 
two-dimensional grids 337-8, 344-5 
two-variable linear equations 4 

U 
unbiased estimates 285, 307 
uniformly accelerated motion 511-12, 

606-7 
union (of events) 351 
unit circle 176-7 

exact solution of trigonometric 
equations 199-202 

sine‘?cosine graphs 188-9 
and trigonometric functions 182-7 

unknowns and cubes problem 605 
upper bound 142 
upper fences 288, 294 

A4 
validity (data) 262 
variability, measures of 284-300, 532-7, 

553-60 
variables 262-3 

associated 301, 309 
dependent 16-17,301,312-15 

599



Index 

explanatory variable 301, 308, 310, 
314 

independent 16-17,301, 305,575 
measures of dependence 304-9 
relationship between 300-19 
response variable 301,312-15 
see also random variables 

variance 284-7,532-3, 535, 572-85 
continuous distributions 554-5, 558 
%muped data 290 
[inear combinations of random 

variables 574-6, 580-2 
linear function of random 

variable 573-4, 580-1 
normal distribution 580-2 
population variance 285, 532 
of sample mean 579-80 
sample variance 284-5 

600 

several observations of random 
variable 577-9 

velocity 403-5, 506, 507-12 
averagefinstantaneous 374-5,401-2 

velocity function 403-5, 507-14 
velocity-time graph 508 
Venn diagrams 336, 350, 351, 354, 356, 

358 
vertex (angle) 175 
vertex (parabola) 58-62,65-7,396 
vertex form quadratic functions 59-62, 

67 
vertical asymptotes 20, 46-7, 195, 378 

rational functions 70-2 
vertical stretch[shrink 41-2, 44, 45-6, 

142,190-1 
vertical translations 37-9,45-6, 59, 141, 

190-1 

volume 17,218-20 
by cylindrical shells 503-4 
by integration 497-505 

w 
washers 501-3 
wrapping function 182-3 

X 
x-intercepts 5,647, 71 

finding roots/zeros 63, 64-5 

Y 
y-intercepts 4-5,71,155 

z 
z-scores 562-7 
zeros 58, 62-5, 67, 79-80


